Consciousness in Unified Theories of Minds

Petros A M Gelepithis, Dir., Cognitive Science Laboratory Kingston University

Consciousness in Unified Theories of Minds

Unified Theories of Minds

Necessary and sufficient conditions for Intelligence

On the Nature of Consciousness

C in UToMs, Models of C/ESF Exl'ry W'shop, 2003, UoB, Birmingham.

Unified Theories of Minds

What Unified ToM are

Theories of Mind that cut across all levels of organisation of an Intelligent System.

Definition of Level (for *Systemic Description*)

A level consists of a

Medium that is to be processed,

Components that provide primitive processing,

Laws of composition that permit components to be assembled into *systems*, and

Laws of behavior that determine how system behavior depends on the component behavior and the structure of the system.

> Unified Theories of Cognition. (Newell, 1990 and earlier).

Knowledg	e-level systems		
Medium: Laws:	Knowledge Principle of rationality		
Program-I Medium: Laws:	evel systems Data structures, p Sequential interp	rograms retation of programs	
Register-te Medium: Laws:	Bit vectors Parallel logic		
Logic circo Medium: Laws:	Bits Boolean algebra		
Electrical Medium: Laws:	Voltage/current Ohm's law, Kirchi	hoff's law	
Electronic Medium: Laws:	devices Electrons Electron physics	Unified Theories of Cognition. (Newell, 1990).	

The Nature of Knowledge

Whatever can be ascribed to an agent, such that its behavior can be computed according to the principle of rationality.

Unified Theories of Cognition. (Newell, 1990 and earlier).

C in UToMs, Models of C/ESF Exl'ry W'shop, 2003, UoB, Birmingham.

The Principle of Rationality

If an agent has knowledge that one of its actions will lead to one of its goals, then the agent will select that action.

> Unified Theories of Cognition. (Newell, 1990 and earlier).

C in UToMs, Models of C/ESF Exl'ry W'shop, 2003, UoB, Birmingham.

C in UToMs, Models of C/ESF Exl'ry W'shop, 2003, UoB, Birmingham.

Domains, CSTC, and the role of Communication

Investigation Dom.	CSTC	Role of Comm.	
Animals & Machines	Continuous S.	Fund'l. Not Analysed.	
ſ	Programming. S.	Not considered.	
Intelligent	Continuous S.	Not considered.	
Systems	Other Math. S.	Addrs'd, not Cntrl.	
Orgs & H. Soc.	Human Language.	Cntrl; C'hnsive Th.	

(Gelepithis, 2004 Kybernetes).

10

Foundational notions of Cognitive Science

According to Newell (1990)	According to Gelepithis (1999, 2003)	
1. Behaving systems,	1. Perception,	
2. Knowledge,	2. Action,	
3. Representation,	3. Growth (e.g., self-organisation),	
4. Machine* (e.g., computation),	4. Meaning,	
5. Symbol,	5. Thinking (e.g., computation),	Donived notional
6. Architecture,	6. Understanding,	Vnowladaa
7. Intelligence,	Z Communication,	Symbol
8. Search,	8. Representation,	
9. Preparation vs. deliberation*.	9. Intelligent system,	
	10. Purpose,	
	11. Emotion,	
	12. Human language,	
<	13. Consciousness,	
	14. Beauty. Culture,	

Ethical principles

C in UToMs, Models of C/ESF Exl'ry W'shop, 2003, UoB, Birmingham.

Nexus of Foundational notions

Necessary and sufficient conditions for Intelligent Systems

(After Gelepithis 1991,2001,2002)

Definition of Intelligent System

- A system, S, is intelligent if and only if:
 - a) It possesses sensors.
 - b) It is able to act on its environment.
 - c) It possesses its own Representational System R_s , i.e., R_s is independent of any other R_{s*} (i.e., the representational system of S^*).
 - d) It is able to connect sensory, representational, and motor information.
 - e) It is able to Communicate with other systems within its own class.

Consequence

The space of intelligent systems is extremely varied with nearly impenetrable regions of intelligence.

Definition of a Representational System

> R_e is a representational system of E if and only if R_e is a Thought System of E able to create Representations.

C in UToMs, Models of C/ESF Exl'ry W'shop, 2003, UoB, Birmingham.

Definition of Representation

For an entity E, a representation of a situation, say, S₁ is another situation, say, S₂, characterised by the properties:
S₂ simplifies S₁; and
S₂ preserves the essential characteristics of S₁.

Definition of Thought System

\mathcal{T} is a thought system of E if and only if \mathcal{T} is a system of thoughts of entity E.

C in UToMs, Models of C/ESF Exl'ry W'shop, 2003, UoB, Birmingham.

Definition of Thought

σ is a thought of E if and only if σ is an ordered n-tuple of meanings of E.

C in UToMs, Models of C/ESF Exl'ry W'shop, 2003, UoB, Birmingham.

Definition of Meaning

The meaning, M, of something s, in the context C_s , for the entity E, at time t is the prevailed formations of \mathbb{R}^m_E , at

†.

Definition of Communication

An entity E_1 communicates with E_2 on a topic S if, and only if:

- E_1 understands S -symbol: U (E_1 , S).
- E_2 understands S -symbol: U (E_2 , S).
- U (E_1 , S) is presentable to and understood by E_2 .
- U (E_2 , S) is presentable to and understood by E_1 .

Definition of the-end-result-of Understanding

An entity E has understood something, S,

if and only if,

E can present S in terms of a system of own primitives.

(π is a primitive iff E's understanding of π is immediate).

Précis of the Argument

- ➤A human, H, and an intelligent robot, R, would communicate on a topic T, if and only if:
 - either $P_H = P_R$ for T (P for primitive); or
 - $-P_{H}$ and P_{M} could be described in terms of each other.
- Since linguistic primitives are reducible to sense primitives except if they are purely linguistic, one needs language to describe the senses and senses to understand language. Hence P_H and P_R could not be described in terms of each other. In other words, human-machine communication is impossible.

On the Nature of Consciousness

The major issues in the study of Consciousness

(after Gelepithis 2001)

 Θ_1 : Is it possible to incorporate consciousness into science?

 Θ_2 : What is consciousness?

 Θ_3 : The problem of qualia or the subjective - objective issue.

 Θ_4 : The integrative and attentional nature of consciousness.

 Θ_5 : Is consciousness an invariant?

 Θ_6 : Are the words 'consciousness', 'awareness' and 'experience' absolute synonyms?

 Θ_7 : The issue of altered states of consciousness.

 Θ_8 : Account for the distinction between conscious (Cs) and unconscious (Ucs) processes.

 Θ_9 : What is the relation between brain on the one hand and consciousness and the unconscious on the other?

 Θ_{10} : What is the relationship between consciousness and memory?

 Θ_{11} : Does consciousness have causal powers?

The central Nexus of issues and attempts to resolve it

- The problem of Qualia or the subjectiveobjective issue. None!
- The integrative and attentional nature of consciousness. (Crick, Taylor).
- > Account for the distinction between conscious (Cs) and unconscious (Ucs) processes. (Freud).
- What is the relation between brain on the one hand and C'ness and the Ucs on the other? (Baars, Eccles, Edelman, Hameroff & Penrose).

Proposal

Consiousness is the totality of the Ontogenetically-created* Paths of Understanding.

* Communication plays a fundamental role in such a creation.

C in UToMs, Models of C/ESF Exl'ry W'shop, 2003, UoB, Birmingham.

Aspects of the Process of Understanding

C in UToMs, Models of C/ESF Exl'ry W'shop, 2003, UoB, Birmingham.

C in UToMs, Models of C/ESF Exl'ry W'shop, 2003, UoB, Birmingham.

Brain Complexity (Potential vs Actual) ³⁰

>Neural states: 10^{100,000.000.000}

> Mental phenomena (MP): 1099,999.999.999.998

>Conscious MP: 1099,999.999.999.976

> Assume

Number of Chess games: 10¹²⁰

- one experiences 1CMP/sec and lives 120yrs.
- Then Elementary particles in known Universe: 10⁸⁰
 - Total conscious experience: 4×10⁹ CMP.

C in UToMs, Models of C/ESF Exl'ry W'shop, 2003, UoB, Birmingham.

C in UToMs, Models of C/ESF Exl'ry W'shop, 2003, UoB, Birmingham.

Topological modelling of Human semantic structures

Basic modelling idea

Instances of Concepts correspond to Topological Neighbourhoods.

> Concepts correspond to Neighbourhood Families.

Semantic Structures correspond to Neighbourhood Systems.

C in UToMs, Models of C/ESF Exl'ry W'shop, 2003, UoB, Birmingham.