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Preface

It is the objective of this book to give an overview of the cross-domain ar-
chitecture for embedded systems that has been developed in the context of
the European FP 7 research project GENESYS (GENeric Embedded SYS-
tem FP7-213322) from January 2008 to June 2009. GENESYS is a candidate
for the ARTEMIS European Reference Architecture for embedded systems.
ARTEMIS is a European joint technology initiative (JTI) that bundles the
efforts of European players from industry, academia and governments in the
domain of embedded systems in order to develop a cross-domain approach to
Embedded System Design. Such a cross-domain approach is needed to support
the coming Internet of Things, to take full advantage of the economies of scale
of the semiconductor industry and to improve the productivity of the human
resources.

In a two year effort, before the start of the GENESYS project, an ex-
pert group from ARTEMIS has captured the detailed requirements and con-
straints for such a European cross-domain embedded system architecture [8].
GENESYS has taken these requirements and constraints as a starting point.
In particular, the following three challenges have driven the development of
GENESYS

e Complexity Management: The management of the ever-increasing
cognitive complexity of embedded system is a major concern in all ap-
plication domains. GENESYS attacks this problem by lifting the design
process to a higher level of abstraction — to the level of self-contained
hardware/software components that communicate exclusively by the ex-
change of messages. Components can be reused on the basis of their inter-
face specification without having to know the internals of the component
implementation. The GENESYS framework supports the straightfor-
ward composition of components and supports the classic simplification
strategies of abstraction, partitioning and segmentation.

e Robustness: An embedded system must deliver an acceptable level of
service, even in the presence of software and hardware faults, and op-
erator mistakes. GENESYS supports the robustness by establishing a
framework for fault containment and error containment, the selective
restart of components that have failed after a transient fault, and the
masking of transient and permanent errors by the replication of compo-
nents. Security is addressed at all levels of the architecture.

e Energy Efficiency: Energy efficiency is of utmost concern in the mass
market of mobile devices. GENESYS provides for energy efficiency by a
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technology-agnostic model-driven design style that supports the migra-
tion of a stable component form of software on a CPU to an ASIC (and
thus improving the energy efficiency by orders of magnitude) and by an
integrated resource management that makes it possible to individually
reduce the power-requirements of components or to turn off components
completely that are not needed during a particular interval (power gat-
ing). The time-triggered communication paradigm establishes a ”green
wave” for the transmission of messages without any energy intensive in-
termediate buffering or arbitration.

GENESYS is a platform architecture that provides a minimal set of core
services at the waist and a plurality of optional service that are predominantly
implemented as self-contained system components. Choosing a suitable set
of these system components that implement optional services, augmented by
application specific components, can generate domain-specific instantiations of
the architectures.
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One

Introduction

MBEDDED SYSTEMS enable the real-time computer control of physical de-
E vices and systems, ranging from mobile phones, to television sets, to au-
tomotive engines and to industrial robots (to take a few examples) in order to
achieve an unprecedented level of performance and utility. Embedded systems
are also called Cyber-Physical Systems (CPS) to denote the emphasis and the
close synergetic interactions of a real-time information processing subsystem
(the Cyber System) with a physical device or subsystem that is to be controlled
(the Physical System).

The demands on the functional capabilities and the dependability of, and
consequently the opportunities for embedded systems grow rapidly as society
moves further into the information age. Societal mega-trends demand radical
innovations in the following areas:

e Personal communication and information: The phenomenal success of
the mobile phone industry over the past twenty years shows that there is
a deep human desire for an ubiquitous connection to his peer group and
society at large.

o Efficient use of natural resources: We are in the middle of a shift from a
resource-intensive economy to a sustainable economy. Embedded systems
are a key enabling technology to enable this shift.

e Safety and Security: The increasing dependence of many parts of our
society on the correct operation of embedded systems puts increased em-
phasis on the dependability, safety and security of these systems. The
wish for all kinds of information is constrained by the desire to protect
the personal privacy sphere.

e Assistance in an Aging Society: The welcome demographic trend to an
extended human life-span puts more strain on the medical domain to
ameliorate the later stages of life. Embedded systems help to assist med-
ical doctors and increase the productivity in the health-care sector by
providing tele-medical services.

The fulfillment of these challenging demands is facilitated by the enormous
progress of the semiconductor and communication technology. The 2007 Inter-
national Technology Roadmap on Semiconductors (ITRS) states [30, page 83]:

5



6 CHAPTER 1. INTRODUCTION

The historical ability to reduce the leading-edge product manufacturing cost
per function by an average 29% each year has represented one of the unique
features of the semiconductor industry and is a direct consequence of the mar-
ket pressure to continue to deliver twice the functionality on-chip every 1.5-2
years in an environment of constant or reducing prices. Even though the rate
of increase of on-chip functionality could slow in the future, the amount of
functions/chip is still growing exponentially, though at a slower rate. Accord-
ing to [30, page 84], the marginal production cost of one million bits of DRAM
(packaged) is about 1 cent in 2007 - going to decrease to about .06 cent in 2015.
This means that today about 10 billion bits can be produced for the cost of an
engineering hour. Parallel with this production-cost decrease goes a dramatic
increase in the fixed cost of chip manufacturing, such as cost of equipment,
design, mask cost, test-cost etc. implying that an ever larger number of chips
of a given design must be produced to recover the fixed cost. Furthermore,
the time-honored trend that the failure rate per transistor decreases as fast or
faster than the increase in the number of transistors per chip will not continue
in the near future due to the growing susceptibility of the ever smaller micro-
devices to internal and external disturbances (e.g., ambient cosmic radiation).
As a consequence the failure rate per chip is increasing (although the failure
rate of each transistor still decreases). System-level techniques to provide to
the end-user robust services despite the occurrence of transient device failures
are therefore needed. Giving this future environment of growing demands and
greater than ever technological capabilities, the opportunities for the embed-
ded system sector are enormous, provided that the technological and societal
requirements and constraints are properly addressed. These requirements and
constraints have been captured in detail in the ARTEMIS Strategic Research
Agenda [8].

It has been the objective of the GENESYS project to develop a cross-domain
framework that addresses these requirements and constraints. By promoting
a strict component-based design style and identifying components that can be
deployed in different application domains, the design and production costs of
new applications can be significantly reduced by reusing components and taking
advantage of the enormous economies of scale of the semiconductor industry.

The book is structured into seven Chapters. After a short introduction in
Chapter one, Chapter two introduces the notion of a system architecture and
the relationships between the platform and the architectural services. Chapter
three summarizes the extensive set of requirements that have been captured
in the industrial and consumer electronics domain and form the yardstick for
measurement the adequacy of the architecture. Chapter four presents the ar-
chitectural style of GENESYS, expressed as a set of architectural principles
that guide the detailed design of the architecture. Chapter five introduces first
the core services that are part of the waist of the platform and then the open
set of optional services. These optional services can be implemented in the
form of self-contained system components that interact with the generic mid-
dleware of the application components by the exchange of messages. Chapter
six outlines the model-based development methodology of GENESYS. Chapter
seven describes an FPGA-based prototype implementation of the core architec-
ture. Finally, the relationships between GENESYS and some domain specific
architectures, such as NOTA, IMA and AUTOSAR are discussed in Chapter
eight. In the Annex one finds a detailed glossary of terms.



Two

System Architecture

HIS CHAPTER introduces the notion of a system architecture for distributed
T embedded real-time systems. The overall architecture consists of two types
of constituting systems: a set of components and an underlying platform (cf.
Figure 2.1). Components are built on top of a platform, which offers core
platform services as the basis for the implementation and integration of com-
ponents. The core platform services enable emergence of global application
services of the overall system out of local application services of the constitut-
ing components. The core platform services provide elementary capabilities for
the interaction of components, such as message-based communication between
components or a global time base. The core services are the instrument via
which a component creates behaviour that is externally visible at the compo-
nent interface. In addition, the specification of a component’s interface builds
upon the concepts and operations of the core platform services. The component
interface specification constrains the use of these operations and assigns con-
textual information (e.g., semantics in relation to the component environment)
and significant properties (e.g., reliability requirements, energy constraints).
Hence, the core platform services are a key aspect in the interaction between
integrator and component developer.

2.1 Systems, Services and Behaviour

We use the definition of a system introduced in [20]: an entity that is capable of
interacting with its environment and is sensitive to the progression of time. The
environment is in principle another system. The environment takes advantage
of the existence of a system by producing input for the system and acting on
the output of the system.

A system combines physical and logical aspects. As a consequence, be-
haviour can be associated with a system taking into account both the value
and time domain. This definition excludes, for example, a software module
without associated hardware.

In general, systems are hierarchic and can on their behalf be recursively
decomposed into sets of interacting constituting systems. At any level of inte-
gration, the constituting elements of a system are denoted as components.

The temporal awareness of systems requires a model of time. We assume

7
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Global Appl. Services

Component
Component

LIF LIF

// 777'//
Core Platform Services

Components % Platform

Figure 2.1: Architecture Model

\
\

a model based on Newtonian time, where the continuum of real-time can be
modeled by a directed timeline consisting of an infinite set of instants [73].

In a distributed computer system, the progression of time is measured by a
set of physical clocks. A physical clock partitions the time line into a sequence
of nearly equally spaced intervals, called the micro granules of the clock, which
are bounded by special periodic events, the ticks of the clock.

Since any two physical clocks will employ slightly different oscillators, the
time-references generated by two clocks will drift apart. Clock synchronization
is concerned with bringing the time of clocks in a distributed system into close
relation with respect to each other. A measure for the quality of clock syn-
chronization is the precision, which is defined as the maximum offset between
any two clocks during an interval of interest.

However, due to the synchronization and digitalization error it is impossible
to establish the temporal order of occurrences based on their timestamp, if
timestamps differ by only a single tick. A solution to this problem is the
introduction of a sparse time base [34], where time is partitioned into an infinite
sequence of alternating durations of activity and silence.

A service is what a system delivers to its environment according to the
specification. Through its service, a system can support the environment, i.e.,
other systems that use the service.

The specification for a system defines the service. Given a concrete paradigm
of interaction between systems, the notion of a service can be refined. For ex-
ample, in context of message-based interaction, the service of a system can be
defined as the sequence of intended messages that is produced by a system in
response to the progression of time, input and state [20, page 28]. An overview
of formalisms for the definition of services in different interaction paradigms
can be found in [13] (e.g., Statecharts, Specification and Description Language
(SDL)).

In the presence of faults (e.g., design fault in the implementation or physical
faults during the execution), a system can violate its specification. In this case,
the system exhibits a failure [10] instead of its specified service.

We used the term externally visible behaviour (or behaviour for short) as
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a generalization of the notions of service and failure:
behaviour = service U failure

The correct behaviour (as defined by the specification) is the system’s service.
The faulty behaviour (violation of the specification) is a failure. In the absence
of a specification, we can only reason about the behaviour of systems.

2.2 Users of the Architectural Model

When developing a system that follows this architectural model, we can differ-
entiate two roles: component developers and the integrator. The component
is the unit of delegation and the unit of integration. Using the platform, the
integrator is responsible for binding together the components to an overall sys-
tem with global application services. The platform offers the means to integrate
the components based on the specification of the components’ local application
services.

The component developers are concerned with the design and implementa-
tion of individual components. A component developer can delegate subtasks
for the realization of a component to suppliers/subcontractors. Nevertheless,
the component developer delivers an entire component with a local applica-
tion service to the integrator. The integrator need not be aware of the inner
structure of the component and the involvement of suppliers/subcontractors.

2.3 Components and Application Services

A component is a self-contained building block of the computer system. The
borderline between a component and the platform is called the component’s
Linking Interface (LIF) [38]. At the LIF, the component provides its local
application services to the other components.

A local application service is the intended behaviour of a component at the
LIF. The component exchanges information with other components at the LIF
and the specification of the local application service must cover all aspects that
are relevant for the integration of the component with other components:

1. Values: The syntax of the information exchanged at the LIF needs to
be defined. In addition, relationships between inputs and outputs are
specified.

2. Timing: In a real-time system, the specification of the LIF encompasses
temporal constraints, e.g., for consuming inputs or producing outputs.

3. Relationship to the (natural) environment of the computer system: For
each component that interacts with the environment of the computer
system, the LIF specification must capture the (semantic) relationship
between the information exchange at the LIF and the interaction with
the environment. While abstracting from the details of the component’s
local interfaces (e.g., I/O interfaces or fieldbuses), the semantics of the
LIF interaction in relation to the component environment need to be
described. Due to the inability to fully formalize the relationship to the
environment [39], natural language or ontologies are examples of suitable
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specification methods. Information that originates from a local sensor
and refers to entities in the natural environment is provided at the LIF
to other components with a given delay. Likewise, information consumed
at the LIF can cause an effect on the natural environment via an actuator.
In addition to the value domain, this relationship must be specified in
the temporal domain. For example, the lag between sensory information
at the LIF and the state of the environment is of concern (cf. temporal
accuracy [35].

In addition, many other aspects can be relevant for the specification of the

LIF, e.g., reliability, energy, security.

2.4 Platform and Platform Services

The platform is the foundation for development and integration of components.
The platform offers platform services. A platform is of essential importance
for two reasons:

Baseline for development of components: Component developers need a

starting point for realizing components. The platform offers a foundation
on top of which application-specific functionality can be established. This
foundation consists of generic services, which are useful for many spe-
cific components. Although some of these services could also be realized
within the components, their availability in the platform simplifies the
component development. As an example, consider a sensor component
that periodically samples the lateral acceleration in a car and produces a
message on the LIF with this measurement. The local application service
of this component would be ’acceleration measurement’. An example of
a platform service that can be used to construct this application service
would be a time service. Such a time service can provide the periodic
sampling points (e.g., with respect to a global time base).

Using platform services, recurring problems are solved once-and-for-all
in the platform without the need to redevelop them in every component.
Principally, the development of components becomes easier if more func-
tionality is offered by the platform. However, overloading the platform
with a plethora of functionality is likely to lead to a high overhead. The
reason for the overhead is that part of the functionality will be too specific
to be applicable except for a few very specialized components. Further-
more, the complexity of the platform will increase. Thus, the likelihood
of design faults in the platform will increase. Such a design fault in the
platform is of particular severity. While a design fault of a component
would affect this specific component, potentially all components can be
affected by a design fault in the platform. All components build upon
the platform and depend on its correctness. The issue of the complex-
ity of the platform and the susceptibility to design faults is of particular
importance for safety-critical applications that need to be certified.

Framework for integration of components: Besides serving as the base-

line for the establishment of local application services of components, the
platform services are an instrument for emergence. The platform services
enable the emergence from local application services of the components
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to global application services of the system.

Therefore, the platform offers mechanisms to compose the overall sys-
tem out of the independently developed components. These mechanisms
include communication services enabling the exchange of information be-
tween components. In addition, other services can serve as a useful basis
for integration, e.g., fault isolation services [41] that prevent component
failures from propagating between components or clock synchronization
services [43] to establish a common notion of time.

Following up on the previous example, the introduced component can
be integrated with other in-vehicle components, thereby composing the
speed measurement service with local application services of other com-
ponents. The result is the emergence of a global application service (e.g.,
passive safety in the example with the lateral acceleration measurement)
out of local application services (e.g., brakes, steering, and suspension in
addition to the mentioned acceleration measurement service).

A core platform service is an elementary building block of the platform.
Inversely, the set of core platform services defines the platform. FEach core
platform service has three roles. A core platform service introduces a platform
capability, provides an instrument for behaviour generation and represents a
concept for the specification of application services.

Each core platform service is a capability of the platform that is offered to
the components. An example of a core platform service is 'message multicas-
ting’ that enables components to interact by the exchange of messages. In its
simplest form, this service would consume messages from one port and trans-
port these messages to a set of destination ports with defined properties (e.g.,
latency, reliability). This core platform service would enable a component to
deposit messages at a port in order to be delivered via multicast communication
to ports belonging to other components.

Secondly, the core services are the instrument by which a component gener-
ates behaviour at the LIF. The use of the core services results in activities that
can be externally perceived at the LIF from outside the component. The core
services offer elementary operations, a sequence of which forms behaviour at
run-time. For example, in case of the platform service 'message multicasting’,
the instrument would be the ability to send messages.

The instrument for behaviour generation is a part of the capability. The
capability is, however, more than empowering the component to generate be-
haviour. The capability is also concerned with the reaction to the component
behaviour in the platform. In particular, the capability links behaviour at dif-
ferent components (e.g., output of one component becomes input of another
component).

In addition, the core services provide the underlying concepts for the spec-
ification of component services. This statement about behaviour relates to
behaviour on a meta-level. Given a set of core services, different service spec-
ification languages are possible that use these concepts. The core services of
the GENESYS architecture will be described in Chapter 5.
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2.5 Component Model

From the point of view of the LIF, a component provides application services
expressed w.r.t. the core platform services. The integration of a system out of
components is helped significantly through the existence of the core platform
services. The core platform services introduce a uniform instrument across all
components for generating component behaviour.

However, component developers can favor different sets of platform services
to express application behaviour. Firstly, legacy applications have been devel-
oped for different platforms with different sets of platform services. In order
to avoid a complete redevelopment of these legacy applications, a mapping of
the legacy platform services to the uniform core platform services is desirable.

In addition, different domains can have unique requirements regarding the
capabilities of the platform. For example, a safety-related control subsystem
can build upon platform services for active redundancy. A multimedia system,
on the other hand, might have to cope with a large number of different con-
figurations and usage scenarios. Hence, a multimedia system needs dynamic
reconfiguration capabilities that go beyond the reconfiguration support of the
core platform services.

We introduce a layered component model in order to resolve this discrep-
ancy between uniform core services and the need for application-specific plat-
form services.

In order to provide application services, the component can employ an
intermediate form of the application services: application services expressed
w.r.t. optional platform services.

On top of the core services, the optional platform services establish higher-
level capabilities for certain domains (e.g., control systems, multimedia). Be-
sides, the optional services within a component establish an instrument for
behaviour generation just as the core services do.

In contrast to the core platform services, the optional platform services
provide additional constructs that are not always needed or useful in all types
of components. The optional services reflect the heterogeneity of a system by
no longer enforcing uniformity of platform services throughout the system. A
particular optional platform service can prove to be useful in one component,
whereas the deployment of this service in another component might impede the
component development. Consider for example an optional service for dynamic
reconfiguration, which would make difficult the certification of a safety-related
component.

The instrument for behaviour generation of the optional platform services
must have a defined mapping to the underlying instrument for behaviour gen-
eration of the core platform services. Hence, the optional platform services
transform the application services towards the core platform services.



Three

Requirements

HE FIRST PHASE of the GENESYS project has resulted in a impressive
T collection of requirements for future embedded systems that have to be
taken into account for devising the GENESYS architecture, in particular the
GENESYS architectural style. These requirements originate from different
application domains, thereby reflecting important challenges for a broad range
of embedded systems, which are subsumed in six separated documents - the
GENESYS project deliverables D1.1 to D6.1.

The first report - GENESYS deliverable D1.1 - presents the results of the
requirements analysis from the point of view of industrial applications. This
report incorporates requirements from the automotive application domain, the
avionics application domain, as well as, requirements originating from indus-
trial control systems. Deliverable D2.1 gives an analysis of requirements from
the consumer applications point of view. Thereby, the document primarily fo-
cuses on product property related and product creation related requirements
of embedded systems for mobile devices and ambient intelligence.

Besides those two application-oriented reports, the four technology-oriented
requirement analyses have resulted in four corresponding documents. Deliver-
able D3.1 describes the requirements for a methodology framework that accom-
panies the GENESYS architecture for the development of systems according
to the GENESYS architectural style. The report D4.1 gives an analysis of
the requirements form the point of view of networking, security, and resource
management, whereas the scope of deliverable D5.1 is robustness and diagnosis.
Finally, deliverable D6.1 examines requirements for the GENESYS architecture
from the point of view of composability.

It is the purpose of this chapter, to merge and condense this impressive
collection of requirements in order to ease the later evaluation of the archi-
tecture. Therefore, the present collection of requirements originating from
different partners has been subdivided into different categories. The first cat-
egory incorporates those requirements that are cross-cutting the technological
challenges addressed in GENESYS and include, amongst others, requirements
for handling the cognitive complexity of future systems, for supporting com-
posability of components and systems, and requirements with respect to the
specification of services based on interface specifications. The second category
deals with requirements with respect to networking (e.g. messaging, support
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for data streaming, or mobile networking) as well as with respect to resource
management (e.g. dynamic allocation of resources or the improvement of pow-
er/energy efficiency). Robustness and security are the focus of the next cat-
egory of requirements in this document. This category includes requirements
for the GENESYS architecture from the point of view of system certification,
diagnosis and testing, fault-tolerance, and security (e.g. security services and
strategies). The fourth category is devoted to system design and evolution.
This category addresses issues such as system modeling, reuse of existing sys-
tems and standards, and system validation. The origin of the presented re-
quirements is expressed by providing explicit links to the original deliverables
using the requirement’s name and ID.

3.1 General

This chapter covers requirements for the GENESYS architecture that are cross-
cutting the technological challenges addressed for GENESYS. The first section
is concerned with requirements for the architecture that evolve from the need
to overcome the limited cognitive capacity of users of the architecture. On the
one hand, those are system engineers who develop systems according to the
GENESYS architecture. On the other hand, those are end users who should
profit from the achievements enabled by GENESYS (e.g. by providing highly
optimized optional services such as security services to applications in different
domains). To reach this goal, the GENESYS consortium has decided from the
very beginning of the project to support a component-based design principle.
Requirements that are strongly related to the specification and interconnection
of components are subsumed in the sections "Composability” and "Linking
Interface Specification”. To enable the use (and mixture) of a wide variety of
component technologies, which is a prerequisite for reuse of components and
the integration of legacy subsystems, the subsequent group of requirements is
concerned with the support of heterogeneity within the GENESYS architecture.
This general requirement section is finished with requirements with respect to
real-time guarantees, which is of importance for most applications in the world
of embedded systems.

3.1.1 Limited cognitive capacity

In present embedded systems, the complexity and wide-ranging functionality
makes it almost impossible to reason about the behavior of the system without
decomposing the system into subsystems and without being able to analyze
the behavior of those subsystems in isolation. Therefore, an architecture for
future embedded systems has to provide a framework which supports to build
artfacts (hardware components or software modules) for decomposing the over-
all system and permits to model subsystems at different levels of abstraction
and to analyze their relevant properties.

In order to further benefit from the complexity reduction achieved by the
system decomposition during system integration, the GENESYS architecture
shall support the aggregation of components to constitute compound compo-
nents in a way that ensures that all functional and non-functional properties of
components must not be invalidated after integration. Furthermore, in order to
ensure that the cognitive complexity required for reasoning about the system’s
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behaviour grows linearly with the number of subsystems, the architecture has
to ensure that if n subsystems are already integrated into a system and the
amount of available resources permits the integration of an nth+1 subsystem,
then the nth+1 subsystem must not disturb the correct operation of the n
already integrated subsystems.

All issues related to the composition of a set of subsystems can then be
investigated by referring only to the specification of their linking interfaces
(LIFs) [38]. Due to this advance of the level of abstraction, the cognitive
complexity of the whole system is significantly reduced. To keep the LIF simple
and understandable, the architecture shall ensure that only those properties of
a component (e.g. provided and expected services) that are required for the
intended emerging service should be visible at the LIF.

The success of the GENESYS architecture is not only determined by tack-
ling the complexity of embedded systems during system design. Also, the
complexity for the end user of the architecture, i.e. its usability, is an impor-
tant success factor. Therefore, the architecture shall comprise a well-defined
programming model that eases application development. Furthermore, the
architecture should enable the implementation of user-friendly user interfaces,
whose design considers learnability (the quick and intuitive use of the interface),
memorability (easy to remember how to use), efficiency (easy and productive
usage), error tolerance, relevancy, and satisfaction. In addition, multimodal
interfaces (e.g., audio, visual, touching, moving/tiling, gesture recognition) by
optional platform services should be enabled by the architecture.

3.1.2 Composability

Besides its benefits w.r.t to managing cognitive complexity, the decomposition
of systems and the support for modularity and composability of the architec-
ture is essential for fast and cost-effective product creation in multi-vendor
environments, since it enables the independent design, development, and veri-
fication of subsystems. Therefore, the architecture shall support composability
in a way that larger systems can be composed out of smaller subsystems. A
system, i.e., a composition of subsystems, is considered composable with re-
spect to a certain property, if this property, given that it has been established
at the subsystem level, is not invalidated by the integration. Examples for
such properties are timeliness or certification [8]. That means, the architecture
shall ensure that a validated service of a subsystem, both in the value and
in the time domain, is not refuted by integrating the subsystem into a larger
system. Therefore, for correctly operating subsystems the architecture shall
ensure that there is no unintended interference between different integrated
subsystems, since those interferences would add an additional accidental com-
plexity to the inherent complexity of an application. In addition, in case a
fault affects the correctness of a subsystem, the architecture shall provide error
containment between subsystems (see Section 3.3.5).

A prerequisite for the integration of (independently developed) subsystems
is the existence of separate name spaces for those subsystems without the need
for a central naming authority that coordinates the naming process for the
entire system. Therefore, the architecture shall support unique, but uniform
identification of subsystems and enable the provision of dedicated namespaces
for subsystems, even if multiple subsystems share the same physical communi-
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cation infrastructure.

Furthermore, reasoning about system behaviour and properties should be
possible relying solely on the component specifications, regardless of the order
of subsystem integration, which facilitates the assembly process. That is, the
properties of the system can be inferred solely by the analysis of properties of
the components carried out independently for each component. This avoids
exponential (combinatorial explosion of the) analysis complexity.

3.1.3 Linking interface specification

Because of the increasing complexity of embedded applications, the level of de-
sign abstraction has to be elevated in order to cope with the cognitive load for
understanding today’s and future systems. Such an abstraction can be achieved
by composing a system out of subsystems based solely on their interface spec-
ifications; hence, abstracting over the inner structure of the subsystems. With
a full specification of a subsystem’s linking interface all issues related to the
composition of a set of subsystems can then be investigated by referring only
to the specification of their LIFs. Therefore, at the lowest integration level
of the architecture, the GENESYS architecture shall restrict interactions be-
tween subsystems, to occur exclusively by the exchange of messages (defined
data structures for inter-process communication) via the LIFs of the subsys-
tems. These messages have to be fully specified in the value and the time
domain in a LIF specification.

A LIF specification in the GENESYS architecture shall comprise an oper-
ational specification and a meta-level specification. The operational interface
specification captures the syntactical and temporal properties of the linking
interface, which are a prerequisite to ensure interoperability. In this context,
interoperability is only concerned with the integrity of the mechanisms for
the exchange of information chunks among components without evaluating the
compatibility of the meaning of these information chunks at the sender and
the receiver. The gap between the syntactic description of the information
chunks determined with the operational specification and the user’s mental
model of the service provided at the interface is bridged by the meta-level LIF
specification. The meta-level part of a LIF specification in the GENESYS ar-
chitecture shall describe the meaning of the information that is exchanged over
the interface. The concepts used in the specification must fit well with the
conceptual world of the user of a given subsystem (i.e. it must be expressed in
terms and notations that are common knowledge to the user). The meta-level
specification may contain formal descriptions, but can also incorporate natural
language, pictures, and diagrams that are commonly used in the user’s domain.

Besides helping in the reduction of the complexity, an exact LIF specifica-
tion is a prerequisite for independent development and reuse of subsystems and
for enabling evolvability. A key enabler for reuse of subsystems (e.g. legacy
components or components developed by a third party supplier) is the protec-
tion of intellectual property. Therefore, the architecture shall provide mecha-
nisms to prevent the disclosure of intellection property at different abstraction
levels (e.g. the contents of an FPGA or of on-chip flash memory).

In many application domains, it is not possible (or even desired) to design a
system and decide once and for all which subsystems are integrated to comprise
the overall system. In such systems the constituting components (sensor/ac-
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tuator nodes, mobile devices) might even not be known at design time. In
addition to this, the topology and hierarchy where subsystems are integrated
might not be known a priori. Therefore, the architecture shall also support the
definition of the LIF for reconfigurable systems covering temporal aspects as
well as non functional aspects such as safety.

3.1.4 Heterogeneity and Technology Obsolecence

For many application domains enabling a fast time-to-market is a key require-
ment of an architecture that co-decide over success or failure of a product. Us-
ing pre-validated component libraries (e.g. hardware components or software
modules for often needed functions like security services, memory services, etc)
may help to speed up the development time of future applications. Thus, the
GENESYS architecture shall support commercial component-of-the-shelf sys-
tem development and permit the integration and reuse of heterogeneous com-
ponents. Examples for such heterogeneous components are components that
are realized in different technologies (e.g., an algorithm provided as software
component running within a general purpose CPU or as a dedicated customized
hardware IP core) or implementations of components within the same technol-
ogy requiring different configurations (e.g., hardware IP cores running with
different operating frequency in order to optimize the power consumption).
The architecture shall support this integration of components based on the
interface specifications solely, i.e., without having to understand the internals
of the components. This would allow third party suppliers to deliver, e.g., pre-
compiled software modules in order to protect their intellectual property (e.g.
the source code).

This reuse of such intellectual property (IP) modules across different ap-
plications can increase the number of reusable components and has to be sup-
ported by the architecture (e.g. an IP core that realizes security functions
should be suitable for e-commerce applications as well as for the automotive
sector). This will also address the issue of non-recurring semi-conductor engi-
neering costs as barrier for implementing new functions as customized hardware
IP blocks. The non-recurring costs (design, masks, test pattern E) of a submi-
cron SoC are continuously growing (tens of millions of dollars). Low-volume
applications can hardly afford the design of a custom SoC. Thus, the architec-
ture shall enable the cross-domain reusability of once validated components in
order to enable low production and low parts costs.

As a consequence, when integrating components from different domains (or
different product generations), system developers will face a multi-vendor en-
vironment, i.e. components and entire subsystems that have to be integrated
are developed by different vendors. Therefore, the architecture shall have the
capability to support multiple standards (e.g., protocols, interfaces) that allow
the integration of IP blocks from multiple vendors without demanding a re-
design of core elements of the architecture. For this purpose, standards should
be encapsulated in subsystems that can be modified and exchanged without
violating the established architectural style. Particular attention has to be paid
to handle heterogeneous data representations at the interfaces of components
developed by different vendors. In order to avoid inconsistent data represen-
tations, the architecture shall support dedicated components (e.g. gateways)
that resolve potential property mismatches of two independently developed
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subsystems.

Besides improving component reuse a component-based design methodol-
ogy facilitating heterogeneous components is also beneficial for the performance
of systems: Achieving performance enhancements only by increasing the clock
frequency of chips will lead to a dead end. Therefore, new strategies to enhance
the system performance are requested. A feasible approach for embedded sys-
tems in terms of cost and power consumption could be scalable heterogeneous
multi-core processing. That is, the architecture shall ensure that the scalability
of a system must not rely on an increase of the performance of a single pro-
cessing element, but enable the system designer to choose that implementation
alternative out of a set of heterogeneous components that fits best his perfor-
mance/power goals. This will result in a different approach to system-level
design. Instead of mapping a selected function to a predefined architecture,
the future goal of system-level design is to map a maximally parallel function
to a maximally parallel implementation. Methodologically, this defines a new
design domain that emphasizes distributed implementation over centralized
implementation; this reprises the need for communications-centric design.

Further performance improvements within components could be achieved
by supporting multithreading with steady runtime behaviour, which means to
block one thread during the time of a code memory fetch by executing the
instructions of a second thread. In this way, the execution pipelines of the
processor can be almost fully utilized.

3.1.5 Real-time requirements

Timeliness is vital property for the majority of embedded applications ad-
dressed by the GENESYS architecture. Examples range from multimedia ap-
plications that are required to deliver synchronized audio and video streams,
which require to specify and guarantee a certain amount of bandwidth for data
exchange between sender and receiver(s), to control applications where the tem-
porally correct (i.e. with low and bounded jitter) acquisition of information,
its processing, and finally the triggering of an appropriate action is required
for providing a control service with high quality.

Therefore, the architecture has to provide means to enable to reason about
the temporal properties of an application and to provide guarantees (and enable
to monitor these guarantees) for the timely execution of an application service.
In order to analyze application-specific temporal constraints, the architecture
shall enable the development of software for which the calculation of tight
bounds on the WCET is possible with feasible effort. The key to calculate tight
bounds on the WCET with feasible effort is deterministic behaviour in each
layer of the system that is to be analyzed (e.g. constant instruction timing of
processors, predictable memory hierarchies instead of implicitly loaded caches,
compilers that generate single-path code ...). Nondeterministic behaviour in
any layer (hardware, operating system, middleware, compiler, and application
code) can preclude the feasible calculation of tight WCET bounds, and can
result in highly pessimistic and overestimated WCET bounds. Furthermore,
the architecture shall ensure that the start-up time of a component is a priori
known and bounded, since the start-up time of a component is, on the one hand,
an important issue for implementing fault-tolerance, e.g., by restarting the
component after a transient fault, and on the other hand, in many applications
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an important factor to guarantee user satisfaction (e.g. for consumer electronics
devices like digital cameras).

In addition, the architecture shall enable the synchronization of compu-
tation and communication of distributed services and to check the temporal
validity of real-time data that originates from distributed subsystems. A pre-
requisite for this is the existence of a common time base: The architecture
shall provide a consistent global time service for a defined set of nodes, which
establishes a common time base with bounded precision, bounded accuracy,
(an application-dependent) sufficiently fine granularity, and (an application-
dependent) sufficiently wide horizon.

3.2 Networking and Resource Management

The following requirements for the GENESYS architecture address challenges
for future embedded systems that are mainly concerned with networking and
resource management. First, different communication modes that have to be
supported by the architecture are stated. These requirements mainly originate
from the different fields of applications that are targeted by the GENESYS ar-
chitecture. The subsequent requirements analysis focuses on particular aspects
of networking: the efficient support of data streaming, wireless networking,
and Internet connectivity. Thereafter, requirements for dynamic resource man-
agement are stated, which is an important architectural feature that enables
efficient use of shared resources, advanced fault-tolerance strategies, and offers
the basis for establishing power and energy efficiency. Requirements concern-
ing power and energy efficiency are completing this part of the requirements
analysis.

3.2.1 Messaging

As a cross-domain endeavor, the GENESYS architecture has to unify require-
ments originating from highly diverse fields of applications. A central and
essential part of each architecture is its communication infrastructure. The
communication infrastructure provided by the GENESYS architecture has to
provide architectural services for enabling the interaction of components be-
longing to different application domains. These services have to be tailored to
the individual fields of application in order to gain usability across domains.

Basically, one can distinguish best-effort and guaranteed communication
services. Whereas best-effort communication services offer to each user a share
of the overall communication resources depending on the current load without
guaranteeing a quality of service level, guarantees with respect to communica-
tion bandwidth, maximum transmission latency, and maximum latency jitter
are given for guaranteed communication services.

Best-effort communication can be implemented by using event-triggered
message transfer. Thus, in order to enable the implementation of best-effort
communication services, the GENESYS architecture shall support event-triggered
message transfer. Event-triggered message transfer enables a communication
system to be designed with respect to the expected average communication
load; thus, allowing timing failures to occur during worst-case scenarios.

In addition, the GENESYS architecture shall support guaranteed event-
triggered message transfer, i.e. despite the use of the event-triggered commu-
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nication paradigm guarantees for maximum latency, bandwidth, and latency
jitter shall be possible. Otherwise, quality-of-service guarantees as required for
many multimedia applications cannot be provided. Therefore, the architec-
ture shall support predictable communication within the system interconnect
so that the temporal and/or reliability constraints of applications and services
can be met.

For hard real-time systems the temporal guarantees for message delivery
provided by the communication system have to hold under all considered fault
and load scenarios. In control loops, for instance, where the sensing elements
and the actuators are realized on different nodes, the delay and the jitter of the
communication service are important parameters for the quality of control. To
support such applications, the GENESYS architecture shall provide a real-time
message transfer service, which supports a deterministic and timely transport
of messages. In addition to bounded transmission latency and bounded trans-
mission jitter, also bounded error detection latency for transmission errors shall
be supported by the architecture. This communication service is required for
the temporal coordination of distributed actions and depends on a (distributed
fault-tolerant) common time-base.

Besides the communication paradigm, the concrete implementation of the
communication infrastructure can take significant impact on non functional
properties such as cost-effectiveness, resource utilization, and dependability of
the system: The GENESYS architecture shall support the sharing of the same
physical communication infrastructure among multiple subsystems. Such an
integrated system enables the reduction of the required hardware components,
communication busses, cables and connectors, which can lead to an increase of
the dependability of the overall systems, since there are fewer components that
can fail, as well as to improved utilization of the resources since the flexibility
of resource allocation is improved. This has also a direct beneficial impact on
the cost-efficiency of the system.

3.2.2 Streaming support

A particular type of information exchange is data streaming. Data streams are
content that is consumed while it is being delivered, i.e. it can be processed -
listened, viewed, analyzed - before it is fully received. An example where data
streaming is the first choice delivery method is streaming media. The major
benefit of data streaming is its cost-efficient implementation, in particular with
respect to storage requirements: Since the content of data streams can be
processed online during its reception, the receiver(s) of the content are not
required to reserve memory buffers for the entire data stream, but only for a
single data fragment of the stream (or a few fragments depending, e.g., on the
quality of the network connection). Especially for streaming media where the
size of the entire data stream can easily reach thousands of mega bytes, these
storage savings are essential.

Since many multimedia systems are inherently streaming based services
(e.g., television or radio), the GENESYS architecture shall support data stream-
ing. Of particular importance for streaming media is that, interruptions of ser-
vice delivery are not tolerated by the user. Present streaming systems typically
use pre-buffering of several data frames in order to provide a stream delivery
without connection break-offs. In order to avoid such a pre-buffering (or at least
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minimize the number of required buffers) by still providing a given quality-of-
service level, the architecture shall provide tight guarantees for latency and
bandwidth of data streams.

Related thereto is the requirement for timely and time-dependent combina-
tion of data-streams from different subsystems (Real-time data fusion, which
has to be enabled by the architecture. This issue, denoted as real-time data
fusion, is a generic problem that occurs in many applications (e.g. lip syn-
chronization in multi-media systems, sensor fusion in control systems like the
fusion of video and radar data in an obstacle recognition system).

3.2.3 Mobile networking and connectivity to the Internet

Ubiquitous computing is a keyword that subsumes a multitude of presently ap-
pearing embedded applications in our everyday life. Intrinsic to this group of
applications and for the provision of their service is the requirement for mobile
networking in order to form (steadily) connected groups of mobile devices or
connect standalone mobile devices to other existing systems such as the In-
ternet. Mobile networking requires a wireless communication infrastructure,
which has, compared to wire-bound communication systems, significant differ-
ences with respect to dependability and predictability. Wireless communication
links are typically more vulnerable to interferences with other devices/systems
than a wire-bound communication system, which can exhibit protection mech-
anisms (e.g. shielding) and fault-tolerance strategies (e.g. replicated wires)
at lower cost. Furthermore, applications using wireless communication infras-
tructures are typically designed as open-world systems where an (unknown)
number of uncoordinated clients compete for the resources of a server.

To address these challenges, the GENESYS architecture should enable the
establishment of dependable mobile ad-hoc networks (Mobile ad-hoc networks.
A mobile ad-hoc network is a self-configuring network of mobile nodes that
are connected by wireless communication links. Since the nodes are mobile,
the network topology can change rapidly and unpredictably over time. As a
consequence, the network should not be centrally organized, and the configu-
ration of the network (e.g. finding a suitable topology) should be done by the
nodes themselves. Due to the minimal centrally performed configuration effort
and the ability for quick deployment, ad hoc networks are suitable to establish
survivable dynamic communication for applications like military networks or
emergency operations.

However, especially wireless communication links impose great demands
with respect to security on the design of the architecture. Therefore, the
GENESYS architecture shall particularly consider the aspect of security for
wireless networks (e.g. integrity of network address).

In addition to mobile connectivity, the connectivity to the Internet (or
other existing (legacy) networks) is an absolute requirement for many upcom-
ing applications, in particular in the consumer electronics domain. For such
applications, ontology-based standardized descriptions of the service semantics
should be provided in order to enable the user to select one service out of the
multitude of services provided in an open-world system such as the Internet. In
addition, the optional services of the GENESYS architecture should enable the
interconnection with many services based on existing Internet standards and
to provide network connectivity over different technologies through a single,



22 CHAPTER 3. REQUIREMENTS

easy to use and stable API.

This requirement entails several sub-challenges, in particular with respect
to service discovery, content access and networking protocols, which are outside
the scope of GENESYS. However, it is an absolute requirement that during the
design of the GENESYS architectural style those issues are considered in order
to ensure that the architecture is not at conflict with enabling Internet support.

3.2.4 Dynamic resource allocation

The ability of a system to dynamically adapt the allocation of its resources
to its hosted application subsystems and to dynamically modify the configura-
tion of application subsystems is a mandatory requirement for the GENESYS
architecture, which enables many emergent properties of the system, which
would not be achievable without dynamic resource management: Firstly, dy-
namic resource management permits to optimize the utilization of hardware
resources within the system with respect to changing communication and com-
putational demands of its hosted applications (e.g. applications exhibiting
scalable Quality of Service (QoS) with respect to audio/image quality). Hence,
the GENESYS architecture shall support the dynamic allocation of the overall
communication bandwidth to subsystems in order to enable the efficient imple-
mentation of applications with non-uniform communication load patterns (e.g.
multimedia applications).

Secondly, dynamic resource management provides the foundation for fault-
tolerance and maintenance strategies like graceful service degradation (i.e. the
controlled degradation of a system’s service in case of resource shortage) or
service migration (e.g. hot replacement of components) in the presence of
hardware faults. Furthermore, it provides the instruments for achieving system
evolvability (e.g. updating, adding, or removing software in order to adapt to
user-specific behaviour.

Finally, most aspects of power and energy management require the dy-
namic modification of the system’s configuration, including software as well as
hardware. Power consumption is a key issue for mobile devices in order to
achieve longer operation times with cheaper and lighter batteries. Even for
devices that have permanent access to an energy supply, the topic becomes
more and more important, because the consumed power manifests itself in
heat which can be very difficult to dissipate (e.g. the need for large and noisy
ventilators in modern personal computers). Therefore, the architecture shall
support dynamically scalable performance of hardware resources (e.g. process-
ing elements, communication infrastructure) with respect to the actual level
of available power respectively energy of battery powered devices. Exemplary
strategies to achieve this scalability and to control power consumption and heat
dissipation of the overall system are to use dynamic voltage and frequency scal-
ing techniques to adjust the clock frequency for parts of the system’s hardware
or to dynamically switch off /on currently unused components.

The envisioned wide applicability of the GENESYS architecture imposes
further requirements on the resource management mechanisms provided by the
architecture. First of all, the architecture shall ensure that the above mentioned
mechanisms for managing the allocation of computational and communication
resources shall not rely on cooperative behaviour of subsystems. In contrast,
the architecture has to be enabled to enforce resource reallocation. Otherwise,
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the system would not be able to tolerate a malicious fault of one or more
subsystems. Furthermore, the architecture shall enable the development of
systems that cover a wide range of performance targets, i.e. to find and enforce
the optimal trade-off between the quality levels supported by the application,
the user requirements, and the available platform resources.

In addition, for enabling the implementation of safety-related or safety-
critical application services, the architecture shall ensure the coexistence of
static and dynamic resource allocation mechanisms, i.e. the provision of guar-
antees for computational resources (e.g. lower bounds on the availability of
processing time) and communication resources (e.g. lower bounds on the avail-
ability of bandwidth and upper bounds on latency and jitter of message trans-
mission), even if resources are shared among subsystems. That is, despite the
possibility to dynamically modify the allocation of resources among subsys-
tems, it must be ensured by the architecture that a given share of the overall
resources is provably available to a particular subsystem. This way, it is possi-
ble for applications to meet real-time constraints, also when applications with
different kinds of (or even no) real-time requirements requiring the same shared
resources are active simultaneously. Even more restrictive requirements have
to be full-filled for applications of safety-critical application domains. For in-
stance for system certification in the avionic domain, it has to be ensured that
resource allocations are performed deterministic and static, i.e. that time,
space and I/0 allocations have to be determined at compilation, assembly, or
link time, and have to remain identical at each and every initialization of a
program or process, and are not dynamically altered during runtime.

3.2.5 Power/energy efficiency

Power and energy efficiency are key quality attributes of many products, espe-
cially for battery operated handheld/mobile devices. In order to tackle these
challenges, low power design and power-awareness are identified as one of the
grand challenges for future embedded systems. Low power design primarily
addresses the minimization of the power consumption from single gates to com-
plex system-on-chips (SoCs), as well as, the optimization of the communication
among the individual gates/cores. Current design tools give power/energy in-
formation on a too low level back to system designer. Ideally, one would like
to see direct energy efficiency feedback at all phases of the design flow. There-
fore, pre-implementation performance and power/energy evaluation should be
supported by the GENESYS methodology and tools in order to ensure that all
technical solutions on the chip-level are implemented in a way that minimizes
chip-area and power consumption. In addition, low-power design is important
for reducing the stand-by power consumption of electronic devices. Since the
maximum stand-by time that can be achieved without changing the battery
is an important aspect of many portable devices and body applications, the
GENESYS architecture shall also enable the minimization of stand-by power.

Power-awareness describes systems, which modify their behaviour based
on current power/energy availability during runtime. Hence, power-aware de-
sign deals with the development of techniques and algorithms that influence
the system’s behaviour in order to meet power and energy goals under given
performance constraints or vice versa. Therefore, the GENESYS architecture
shall support system-level power management, which includes the adaptation
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and adjustment of components to application and use case specific performance
needs so that applications run with lowest possible resource and energy usage.
Furthermore, system level power management deals with the partitioning and
separation of optional application features into individual components, which
enable turning off unused components or the reduction of the component’s
performance with techniques such as dynamic voltage and frequency scaling
(DVEFS) or dynamic power management (DPM).

Since energy consumption at run-time also largely depends on user be-
haviour (e.g. display brightness of mobile devices), it is essential to give also
the user feedback of energy consumption and means to influence it. Therefore,
the architecture shall enable collecting, storing and providing energy, thermal
and power information about device energy and power capabilities, such as
energy supply information (e.g. the remaining energy), current power usage,
estimated usage time, and peak power. It should enable presenting this in-
formation to users (consumers and developers) with a proper user interface.
However, the architecture should also provide default settings for component
configurations in order to support that the end user does not necessarily need
to do anything related to energy efficiency in order to use the device or appli-
cations (e.g. default clock frequency of an IP core or default application mode
such as full-quality video display).

3.3 Security and Robustness

The results of the requirements analysis for the GENESYS architecture with
respect to robustness and security are presented in the following subsections.
For enabling the recovery from an erroneous state caused by a transient fault,
a clear notion of state is important for the GENESYS architecture. Require-
ments regarding state awareness are formulated in the following. Afterwards,
diagnosis and testing are in the focus of the requirements analysis. The im-
portant issue of system certifiability is the topic of the next section, which is
followed by requirements with respect to strategies and services for security.
This chapter is closed by elaborating on the importance of fault-tolerance and
error-containment for the GENESYS architecture and the resulting require-
ments for architectural services.

3.3.1 Security strategies and services

System security and data privacy are becoming key issues when increasing
the connectivity of systems beyond their traditional system boundaries (e.g.
connecting parts of the in-vehicle electronic system of a car via gateways to
the Internet in order to enable in-system updates). In addition, private user
security is becoming more and more important as consumer devices are used
increasingly for identification, authorization, payment as well as for storage
of sensitive personal information. Hence, the GENESYS architecture shall
provide mechanisms and services to ensure the primary concepts of security:
integrity, availability, and confidentiality as well as secondary concepts which
are composed out of primary concepts like authentication and authorization.
To ensure integrity, the architecture shall provide mechanism to prevent
undetected modification of hardware or software by unauthorized persons or
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systems (on architectural level as well as on application level). In many appli-
cations integrity is explicitly required for a dedicated set of application data
such as the mileage counter of a car or transaction data of online banking ap-
plications. In addition, with respect to sensor values and control commands
integrity can even become a safety-relevant system property in safety-critical
applications. Therefore, to enable integrity protection, the architecture shall
include mechanisms against message injections, message replay, message mod-
ification and message delay on the network.

In the context of security, assurance of availability is usually conceived as
the provision of mechanisms to ensure that unauthorized persons or systems
cannot deny service access to authorized users. The violation of availability
may cause economic damage by a significant reduction of the user-value of a
given system. Additionally, safety-relevant consequences can also be caused by
the violation of availability as operators may lose the ability to monitor and to
control a safety-critical process.

Confidentiality is concerned with the protection of private information such
personal data in office applications or performance data and product recipes
in automation systems, as well as, information that is specific to the security
mechanisms themselves (e.g. user names, passwords). Confidentiality is also
important for enabling the support of Digital Rights Management (DRM) as
required for many applications in the consumer electronics domain. There-
fore, the architecture shall provide mechanisms to prevent the disclosure of
information to unauthorized persons or systems.

In order to discriminate between legitimate and illegitimate use of system
services as required for the assurance of confidentiality, integrity, and availabil-
ity, the architecture has to provide mechanisms to determine the identity of
a system or a user. Hence, it shall support the authentication of users and
systems and the authorization of already authenticated users and systems with
respect to a given service.

Closely related to the above mentioned security principles that shall be
supported by the GENESYS architecture is non-repudiability, i.e., to "provide
an irrefutable proof to a third party of who initiated a certain action in the
system, even if the actor is not cooperating” [15]. Since non-repudiability is
becoming extremely important to commerce, the architecture shall provide
mechanisms to support this property of electronic contracts.

In addition, in some cases (e.g. to deal with system liability) component
suppliers want to assure that their hardware can be used only with their own
software. For such scenarios, the GENESYS architecture shall provide mecha-
nisms to prevent the out-of-specification use of single components.

3.3.2 Diagnosis

The GENESYS architecture addresses the importance of system diagnosis and
health state monitoring for improving the robustness of a system by regarding
diagnostic mechanisms as integral parts of the system, which are considered
from the very beginning of system design. Therefore, the GENESYS archi-
tecture shall provide diagnosis services, which provide consistent information
about the health state of a defined set of subsystems with known and bounded
latency at different integration levels (i.e. at chip level, at device level, and
at system level). The timely information about the health state of subsystems
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enables the system (or the end user) to trigger corrective actions such as an
autonomous reconfiguration of the system or the discovery of an alternative
service provider.

The diagnostic services provided by the GENESYS architecture shall sup-
port systematic diagnostic methods (e.g. to detect the power down of a com-
ponent or problems in the power supply) and application-specific diagnostic
methods (e.g., detecting anomalies in the program execution sequence due to
programming errors). Systematic diagnostic methods, on the one hand, are
used to detect system anomalies that are application-independent, i.e. those
methods can be generally applied without requiring application-specific knowl-
edge. On the other hand, application-specific methods can be used to detect
anomalies, which cannot be detected by the exclusive use of systematic di-
agnostic methods (e.g. results with wrong values that are temporally and
syntactically correct) at the cost of needing additional parameterization with
application-specific knowledge. The basic requirement for all diagnostic meth-
ods is that they must not interfere with the operation of the subsystems that
are to be diagnosed, i.e. the avoidance of the probe effect. If the diagnostic
service would interfere with the subsystems that are to be diagnosed, it would
be able to induce errors into these subsystems. Thus, the diagnostic service
would always have to be certified according to the same criticality level as the
given subsystem.

A further requirement for the diagnostic services is to classify faults on
the basis of their permanence (e.g. transient or permanent faults) in order to
trigger the appropriate corrective action. The restart and subsequent reintegra-
tion of components is an adequate measure to deal with components that are
affected by transient faults. For handling permanent faults, the GENESYS ar-
chitecture shall provide a maintenance-oriented diagnostic service. For system
maintenance, it is an important aspect to correctly identify those subsystems
that have to be replaced or repaired. In systems that consist of a large number
of subsystems, the identification of faulty subsystems is a very challenging task
and can consume a lot of working effort if it is done purely manually. In order
to minimize the number of components that are replaced by mistake (i.e. they
are replaced although they are still working), the architecture shall support
the diagnostic service by tracing back the source of a fault. That is, the archi-
tecture shall establish the notion of fault-containment regions that encapsulate
the effects of faults. Furthermore, it is important that the diagnostic service
shall support the establishment of a holistic view on the system in order to
detect correlated failures and anomalies. As soon as integrated systems are
developed by different suppliers, the issues of traceability and liability are of
utmost importance. Therefore, the architecture shall provide mechanisms that
provably identify subsystem that have violated their specification in order to
support liability.

Furthermore, different vendors will design their subsystems according to
different models of computation. In order to increase the acceptance of the
GENESYS architecture on the part of the vendors, the architecture should
comprise a design methodology framework, which supports the usage of differ-
ent models of computation.

In addition, for subsystems and components where life-time prediction is
not possible, an improvement of availability and dependability can be achieved
by supporting predictive maintenance. Therefore, the GENESYS architecture
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shall support the identification of components that are likely to fail in the
near future (e.g. the early detection of faults in Flash and EEPROM memory
technologies by monitoring the charge loss in such devices).

3.3.3 State Awareness

The reliability of today’s electronics devices is significantly impacted by the
increasing vulnerability with respect to soft errors. Soft errors induced by
extraterrestrial radiation (cosmic rays) or by materials (due to alpha particles)
are no longer confined to SRAM bit cell upsets - beyond the 90 nanometer
feature size of electronic devices, as it is state-off-the-art today, logic circuits
and latches become also increasingly vulnerable. Therefore, it is a requirement
of utmost importance of the GENESYS architecture to provide mechanisms at
the architectural level to handle the resulting increasing transient failure rate
of electronics devices, in particular of giga-scale SoCs.

Recovery from a transient failure can be performed by restarting a compo-
nent. In order to fasten the recovery /restart time, regular reintegration points
of a component shall be defined, at which the component can resume its opera-
tion after the occurrence of a transient failure. To this end, the architecture has
to provide mechanisms to regularly distribute the component’s state at these
reintegration points and to restore it in the component after restart. During
system design, this requires the definition and externalization of those parts of
the component’s state that are relevant for the component reintegration.

In addition to the handling of transient failures, the GENESYS architecture
shall support robustness mechanisms such as fault-tolerance, error containment
and graceful degradation of applications. A prerequisite for many robustness
mechanisms is the detection of an erroneous component state with sufficient
error detection coverage. A requirement for a feasible realization of such de-
tection mechanisms is that as little as possible knowledge on the internals of
a component is required and that components need not be modified in order
to deploy detection mechanisms: On the one hand, modifications could induce
new faults and, for particular application domains, it would cause enormous
costs, since a recertification of the component would be entailed. On the other
hand, this requirement helps to protect the IP of suppliers, because they need
not reveal component internals. State-awareness at the design of components
and externalization of state helps in discriminating correct from erroneous com-
ponent behaviour solely on the interface state of a component.

An error-containment technique that is widely applied in the automotive
and avionics domain is active redundancy by the replication of components (e.g.
using a triple-modular redundancy (TMR) configuration). A systematic voting
strategy over the results of replicated components is bit-by-bit comparison
of the produced outputs of the components, which has the advantage of not
requiring any application specific knowledge about the values to be compared.
For such systems, the GENESYS architecture has to ensure replica determinism
of replicated components. Replica determinism states that a set of replica
determinate components, which are required to have the same encapsulated
state, produce the same sequence of output messages at points in time that are
at most an interval of d time units apart (as seen by an omniscient external
observer).
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3.3.4 Testing

Testing is an integral part of the development cycle of a system that involves
a notable amount of the overall costs for system development. In order to re-
duce these costs and to improve the testability of the system, the GENESYS
architecture shall provide a standardized test interface for component testing.
A standardized test interface will significantly reduce the efforts concerning
the adaptation of test equipment and test methodology as well as the costs for
training of test engineers by eliminating the existing multitude of different test
methods and technologies. Furthermore, a standardized test interface would
help to achieve test reuse and test composability. For instance in high volume
markets like the consumer electronics industry, the costs for end-of-line tests in
manufacturing are a determining success factor. To confine these costs, the ar-
chitecture has to support fast and simple end-of-line tests by workers of normal
qualifications. In addition, the architecture shall limit the impact of product
changes (e.g. elimination of bugs or updates) on the required modifications of
the production line, which would also require the reusability of existing test
procedures. To improve the reproducibility of test procedures and to speed-up
test sequences, the GENESYS architecture shall enable a dedicated test mode
of components in which it is possible to set the state of a single subsystem.
This way, testing effort is reduced since the number of test sequences that is
required to achieve the given component state is minimized.

The design and development methodology of the GENESYS architecture
shall support design-for-testability, i.e. requirements for testing shall already
be considered during system design, since this is also expected to substantially
decrease the efforts for design testing, system-integration testing, manufactur-
ing testing, and assembly testing. Furthermore, it should enable automatic
test generation in order to support feasible test development.

In addition to improving design and reuse of tests during design time, the
GENESYS architecture should enable the implementation of mechanisms for
component testing at run-time. In particular at the chip-level, the architec-
ture should support efficient built-in self-test techniques for System-on-a-Chips
(SoCs). Since a complete system self-test during system start-up is often too
time consuming, the architecture should enable the development of intelligent
self-test functionality, which are reconfigurable and exhibit a different test pro-
cedure (e.g. starting from a different history state) depending on the results of
the last test run.

3.3.5 System certification

In particular in the application domains of avionics, automotive, and industrial
control systems, system certification plays a cardinal role in the system devel-
opment cycle. Since the GENESYS architecture aims to be deployed for many
different applications operating in different contexts, the architecture shall en-
able the certification of core architectural services independently from concrete
applications using the architecture’s services. Hence, the core architectural ser-
vices of a particular implementation of the architecture shall be certified only
once, so that the already certified platform can be reused for many applica-
tions. In addition, the design and development methodology devised for the
GENESYS architecture shall support the principle of design-for-verifiability,
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which means that requirements for verification are already considered during
the design of the system (e.g. algorithms that cannot be verified should not be
used in safety-critical systems). Without adherence to this principle, it would
be unlikely that system verification and certification will be tractable. Further-
more, in order to optimally support component-based design and thus enable
the independent development of individual components, the architecture shall
support the modular certification of subsystems. This is also a necessity for
cost-effective reuse of components.

Further challenges with respect to system certification that have to be taken
into account by the GENESYS architecture originate from the introduction
of integrated systems: The progress the semiconductor industry has made in
the past decades has encompassed a tremendous increase of processing power
and has enabled the construction of complex embedded applications and has
increased the number of deployed component in present applications. Many
application domains such as the avionics and automotive domain attempt to
reduce the overall number of components by the introduction of integrated
system architectures, which share the overall resources among different types
of embedded applications (e.g. safety-related ABS functions and multimedia
applications). Whereas these approaches promise cost savings as well as im-
provements with respect to dependability, they create challenging demands for
system certification for GENESYS: The GENESYS architecture has to support
certification of subsystems with different criticality levels, i.e. each subsystem
is certified according to its criticality level and the architecture provides mech-
anisms to ensure that subsystems with higher criticality are not impaired by
subsystems with lower criticality. Otherwise, every subsystem would have to be
certified according to the criticality level of the most critical subsystem within
the system. For this purpose, the architecture should also consider safety com-
position rules as, for instance, defined by the IEC-61508 standard, which is the
common base certification standard for multiple industrial domains.

3.3.6 Fault-Tolerance and Error Containment

Electronic systems need to operate in the presence of faults, either originating
from the external environment (e.g. cosmic radiation or misbehaving users) or
from the system internals (e.g. design faults or wear-out of hardware compo-
nents). Hence, the tolerance of faults is a key factor determining the success of
a system. In particular for present chip manufacturing technology enabling the
construction of complex chips comprising billions of transistors, systems built
according to the GENESYS architecture must not rely on the requirement of
100% correctness for devices and interconnects. By relaxing the requirement of
100% correctness for devices and interconnects, the costs of manufacturing, ver-
ification, and test may be dramatically reduced. Such a paradigm shift is likely
to be forced in any case by technology scaling, which leads to more transient
and permanent failures of signals, logic values, devices, and interconnects.

For safety-critical systems, the construction of a fault-tolerant system re-
quires a specification containing the assumptions regarding the type and fre-
quency of faults that the resulting system is supposed to handle. Therefore,
the architecture shall be based on such a fault hypothesis. However, if the
faults that occur in the real world are not covered by the fault hypothesis, then
even a perfectly designed fault tolerant computer system can fail. Therefore, in
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particular for systems for which a thorough analysis of the expected fault sce-
nario is not feasible or too costly, the architecture shall also provide robustness
mechanisms that help a system to survive in case only incomplete or imprecise
specifications of the fault-hypothesis are available

A further requirement for building fault-tolerant systems is error contain-
ment, since without error containment a single fault has the ability to corrupt
the whole system. Therefore, the architecture has to provide an error con-
tainment service that allows the establishment of Error Containment Regions
(ECR) with known error containment coverage. An error containment region
is a well-defined subsystem where the consequences of an error within the sub-
system will not propagate outside the subsystem without being detected. The
probability for preventing the propagation of the consequences of an error is
called the error-containment coverage.

However, different applications have different demands with respect to re-
liability and therefore require an appropriate degree of fault-tolerance. This
has to be taken into account by the GENESYS architecture. For instance,
increased communication service reliability will normally imply increased com-
munication cost. Therefore, during the design of an application one should
have the capability to select the appropriate level of communication reliability.

Furthermore, the architecture should provide an application programming
interface (API) to the application that is independent of whether the underlying
platform is fault-tolerant or not. By providing a generic fault-tolerant layer that
separates application software from the mechanisms regarding fault-tolerance,
the complexity of the application software can be reduced and it is sufficient
to implement and validate the fault-tolerance mechanisms only once.

Particular requirements for the fault-tolerance mechanisms that should be
provided by the GENESYS architecture that have been identified for various
application domains are:

e the tolerance of software errors, since is not feasible in many cases to
provide application code that is absolutely free from software errors

e the support for delay/disruption-tolerant networking, since unpredictable
delays and disruption may be unavoidable in some cases (e.g. when using
wireless communication)

e the handling of transient faults affecting Flip-Flops and memory cells,
since low-level recovery (e.g. on-chip recovery) increases the availability
of single components and thus increases the dependability of the overall
system

e the support for error masking by the use of replicas and voting mecha-
nisms (e.g. self-checking pair, triple modular redundancy)

Several application domains addressed by GENESYS (e.g. automotive do-
main or industrial process control) have dependability requirements for their
systems that exceed the dependability that can be achieved with single compo-
nents at present implementation technologies. For such systems fault-tolerance
strategies such as active redundancy of components in a TMR configuration
have to be supported by the architecture. To this end, the architecture shall
ensure that all subsystems of a system see a sequence of events (e.g. message
reception) in the same order. This is necessary because the temporal order of
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incoming events can have an influence of the internal state of a subsystem, a
consistent view on the temporal order of events is generally necessary to achieve
replica determinism.

A further strategy to improve the reliability of systems using redundant
subsystems is to support fault tolerance mechanisms that adapt to reliability
changes of subsystems during the system’s life time. For instance, if the abil-
ity to recover from errors is exhausted for a particular replicated subsystem
because too many permanent errors have accumulated (e.g. one replica of a
TMR system has failed permanently), appropriate actions have to be taken to
restore the initial reliability (e.g. the migration of the replicated system func-
tionality to a different IP core in a multi-core system). This is a requirement
for enabling the sustained operation of components, which is demanded for
applications that require a non-stop operation throughout their entire lifetime.

In addition, since on-call maintenance can be very cost intensive due to
maintenance contracts and service outages, the GENESYS architecture shall
enable the shift of on-call maintenance to periodic maintenance. A shift to
periodic maintenance can be achieved by fault-tolerance techniques that retain,
in case of an internal error, the correct system functionality until the next
scheduled service date.

3.4 System Design and Evolution

The last part of the requirements analysis is devoted to aspects of system design
and system evolution. Firstly, requirements for the GENESYS methodology
framework concerning the support for system modeling are stated. This is fol-
lowed with requirements regarding the reuse of existing systems by supporting
the integration of legacy systems. Thirdly, requirements of the GENESYS ar-
chitecture and the methodology framework for the management of the product
life-cycle and to cope with changing technologies are presented. The chapter
is concluded with an analysis of the requirements w.r.t. system validation.

3.4.1 System modeling

The GENESYS architectural style will be accompanied with a development
framework that supports the development of cross-domain application services
by adapting and extending the most promising generic model- and quality-
driven architecture development approach by measurable quality characteris-
tics specific for embedded systems. This methodology framework should sup-
port the modeling of the system from different views such as computational-
independent, platform-independent and platform-specific (as proposed by the
Model-Driven Architecture (MDA)). The methodology framework should sup-
port a meet-in-the-middle methodology for system development including de-
sign and evaluation of systems, which combines top-down (e.g. driven from
user or domain requirements) and bottom-up (e.g. technology driven) devel-
opment strategies, since in many application domains the features and thus
the design of a product is not only driven by the users’ requirements, but also
by the availability of innovative and affordable subcomponents (e.g. mobile
phones with cameras or MP3 players).

In addition, the development framework should assist the system designer
from the very beginning of system design and development by providing tech-
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niques and tools for gathering and analyzing requirements as well as for mod-
eling structural aspects (e.g. the number of components and their interconnec-
tion), behavioural aspects (e.g. modeling the expected system behaviour), and
timing aspects (e.g. maximum latencies of message transmissions) of embed-
ded systems. Furthermore, the development framework shall provide modeling
views on the system that include aspects with regard to system deployment and
shall enable dependability evaluation according to the needs of the considered
integration levels and application domains.

Based on dependability and performance requirements of application sub-
systems, the methodology framework should, enabled by the core services of
the GENESYS architecture, support the transparent allocation of functional
blocks to distinct hardware elements (e.g. to map software components on
distinct processing elements). For this purpose, a modeling methodology shall
be used that permits to abstract away technical details concerning the physi-
cal platform during the modeling phase of the application. Such independent
abstraction levels of different system details are provided by the Platform In-
dependent Model (PIM) and Platform Specific Model (PSM) in the MDA. The
finally required mapping of platform-independent artifacts (i.e. functional and
behavioural descriptions of the application software) to the hardware platform
shall be supported semi-automatically by the methodology framework.

The usage of the MDA approach promises a better reusability of (platform
independent) models of components and thus promises to reduce the time-
to-market in case of similar designs or product line designs. To decrease the
time-to-market is a significant requirement in many fast-growing semiconductor
markets, where the greatest demand is for low-cost, relatively low-performance,
and fast time-to-market designs. Products in these markets are typically SoCs
with heavy reuse. Addressing this demand requires to describe the charac-
teristics of reusable cores at levels of abstraction that permit efficient design
optimization and reuse.

Besides reuse of existing designs, increasing the degree of automation in
system development to a semi-automatic interactive development environment
(i.e. the automation of repetitive tasks but let the developer to control all
important design decisions) is a further enabler for decreasing the time-to-
market. One aspect that should be supported by the methodology framework is
automatic source code synthesis for architectural services, application services
and configuration files, since it will significantly improve the productivity of the
development process and the quality of the source code. In order to improve
the reuse of existing (legacy) components, reverse engineering from existing
implementation level information (e.g. source code or hardware description) to
high level models should be enabled.

In addition to the above stated transformations of platform-independent to
platform-dependent viewpoints and the support for automatic source code syn-
thesis, the current industrial practice also shows that several different modelling
languages are used throughout the development cycle. Therefore, techniques
for automatic model transformation are required and should be enabled by
the methodology framework. The modeling techniques and tools provided by
the GENESYS methodology framework should be able to trace the changes
committed to modeling artifacts by the different transformations in order to
maintain consistency among the different versions or views of the same model.

Despite the support for model transformations, the methodology framework
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shall use widely accepted and standardized languages for expressing domain-
specific kinds of models in order to avoid unnecessary overhead for distributed
and partially independent system development and to support team work as it
is often necessary to cope with complex systems. Since UML and its profiles
are such standardized modeling languages, they should be supported (at least
as one alternative) by the GENESYS methodology framework.

The methodology framework should support a service-oriented develop-
ment of subsystem and systems. Therefore, of particular importance for the
methodology framework of the GENESYS architecture is the support for pre-
cisely modeling service semantics and service behaviour: Reuse of components
premises the ability to discover the services provided by existing components
and to judge on their usability based on the specification of their service se-
mantics. For this purpose, the methodology framework should provide support
for modeling the semantics of services. As different parties will participate or
influence the development of components and services, information about com-
ponents and their provided services should be based on ontologies to counteract
misconceptions.

In addition, in order to be able to evaluate the correctness of the system
behaviour, precise behavioural models (e.g. expressed with temporal logics
or abstract state machines) are needed in advance that permit the detection
of deviations between specified and actually observed system behaviour. For
existing components and their provided services the specification of service se-
mantics and of behavioural aspects of services (as well as of requirements) is
often only available as textual representation written in natural language. In
order to bridge the gap between these informal descriptions and the formal
models, the methodology framework should define a transition from natural
language representations to models that can be incorporated into the frame-
work.

3.4.2 Reuse of existing systems and standards

In many situations it will neither be possible nor regarded as desirable to design
a system completely from scratch. Rather it is the intention of the GENESYS
architecture to enable the reuse of existing components and systems and inte-
grate them into larger systems built according to the GENESYS architectural
style; thus, allowing a gradual migration of an old system to the new archi-
tecture. This support for integration of legacy subsystems into the integrated
system is a significant requirement, which promises an improved acceptance of
a new architecture. For instance, semiconductor companies have made large
investments in libraries of hardware and software IP modules. Rebuilding such
libraries to fit a different design/architecture style is not an option. Also,
an increasing amount of software is purchased from third parties. A new de-
sign/architecture style can be adopted only if it allows the existing hardware
and software IP to be reused at little or no additional cost.

In addition, the GENESYS architecture is required to take into account
well-established standards (e.g. Ethernet, CAN, USB, protocols for web ser-
vices, application programming interfaces, etc.), which reduces the effort for
many engineers and users required to use the services provided by the archi-
tecture and to feature the interoperability with existing systems and designs.
For instance in the consumer electronics market, important aspects are the
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customer’s choice of operating system and the (standard) APIs used to access
media processing and communications functions.

A key enabler for reuse of existing systems is to provide execution envi-
ronments with precise and standardized interfaces for (software) components
(e.g. application programmer interfaces (APIs)), which enable the reuse of
components from third party developers. As important as the reuse of legacy
components in systems based on the GENESYS architecture is the ability to
integrate new subsystems based on the GENESYS architecture into an old
system environment. This will enable a gradual update of old systems with
subsystems built according to the GENESYS architecture; and thus initiate a
shift towards the GENESYS architecture. Therefore, a strategy for this inverse
legacy integration has to be developed.

3.4.3 Product life-cycle and technology changes

Due to the rapid development and introduction of new technologies in the field
of embedded systems, it is essential to be able to upgrade products and product
families with minimal effort and to support the development of products that
are adapted according to specific needs of a group of customers and thus have
to be delivered in different variants (e.g. the electronic infrastructure of a car
is composed out of multiple subsystems where each subsystem is available in
multiple variants). The goal of product families is to cover a wide variety of
different consumer needs with a single architecture. Therefore, the architec-
ture must be scalable and include extension points for product differentiation.
This product extension and configuration shall be possible with minimal effort
(e.g. without the need for re-compilation of software components), and can be
supported by verified typical platform configurations (automated compatibility
checking) requiring minimal platform testing.

In addition, the GENESYS architecture shall be technology agnostic in
the sense that it does not assume any particular technology to be used and
that it allows different technologies to be combined in the solution, i.e. the
architecture shall not cause technology lock-in but enable the coexistence of
heterogeneous technologies. This flexibility shall also allow mapping of applica-
tion functionality to software or hardware (fixed or reconfigurable) depending
on non-functional requirements and constraints. Thus, the architecture shall
support the replacement of single subsystems of a design with subsystems that
are realized in another (newer) technology with minimal effort. Therewith,
the architecture shall enable covering a wide performance range with the same
product (or product family) and provides the ability to perform integration at
optimal cost level.

This technology independence during the design phase of a system requires
a model-driven design in a way that the system functionality can be defined
as a platform-independent model, using an appropriate specification language
and that this model can be translated in a subsequent step to one or more
technology-specific models for the actual implementation. Thus, the applica-
tion design does not have to be changed when the actual system has to be
ported to a new technology generation.

Given the extreme time-to-market requirements in many application do-
mains, products are likely to be changed after their introduction to the mar-
ket. Therefore, to be successful the GENESYS architecture shall minimize
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the life cycle costs of systems (i.e. the costs for design, development, produc-
tion, maintenance, and adaptation to new technology). For this purpose, these
different phases of a product’s life cycle shall not be considered in isolation
by the GENESYS architecture. Otherwise, innovative solutions to identified
problems may be missed if every part of the life-cycle is viewed independently
of every other part. Furthermore, the methodology framework should support
innovative life cycle management, i.e. to provide technologies to support all
phases of a product’s life cycle that are feasible to manage component upgrades
even in the presence of components with different life-times, which should not
impose any constraint with regard to the used life cycle model followed by
organizations implementing the methodology.

In the past, most embedded systems have operated in isolation or in closed
groups of components having a statically defined functionality and having to
serve static demands from the system’s environment. Today, in particular in
the domain of consumer applications, embedded systems in home, in office or on
the move operate as a part of a larger system; thus, the actual system is formed
dynamically and its constituting subsystems are required to dynamically adapt
to changing demands and available resources. Therefore, the architecture shall
enable dynamic run-time introduction, activation/deactivation and removal of
services as well as dynamic binding of applications to services. Furthermore, it
shall provide decentralized mechanisms for service announcement, registration
and discovery.

A further trend for embedded systems is to increase value of products by en-
abling customizations of the product based on user preferences, either directly
executed by the user (e.g. extension of the functionality of mobile phones by
JAVA applications) or carried out by the manufacturer during the production
(e.g. different features realized by electronic inventions in the automotive in-
dustry). For this purpose, the GENESYS architecture shall support the in-the-
field update of hardware and software components. A cost-effective technique,
which shall be supported by the architecture, is to upgrade a system over ex-
isting external networks such as the Internet. Due to the ongoing integration
and cross-linking of applications, it is very likely that a high percentage of
components will be connected to some kind of external network in the near
future.

3.4.4 Design for validation

The ever increasing complexity of embedded applications in various applica-
tion domains requires from an architecture for such applications to pay careful
attention to verifiability and testability of the resulting systems. Otherwise,
verification and testing will become bottlenecks in product creation. In addi-
tion, the certification of embedded systems according to different types of safety
standards (e.g. DO-178B) is a requirement for many application domains that
should be facilitated by the architecture.

Therefore, as a first important step, the architecture as well as the accom-
panied methodology framework should support the simulation of application
models and of implemented components on all integration levels. Simulation
is one of the most important engineering methods for the early validation of
system designs and the recognition of possible design problems (e.g. to detect
emission and immunity weakness with respect to electro-magnetic radiation of
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any hardware part of an embedded system in an early design phase in order
to prevent costly redesigns. As a consequence, the fast generation of (virtual)
prototypes that can be used for this basic validation should be supported, since
rapid prototyping is widely used as a methodology to produce working versions
of the system under design in order to be able to demonstrate/validate the most
important functionalities/properties of the system before the actual develop-
ment is done. In order to support the independent development of subsystems,
which is mandatory in many system development cycles where subsystems from
different suppliers have to be integrated, the testing and simulation of subsys-
tems before system integration shall be supported. The system properties that
have been tested in isolation shall not be violated by the integration. For in-
stance, the architecture shall support testing of a subsystem before integrating
it into its intended environment (e.g. other subsystems, sensors or actuators
that are connected to the subsystem) by simulating the environment. This
simulation-in-the-loop shall be supported for hardware components (hardware-
in-the-loop - HIL) and software modules (software-in-the-loop - SIL).

Furthermore, the GENESYS methodology framework should support the
application of formal methods for system verification, which can be applied
to existing design methods. For this purpose, two groups of formal methods
should be distinguished: formal specification and formal verification. Formal
specification can be used to derive an unambiguous specification of a subsystem,
an interface, or parts of those, which is also mandatory for enabling the tool-
assisted conformance checking of software/hardware modules and for support-
ing the correctness-by-construction principle, i.e. to transform a specification
step by step into a correct design by applying provably correct design methods.
Formal verification yields an objective correctness proof for properties that an
architecture claims to fulfill. Usually a formal verification process requires a
preceding formal specification process. Therefore, the GENESYS methodology
framework should support the usage of formal languages for system modeling.

For the purpose of formal verification of applications, the methodology
framework should support the application of model-checking and theorem proof-
ing techniques. Since formal verification techniques are often only applicable
to very small systems due to their exponential runtime complexity, divide and
conquer strategies should be supported for formal verification, i.e. a property
can be verified by the sum of individual verification runs. In addition, runtime
verification techniques applied to the actual (physical) system and not only to
a model should be supported by the methodology framework.

In order to reduce the efforts induced by applying formal verification meth-
ods, the reuse of verification patterns and verification environments shall be
supported for the verification of subsystems at different abstraction levels (e.g.
on-chip IP blocks, devices, etc.). This requires a common and application-
independent procedure for the verification of a subsystem and will support
the methodology framework in enabling the automation of the validation and
verification process as far as possible.
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Cross Domain Architectural Style

HIS CHAPTER describes the GENESYS cross-domain architectural style,
which is characterized by architectural principles and structuring rules for
dependable distributed embedded systems. A principle is an accepted state-
ment about some fundamental insight in a domain of discourse. Principles form
the basis for the formulation of operational rules. In GENESYS these principles
are operationalized in the reference architecture template of the architectural
service specification, which is covered in the following chapters.

The cross-domain architectural style is the result of extensive discussions
among the members of the GENESYS consortium, which included experts from
the diverse application domains, ranging from safety-critical embedded systems
to dynamic multimedia systems, such as mobile phones.

4.1 Complexity Management

In many embedded systems, constraints such as timeliness, power /energy effi-
ciency, dependability requirements, or time-to-market and cost constraints lead
to a significant increase of the complexity of the evolving artifact-particularly
in the context of the every increasing functionality, size and connectivity of
embedded systems. This increasing cognitive complexity of embedded systems
is thus the topic of major concern in all considered application domains. This
topic has to be addressed at the architecture level by establishing a framework
that takes into consideration the idiosyncrasies and the limited cognitive capa-
bilities of the human mind and leads to an artifact that provides the specified
services under given constraints and where relevant properties of this artefact
can be modeled at different levels of abstraction by models of adequate sim-
plicity [36].

The report on "Software for Dependable Systems: Sufficient Evidence?”
from the National Academies of July 2007 contains as one of its central rec-
ommendations that ”...one key to achieving dependability at reasonable cost
is a serious and sustained commitment to simplicity, including simplicity of
critical functions and simplicity in system interactions. This commitment is
often the mark of true expertise [32].” This section discusses well-established
simplification strategies that have been followed in the design of the GENESYS
architecture.

37
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4.1.1 Abstraction

Due to the limited cognitive capabilities of the human mind, it is only possible
to understand the world around us if we disregard details that are irrelevant for
the given purpose and build models of adequate simplicity. Abstraction results
in a deliberate simplification of a scenario by focusing only on those properties
that are relevant for the given purpose and by omitting the irrelevant details.
The purpose determines the viewpoint of an abstraction. It is a major challenge
in any scientific endeavor to create appropriate abstractions that capture the
essence of the problem at hand and thus lead to an abrupt simplification.
A proper abstractions results in an abrupt simplification of a scenario. For
example, in Celestial mechanics an abstraction is introduced where the whole
diversity of the world is reduced to a mass point in order that the interactions
with other mass points (heavenly bodies) can be studied.

In GENESYS we introduce the notion of a computational component that
is a software/hardware unit that performs a specified computation within a
given interval of real-time, as a basic abstraction. The notion of a component is
recursive in the sense, that a set of interacting components can be accumulated
and viewed, from another viewpoint, as a single component, thus leading to a
structured representation of a large system.

4.1.2 Partitioning

Partitioning (also known as separation of concerns) refers to the spatial divi-
sion of a problem scenario into nearly independent parts that can be studied
in isolation. Partitioning is at the core of reductionism, the preferred sim-
plification strategy in the natural sciences over the past three hundred years.
Partitioning is not always possible. It has its limits when emergent properties
are at stake. Emergent properties, which cannot be associated with any one of
the partitioned subsystems, but come into existence by the interactions of the
subsystems, are lost when the subsystems are isolated. Consider for example
a car, which provides a transportation service that is more than the sum of
the car’s parts. As will be seen in the following Sections, partitioning is widely
used in GENESYS to set apart issues that can be separated and studied in
isolation. For example, in GENESYS we clearly separate communication from
computation in order that these two subsystems can be developed in isolation.

4.1.3 Segmentation

Segmentation is the introduction of structure into the behaviour of components
in order to support temporal reasoning about behavioural properties. Segmen-
tation involves the temporal decomposition of behaviour into smaller parts that
can be processed sequentially, step by step. At each step, only the limited con-
text of this step has to be analyzed in order to understand what is happening.
Segmentation is simplified if a suitable global model of time is available and
the behaviour is deterministic. It is hindered if concurrent processes with un-
controlled interdependencies generate the visible behaviour. In GENESYS we
try to avoid uncontrolled concurrency wherever possible and ensure that the
basic mechanisms are deterministic.



4.2. COMPONENT ORIENTATION 39

4.2 Component Orientation

As mentioned above, the GENESYS architecture follows a strict component
orientation from the hardware/software point of view. A component is a self-
contained hardware/software subsystem that can be independently developed
and used as a building block in the design of a larger system. A component is a
replaceable part of a system that encapsulates design and implementation and
exposes a set of interfaces. Each component represents a part of a design that
may be instantiated one or more times and combined with other components
to form a system or a higher level component. Each component serves as a
stable intermediate form that exhibits aggregated properties, when integrated
with other components to an ensuing system. As expressed in [70], ’complex
systems will evolve from simple systems much more rapidly if there are stable
intermediate forms than if there are not) A component can have a complex
internal structure that is neither visible, nor of concern, to the user of the com-
ponent at the architecture level. Thereby, a component offers an appropriate
unit of abstraction for the design.

An important principle of GENESYS is the consequent separation of (com-
putational) components from the communication infrastructure. The commu-
nication infrastructure provides the means to integrate the components to the
overall system. The communication infrastructure of GENESYS is based on
the paradigm of message passing. The basic interaction mechanism among
components is the exchange of a unidirectional multicast message. A message
is sent at a sending instant and will arrive at the receiver at some later instant.
Every message has a specific identifiable sender and one or more receivers. Mul-
ticasting is required in many real-time applications, e.g., for fault-tolerance by
active redundancy. In particular, multicasting supports the non-intrusive ob-
servation of the component interactions by an independent fault containment
region.

The message-paradigm combines the temporal (control) and the value as-
pect of an interaction into a single concept. The temporal properties of a
message include information concerning the send instants, the temporal order,
the inter-arrival time (e.g., periodic, sporadic, aperiodic recurrence), and the
latency of the message transport. Messages can thus be used to synchronize
a sender and a receiver. The message concept supports inherent data atom-
icity (i.e., atomic delivery of the complete message contents). A single well-
designed message passing service provides a simple interface of a component
to its environment. It facilitates encapsulation, reconfiguration and recovery.
It is possible to implement other inter-process-communication services, e.g.,
transactional common memory, on top of a basic message passing service

The strict separation of communication from computation makes it possible
to design and analyse these two parts in isolation. As long as the behaviour at
the interface to the communication infrastructure remains unchanged, compo-
nents are unaffected by modifications of their internal implementation. Given
that the temporal properties of a communication infrastructure are not changed,
the communication infrastructure can be modified without any effect on the
behaviour of the components. Furthermore, components can be reused inde-
pendently of the communication infrastructure. Likewise, a generic communi-
cation infrastructure can be used with different computational components.
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Figure 4.1: Componenet Interfaces

4.2.1 Component Interfaces

Figure 4.1 depicts the interfaces of a component. In GENESYS four types of
message-based component interfaces are distinguished.

The Linking Interface (LIF)

The services of a component are offered at its LIF, which is message based.
The LIF is thus the interface for the integration of components at a given
integration level. The LIF of a component abstracts over the internal structure
and the local interfaces of the component. The LIF is technology agnostic in
the sense that the LIF does not expose implementation details of a component
or its local interfaces. The specification of the LIF is self-contained and covers
not only the functionality of the component, but also the semantics of its local
interfaces A technology agnostic LIF ensures that different implementations
of computational components (e.g., general purpose CPU, FPGA, ASIC) and
different Input/Output subsystems can be integrated without any modification
to the other components that interact with this component across its LIF.

In GENESYS we distinguish between the operational and the meta-level
specification of a LIF [38]. The operational specification covers the syntactic
and temporal properties of the messages that are exchanged across this LIF.
In addition to the structure of all input output messages, the operational LIF
specification should also contain a periodic ground state message that contains
information for the restart of a component at the next restart instant. The
operational specification must be precise and formal and ensures the interop-
erability of components.

The meta-level specification of a LIF assigns meaning to the syntactic struc-
tures established by the operational specification. It is based on an interface
model of the user environment. Since it is impossible to formalize all aspects
of a real-world user environment the meta-level specification will contain nat-
ural language elements, which lack the precision of a formal system Central
concepts of the application domains and applications can be specified using
domain specific ontologies. For example, it is not possible to give a formal
specification of the meaning of the temperature of an automotive engine.
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The Local Interfaces

The local interfaces establish a connection between a component and its local
environment, e.g., the sensors and actuators in a process control system or the
concrete man-machine interface. From the point of view of the LIF, only the
meaning and the timing of the information exchanged across a local interface
is of relevance. While the detailed structure and mechanisms of the local inter-
face is intentionally left unspecified. A modification of this local mechanisms,
e.g., the exchange of a CAN Bus by a FlexRay Bus, will not have any effect of
the LIF specification, and consequently on the users of the LIF specification,
as long as the semantics and timing of the relevant data items are the same. A
component that does not contain any local interface is called a closed compo-
nent, otherwise it is an open component. The semantics of closed components
can, in principle, be formally specified.

The Technology Independent Interface (TII)

The technology independent interface is used to configure a component, e.g. as-
sign the proper names to a component and its input output ports, to reset, start
and restart a component and to monitor and control the resource requirements
(e.g., power) of a component during run time, if so required. Furthermore, the
TII is used to configure and reconfigure a component, i.e. to assign a specific
job to the programmable component hardware.

The messages that arrive at the TII communicate with the hardware (e.g.,
reset) with the operating system (e.g., start a task) and with the middleware
of the component, but not with the application software. The TII is thus
orthogonal to the LIF. This strict separation of the application specific message
interfaces, the LIF, from the system control interface of a component, the
TTI, simplifies the application software and reduces the overall complexity of a
component.

The Technology Dependent Interface (TDI)

The TDI provides a means to look inside a component and to observe internal
variables of a component. The TDI is intended for the person who has a
deep understanding of the component internals. The TDI is of no relevance
for the user of the LIF services of the component or the system engineer that
configures a component. The precise specification of the TDI depends on the
technology of the component implementation, and will be different if the same
functionality of a component is realized by software running on a CPU, by an
FPGA or by an ASIC.

4.2.2 Types of Components

It is an architectural principle of GENESYS to distinguish between different
component types, as outlined in this Section.

Hard versus Soft Components

From the point of view of the implementation technology, GENESYS distin-
guishes between hard components and soft components. The functionality of
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Figure 4.2: Energy implications of different implementation technologies [46]

a hard component is predetermined by the given hardware structure, e.g., an
application specific ASIC, and thus cannot be modified. In a soft component,
the functionality is determined by software on an FPGA or a CPU. We call
the software that is loaded into a soft component a job. The assignment of a
job to an appropriate hardware unit that can execute the job creates a new
component. The functionality of soft components can thus be modified during
the lifetime of the component. A component can also be a mixture of a soft
and hard component, i.e., supporting partial modification of the functional-
ity. Soft components allow systems to evolve and adapt to a changing context.
However, functionality implemented in a hard component can have superior
non-functional properties (e.g., energy efficiency, silicon area). GENESY'S pro-
vides mechanisms to protect the system from malicious users that try to use
soft components for malicious purposes.

Figure 4.2 shows the energy improvement that can be achieved by moving
a given functionality from a soft component to a hard component.

System Component versus Application Components

From the point of view of service provision, GENESYS distinguishes between
system components and application components. A system component is a
component that provides some architectural service. System components are
self-contained components that conform to the architectural style of GENESYS
and can be considered to form a part of the GENESYS architecture. System
components can be widely reused by many different applications.

An application component is a component that implements the specified
application functionality. Application components use the services of the avail-
able system components to reduce the effort required implement the application
functionality. An application designer is only concerned with the development
of application components.

We consider it as one of the significant contributions of the GENESYS ar-
chitecture to eliminate the need for a complex monolithic central operating
system to control all resources of the platform. In GENESYS many of the
global operating system functions are provided by a set of self- contained sys-
tem components. In an MPSoC(multi-processor system-on-chip) system com-
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ponents map ideally into the IP-cores of such a chip. If they become stable,
they can be implemented as hard components, thus significantly reducing en-
ergy requirement and silicon area as shown in Figure 4.2. Additionally, each
component may have a small local (possibly heterogeneous) operating system
that manages the local resources of the component and that is not visible at
the architectural level.

4.2.3 Composability of Components

Composability refers to the property of an architecture that is concerned with
the easy construction of a system out of independently developed components.
It should not be confused with Compositionality, which means that the whole
can be understood by understanding the parts and how they are compound.
An architecture that supports composability lifts the design process to a
higher level of abstraction. In such an architecture new services can be built
by reusing existing components, possibly adding only a few new components.
Such a component-based design process will reduce the design and validation
effort and shortens the time-to-market of new products. In the ARTEMIS
strategic research agenda, composability leads the list of properties that the
future cross-domain architecture for embedded systems must satisfy.
GENESYS adheres to the following four principles of composability.

Independent Development of Components

An architecture must enable the precise specification of the linking interface
(LIF) of a component in the domains of value and time. This is a necessary
prerequisite for the independent development of components on one side and
the reuse of existing components that is based solely on the LIF specification on
the other side. While the precise specification of the value domain of interacting
messages is state-of-the-art in embedded system design, the temporal properties
of these messages are often ill-defined since in many of the existing architectures
timeliness is not an architectural issue. GENESYS provides a global time-base
to all components and a deterministic communication infrastructure, such that
temporal properties can be precisely specified at the architectural level.

Stability of Prior Services

The stability of prior services principle states that the services of a compo-
nent that have been validated in isolation (i.e., prior to the integration of the
component into a larger system) remain intact after the integration.

An example for the violation of this principle is a message push-interface of
a component that must deliver a time critical service to its environment, such as
an engine controller in an automotive engine. If, while a time-critical computa-
tion is active, the CPU is interrupted by a message arrival, then the deadline of
this time-critical computation may be missed. If instead of a message push in-
terface a message pull interface had been implemented, the component can poll
the incoming message after the time-critical computation has been finished.
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Non-Interfering Interactions

If there exist two disjoint subgroups of cooperating components that share
a common communication infrastructure, then the communication activities
within one subgroup may not interfere with the communication activities within
the other subgroup. If this principle is not satisfied, then the integration
within one component-subgroup will depend on the proper behaviour of the
other (functionally unrelated) component-subgroups. These global interfer-
ences compromise the composability of the architecture.

Preservation of the Component Abstraction in the Case of Failures

It is said that Nobel Laureate Hannes Alfven once remarked that in a Technol-
ogy Paradise no acts of God can be permitted and everything happens accord-
ing to the blueprints. The real world is no technology paradise-components can
fail and blueprints (software) can contain errors. A composable architecture
must ensure that the introduced abstraction of a component remains intact,
even if a component is faulty. It must be possible to diagnose and replace
a faulty component without any knowledge about the component internals.
This requires a certain amount of redundancy for error detection within the
architecture.

For example, in order to detect a faulty component that acts like a babbling
idiot, the communication system must contain information about the permitted
behaviour of a correct component and must get rid of a component that does
not act as permitted.

4.3 Structuring of Systems

In this Section we first present the three Integration Levels that have been
introduced in GENESYS. We then discuss different viewpoints for viewing
a GENESYS system. In the last Section we discuss the structure of the
GENESYS services.

4.3.1 Integration Levels

The GENESYS architecture introduces three different integration levels: the
chip-level, the device-level, and the system-level (see Figure 4.3). At the system
level open and closed systems are distinguished. At each level, the architecture
provides core services and optional services. The reason for the introduction of
these integration levels is that the service characteristics of the three levels are
substantially different, e.g., the bandwidth in a network-on-chip (NoC) is orders
of magnitude cheaper than the bandwidth at the system level (e.g., WLAN).
Furthermore, temporal guarantees can only be given in a closed system.

It should be noted that not all three levels must be present in every instan-
tiation of the GENESYS architecture. For example, in a single chip system the
connection to the open world, e.g. the Internet, could already be at the chip
integration level removing the need to consider the device level.
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Figure 4.3: Integration Levels of GENESYS

System Level (Level 3)

A system consists of devices, each of which is a spatially and logically self-
contained apparatus (e.g., ECU in a car, mobile phone, DVD player, smart
transducer with a standardized network interface, E). A device can have local
interfaces and linking interfaces (LIFs). The LIFs serve for the connection with
other devices. The set of all LIFs of a device is called the interface set of the
device. A LIF is of relevance for the architecture and must be compliant to
the GENESYS architectural style. The interconnection of devices can occur
in an open environment or closed environment. In an open environment the
composition of devices always occurs dynamically during the system operation
without a priori knowledge concerning the participating devices. A closed sys-
tem is a system where all devices are known a priori. In a closed environment,
the composition of devices can be static or dynamic. The precise form of a
local interface is not relevant for the system integration, since the semantic
properties of this interface are captured in the semantic LIF specification.
The interfaces of the devices are thus:

Linking Interfaces: Devices interact with each other exclusively via inter-
device LIFs (e.g., wireless connection between a mobile phone and a music
player, wirebound connection between ECUs in a car).

Local Interfaces: The local interfaces at the system level are either propri-
etary interfaces to transducers or interfaces connecting to the cyberspace
(e.g., interface to an Internet gateway, mobile base station). From the
point of view of the inter-device LIF, the local interfaces of a device are
hidden within the device.

Device Level (Level 2)

If a device has an internal structure that is relevant from the point of view of
the architecture, then the device can be decomposed into a set of chips that
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interact via inter-chip LIFs.
The interfaces of the chips are:

Linking interfaces: Chips within a device interact with each other exclu-
sively via inter-chip LIFs. The inter-chip LIFs are established using off-
chip communication systems such as PCI or SPI.

Local interfaces: Local interfaces are interfaces of a chip that are not con-
sidered for the integration of chips, i.e., from the point of view of the
inter-chip LIF, a chip’s local interfaces are hidden within the chip. How-
ever, the local interfaces of a chip can be mapped to inter-device LIFs
or to local interfaces of the device. We call a chip that has at least one
local interface that is mapped to an inter-device LIF at the next-higher
level (i.e., system level) a gateway component from the device level to
the system level.

Chip Level (Level 1)

If a chip is an MPSoC that has an internal structure with relevance from the
point of view of the architecture, then the chip can be decomposed into a set of
IP cores. The IP cores communicate with each other using inter-IP core LIFs
via networks-on-a-chip.

The interfaces of the IP cores are:

Linking interfaces: At the chip level, IP cores interact exclusively via inter-
IP core LIFs (i.e., interfaces to the NoC).

Local interfaces: Local interfaces are interfaces of an IP core that are not
considered for the integration of IP cores, i.e., from the point of view of
the inter-IP core LIF, the local interfaces are hidden within the IP core.
The local interfaces of an IP core can be mapped to inter-chip LIFs or
to local interfaces of the chip. We call an IP core that has at least one
local interface that is mapped to an inter-chip LIF at the next-higher
level (i.e., device level) a gateway component from the chip level to the
device level.

4.3.2 System Views

A concrete embedded system can be viewed from many different perspectives
(e.g., functionality, timing, power consumption, dependability, physical form,
etc.). It can be difficult for any single individual to fully comprehend all views.
Behind every view, there is a purpose that establishes an abstract viewpoint.
The viewpoint determines which information is relevant for this particular
viewpoint and which information can be omitted. Each viewpoint can lead
to a hierarchical set of models, where each model exposes more details that
are relevant for the chosen viewpoint. In the following we glimpse at the run-
time view, the design-time view, the dependability view, and the power/energy
view, realizing that many more views are relevant.
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Figure 4.4: Example for Proposed Integration Levels

Run-Time View

From a run-time point of view, a GENESYS system consists of a structured
set of components that interact by the exchange of messages. Each component
performs a specified computational function and forms a self-contained fault-
containment unit (FCU) that can be restarted in case of failure. The behaviour
of each component can be observed from the outside without a probe effect. The
recursive notion of a component supports the generation of layered run-time
models of a GENESYS system. From the point of view of the architecture, a
component is regarded as an atomic unit that need not be analyzed internally
in order to integrate the component into a larger system or to find a faulty
component. Nevertheless, a component can be internally structured.

Design-Time View

GENESYS supports a model-based design strategy, where a clear distinction
is made between a platform-independent model (PIM) and a platform specific
model (PSM), as advocated by the model-driven architecture (MDA) of the
OMG [58]. In the more abstract PIM the functionality of a component is
captured in the notion of a job that is expressed in an executable language,
e.g., in System C, augmented by temporal assertions. This PIM-job can be
transformed into a form that can be executed on the chosen target hardware,
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resulting in a PSM-job that, combined with the chosen target hardware, forms
the component as seen in the run-time view. If a target hardware is a hard
component, i.e., an ASIC (application specific integrated circuit), then the PIM
job determines the design of the ASIC and is not identifiable at the PSM level
any more. If the target hardware is a computer with a CPU, then the allocation
of PSM-job to the hardware as controlled by the TII of the component, can be
changed in case the hardware becomes faulty. Such a relocation of a PSM job
should not effect the visible behaviour of the system.

Dependability View

For the purpose of dependability modeling, another viewpoint is relevant. This
viewpoint focuses among others on the allocation of the jobs to the hardware,
the independence of the fault-containment units, the error-detection coverage,
the error detection latency and the time it takes to restart a component after a
transient fault. If the allocation of the PSM job to a soft component is changed,
the dependability model has to be modified accordingly.

Power and Energy View

Another point of view of a system, the importance of which is dramatically
increasing, is the power and energy view. The power view is important to
control the thermal stress in highly integrated system-on-chips, which can lead
to significant degradation of the chip’s dependability. The energy consumption
determines the battery lifetime of a mobile electronic device, which is an impor-
tant property for the market success. This view of the GENESYS architecture
supports power and energy modelling and control in all phases of the lifecycle.

4.3.3 Architectural Services

The capabilities of the platform are offered to the components, which realize an
application functions, by a set of platform services. These platform services are
hierarchically structured as shown in Figure 4.5. At the bottom of this service
hierarchy are the core services that define the platform. The core services
must be present in any instantiation of the GENESYS architecture. Above
these core services are the optional domain-independent services that provide
enhanced capabilities to the users of the platform in order that functionalities
that are needed in many, but not all application domains, are provided in a
ready-to-use form. It is up to the user to decide, which one of these optional
services are to be included in a concrete instantiation of the architecture. The
implementation of these optional services uses the core services. At the next
level of the hierarchy are the domain-specific central services, followed by the
domain-specific optional services, as shown in Figure 4.5.

Core Services

The core services are mandatory in every instantiation of the architecture, since
they form the foundation for all higher-level services. The core services can be
grouped into four categories, the basic configuration services, the component
execution services, the basic communication services and the basic time ser-
vices. The basic configuration services are needed to introduce the components
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to the platform and to connect the ports of the components, thus establishing
communication channels among the components. The component execution
services are used to control (e.g., start and stop) the execution of components.
The basic communication services enable the components to send unidirec-
tional multicast messages on the established communication channels. Finally,
the basic time services make the components time-aware and establish a com-
mon notion of time.

Optional Services

These services build upon the core services and are generic in the sense that
they can be used in multiple application domains. These services are optional
in the sense that they are not required in every instantiation of the architecture.
If needed, developers can pick them out of the GENESY'S reference architecture
template, which includes a set of existing, validated component libraries for the
different levels of integration. The set of domain-independent optional services
is open, i.e., new optional services can be added if the need arises.

At present, the domain-independent optional services are grouped into the
following categories: resource management services, advanced communication
services, advanced timing services, external memory management services, de-
pendability services, and Internet connection services. These services are ex-
plained in more detail in the following Section on the Reference Architecture
Template.

Domain-Specific Services

The domain-specific central services are those services that are considered es-
sential for the considered application domain and must therefore be present in
any instantiation of the architecture for the considered domain. The domain-
specific central services build on the core services and a well-defined subset of
the optional services, augmented by services that are essential for the consid-
ered domain.

For example, in the process-control domain, a stable storage service would
be a domain-specific central service or in the automotive domain a CAN com-
munication service would one of the domain specific central services, since CAN
is used widely in the automotive domain
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Domain-specific Optional Services supplement the service set that is pro-
vided to users of a given domain. Again, this service set is open and can be
expanded as the need of an extension arises.

4.4 Networking

With respect to networking, the architectural style provides a simple Uniform
Network Interface (UNI) with architectural services (e.g., common time base,
communication) to the components. Higher-level (application specific) proto-
cols are implemented on top of the UNI using optional services (e.g., encrypted
channels at chip-level, CAN at system-level).

4.4.1 Availability of a Common Time Base

A general principle of the GENESYS cross-domain architectural style is the
provision of a common time base to all components. A common time base
allows the temporal coordination of distributed activities (e.g., synchronized
messages), as well as to interrelate timestamps assigned at different compo-
nents.

In GENESYS, two representation of time are used, the linear representation
and the cyclic representation. In the linear representation time is represented
according to the TAI notation that is available from any GPS receiver. In
the cyclic representation time is represented in the form of cycles and phases.
After a phase of 360 degrees the current cycle is completed and the next cycle
starts. In the cyclic representation of time any instant, i.e., a point in time,
is characterized by its cycle and phase in relation to the global time. For
example, if the chosen cycle is the second, then an instant is defined by the
cycle (second) and the phase (fraction of a second). The cyclic representation
of time is preferred for the description of cyclic processes.

In an ensemble of clocks, each with its own oscillation mechanism and start-
ing with the same initial value, the clocks will diverge over time due to differ-
ences in the physical oscillation mechanisms, the differences in the rates of the
clocks. In order to keep the clocks in approximate synchrony, we must resyn-
chronize the clocks periodically. In an ensemble of good synchronized clocks (a
clock which has failed is a bad clock) we call the maximum duration between
the respective ticks of any two good clocks - as measured by the reference clock
- the precision of the ensemble. The precision of the common time base depends
on the integration level. For example, the precision on a chip will be signifi-
cantly better than the precision in an open system of loosely coupled devices.
In addition, the common time can be synchronized with an external time source
(e.g., GPS). Clock synchronization is an architectural service of GENESYS. In
safety-critical systems the common time base must be fault-tolerant, since the
correct provision of safety-related services can depend on the availability of the
common time base. Therefore, the GENESYS architecture has the option to
support the use of fault-tolerant clock synchronization algorithms that have
been developed for different types of fault assumptions.

The synchronization of the platform-global time with an external time-base,
i.e., GPS time, is supported by GENESYS. This external time synchronization
will be based on existing standards, such as IEEE 1588 [28] and the NTP
Protocol [51].
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4.4.2 Communication Modes

As mentioned before, the only communication mechanism in GENESYS is the
transport of a unidirectional multicast message. The GENESYS architectural
style recognizes that different application subsystems can have different re-
quirements concerning the message semantics. For this reason, the following
three communication modes are distinguished:

1. Time-triggered messages: Time-triggered messages provide a predictable
time-guaranteed communication service. The instants for the transmis-
sions of time-triggered messages, its cycles and phase, are specified by
an a priori planned conflict-free communication schedule, which prevents
any collisions between messages by design. This communication schedule
is known by the communication system in order to be able to detect faulty
components. For time-triggered messages, the communication infrastruc-
ture is deterministic and guarantees temporal properties such as latency,
latency jitter, bandwidth, and message order. There are no queues associ-
ated with time-triggered messages. On sending, a time-triggered message
is copied from the send buffer at the sender, but not consumed, while on
receiving it will update the contents of the receive buffer, overwriting
its current contents. Time-triggered messages are well-suited for cyclic
applications, e.g., control applications.

2. Event-triggered messages: Event-triggered messages arrive sporadically
and must be queued at the sender and at the receiver. They are char-
acterized by bandwidth, sender queue length, receiver queue length, and
minimum inter-arrival time and provide a flexible communication ser-
vice. The transmission of event-triggered messages can be triggered by
any significant event, i.e., not necessarily by time events. Event-triggered
communication supports an exactly once semantics. Due to the tempo-
ral unpredictability of the events that trigger event-triggered messages,
this communication mode offers weaker temporal guarantees, e.g., best-
effort communication or probabilistic statements about the bandwidth or
latency.

3. Synchronized data streams: Data streams enable the transmission and
on-the-fly processing of streaming data. Data streams from multiple
sources can be synchronized. Many applications require the temporal
alignment of data streams (e.g., synchronized of video and audio sources
like lip sync) or multiple video streams (e.g., as input for pattern recog-
nition). Through the synchronization of different data streams, the need
for buffering can be minimized, which has positive implications for energy
efficiency and the silicon area requirements.

4.4.3 Heterogeneous Networks

The GENESYS architecture supports communication (i.e., time-triggered and
event-triggered message exchange and data streaming) across heterogeneous
networks with quality-of-service properties (e.g., bandwidth, latency, energy).
Heterogeneous networks can exist on the same integration level, e.g., differ-
ent network technologies at the system level (e.g., WLAN and Ethernet) or
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heterogeneous networks result from the communication across multiple inte-
gration levels (e.g., from a network-on-a-chip at the chip-level to a network at
the device-level).

In addition to wire-bound communication, efficient support for wireless
communication is required in order to support mobile applications at the
system-level. Therefore, the design of the core service at level 3 has to support
efficient wireless communication among devices. In particular, issues of sta-
bility, source burstiness, delay constraints, multi-hop communications, scaling,
and mobility need to be considered.

4.4.4 Internet Connectivity

There is an ongoing trend to connect embedded systems to the Internet. This
trend is seen as the beginning of a new era of ubiquitous computing and com-
munication and is named as the ”Internet of Things” [31].

To support the seamless connection of GENESYS-based systems to the
Internet, the GENESYS architecture supports the Internet naming conventions
and Internet protocols using optional services. Gateways to the Internet are
provided at the system level. These gateways are responsible for the mapping
of the embedded system name space to the name space of the Internet. In
addition, the gateways provide security solutions to handle outsider attacks
from the Internet.

To be compatible with the Internet, the communication infrastructure of
the GENESYS architecture follows the fate sharing principle [12] at all levels.
The fate-sharing principle stresses that the hard protocol state is stored at the
endpoints of a communication channel and only soft state is allowed in the
network.

4.5 Resource Management

Resource management refers to the ability of an embedded system to dynami-
cally adapt to the context. Applications can have multiple application quality
levels, which are selected dynamically based on the user preferences and plat-
form resource availability. The importance of dynamic resource management is
growing due to the thermal stress that must be controlled in highly integrated
system-on-chips.

Since a single resource allocation strategy cannot be expected to fit for all
applications and domains, different resource allocation strategies must be sup-
portable. Different resource allocation strategies exhibit different advantages
and disadvantages.

Another point of consideration is the interrelationship between local re-
source management and global resource management. In addition to global
resource management, components can have local resource management (in-
cluding energy and power management). The interface definition of the compo-
nents includes explicit support for getting resource information and controlling
the resource state.
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4.5.1 Universality

Resource management has to be supported for safety-critical applications, non
safety-critical applications, and mixed criticality systems with both safety-
critical and non safety-critical subsystems. The GENESYS architecture sup-
ports hard resource guarantees or enhanced service modes in safety-related
subsystems, while sharing of chips and devices among safety-critical and non-
critical services. This strategy maximizes the potential for commercial off-the-
shelf (COTS) solutions.

4.5.2 Holistic View of Different Resources

The GENESYS architecture enables integrated resource management, which
follows a holistic view on different resources. Embedded systems depend on
different resources (e.g., power, energy, communication bandwidth, memory)
that need to be managed holistically. In many cases, trade-offs between differ-
ent resources exist that need to be considered. For example, high computing
performance typically conflicts with low power operation. When assigning plat-
form resources to the application, it is thus a challenge to optimize for a low
power solution, while satisfying the temporal performance constraints.

4.5.3 Power and Energy Awareness

Power /energy awareness is a key requirement in many applications. It is one
of the most important drivers in battery-operated devices. In addition, power
awareness can be necessary to avoid damage induced by overheating. Finally,
ecological aspects motivate power and energy awareness in embedded systems.
The GENESYS architecture focuses on power/energy awareness both in design
and in operation.

GENESYS enables tools that provide direct energy efficiency feedback at
all phases of the design flow, in all abstraction levels and in all design domains.
Application development environments (ADEs) should give energy efficiency
feedback for application programmers. For hardware design tools and software
compilers, energy efficiency is a first class optimization target. Furthermore,
the GENESYS architecture supports different component implementation tech-
nologies (e.g., software on CPU, FPGA, ASIC), because different implementa-
tion technologies can differ with respect to power/energy efficiency by multiple
orders of magnitude.

In operation, the GENESYS architecture enables the collection, storing and
provision of information about the energy, thermal and power conditions and
capabilities (e.g., energy supply state, current power usage and estimated usage
time, peak power). In order to control complexity, the energy and power infor-
mation is abstracted for the application, e.g., by providing to the application
software only a number of abstract operating points. The implementation of
the architecture, on the other hand, has to deal with the details of the power
and energy management, e.g., DVFS with clock frequencies, voltages and the
allowed combinations.

Another point for consideration with respect to power/energy efficient in
operation is power-gating. As a prerequisite for the power-gating of compo-
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nents, the ground state has to be stored elsewhere. Thus, the component state
can be restored after the wake-up of a component.

4.5.4 Continuity of Service

It is necessary to provide a way to seamlessly switch between different quality
levels and operational modes. Firstly, predictability of the service availability
after reconfiguration is required. In particular, the effects of reconfiguration
to critical services should be known beforehand and reconfiguration activities
should not disrupt the behaviour of subsystems that are not subject to the
reconfiguration activities.

Secondly, resource requirements should be satisfied when reconfiguration is
in progress. The architecture enables that resource requirements are satisfied
during reconfiguration activities and prevents disruptions of service.

4.6 Robustness and Security

Robustness services are an important scientific challenge for dealing with both
physical faults and design faults. With respect to physical faults, increas-
ing transient failure rates will occur due to semiconductor process variations,
shrinking geometries, and lower power voltages. Design faults are associated
with more and more complex designs, which result from the increasing func-
tionality expected from embedded systems. For example, a current premium
car implements about 270 functions a user interacts with, amounting to about
100 megabytes of binary code. In this context, robustness ensures the capabil-
ity of a system to deliver an acceptable level of service despite the occurrence
of transient and permanent hardware faults, design faults, imprecise specifi-
cations, and accidental operational faults. A system must be resilient with
respect to unanticipated behavior from the environment of the system or of
sub-systems. In case such unanticipated behavior occurs, the system should
still exhibit some sensible behavior, and not be completely unpredictable.

An aspect of particular importance is the robustness with respect to inten-
tional faults. The current trend shows that the connectivity and extensibility of
embedded devices is constantly increasing. In the near future, devices belong-
ing to different application domains will interact with each other in order to
provide emergent services and added value to the user (e.g., a mobile phone may
act as a key for the car). The increased connectivity and extensibility implies
that security is a new dimension in the design of safety-critical systems. Future
devices must tolerate perturbations such as accidental faults (e.g., transient or
permanent hardware faults caused by radiation, quantum-mechanical effects,
electromagnetic interference or aging) as well as malicious attacks aiming at
violating desired security properties.

4.6.1 Fault Containment and Error Containment

The GENESYS architecture supports the partitioning of a large system into
independent fault-containment regions (FCR). A fault-containment region op-
erates correctly regardless of any arbitrary logical or physical fault outside
the region [41]. Conversely a fault in a fault-containment region cannot di-
rectly cause hardware/software outside the region to fail. A fault in any one of
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these shared resources impacts all subsystems of the fault-containment region.
Therefore, the subsystems of a fault-containment region cannot be considered
to be independent of each other. The structuring rules of the GENESYS cross-
domain architectural style guide designers in such a way that components rep-
resent fault containment regions. Since a component communicates with its
environment solely by the exchange of messages, a fault can propagate to its
environment only by an erroneous message.

Components are physical entities (i.e., IP cores, chips, or devices) and are
aligned with the logical entities (i.e., the jobs). This alignment between physical
and logical entities is the key mechanism for the establishment of clear fault
containment regions. The achieveable fault containment coverage depends on
the integration level. For example, due to the physical proximity of IP cores on
a chip the fault containment coverage will be lower than the fault containment
coverage between devices at the system level.

In order to ensure fault containment, the GENESYS architectural style
foresees the realization of temporal and spatial partitioning [67]. Temporal
partitioning ensures that a component cannot affect the guaranteed availabil-
ity of communication resources (e.g., time of availability, duration or jitter of
availability) to other components. Spatial partitioning ensures that a third
component cannot affect the integrity of information exchanged between any
other two components

Error propagation can be avoided, if erroneous messages are detected at
the component boundaries by an independent fault containment region. The
term error containment region is used to describe this set of fault-containment
regions that are responsible for detection and/or masking of the error. An error-
detection region must be comprised of at least two independent FCRs, one FCR,
that is affected by the fault and another independent FCR that detects and
isolates the consequences of this fault. If the error detector would be the same
fault-containment unit, it could also be affected by the fault. Furthermore, each
safety-critical component must belong to an error-containment region (ECR).

The GENESYS architecture enables the implementation of efficient fault
and error containment mechanisms, e.g., a Triple Modular Redundancy (TMR)
structure enables error containment and error masking in a single step. In or-
der to minimize the complexity in realizing error containment, the GENESYS
architecture has to support transparent replication. When using transparent
replication, hardware redundancy is invisible to the application and the op-
erating system programmers. A prerequisite for transparent replication (e.g.,
using TMR) is that the core services of GENESYS must be deterministic.

4.6.2 Integrated Security

The GENESYS architecture comprises cross-domain security solutions, since
security is an important cross-domain concern in many embedded applications.
The cross-domain security mechanisms address different attributes of security,
such as authenticity, integrity, availability and confidentiality. Examples in the
different application domains demonstrating the need for security are: the pre-
vention of chip-tuning in the automotive industry or the prevention of terrorist
attacks by a soft bomb in the avionic domain. Furthermore, the connection
of the embedded systems to the Internet (Internet of Things) opens security
threats that must be addressed by a generic architecture.
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The GENESYS cross-domain architectural style includes the following well-
accepted strategies of the security research community:

e The security mechanisms are based on open design: The principle of open
design states that the security of a mechanism should not depend on the
secrecy of its design or implementation [68]. An example of a protocol
that follows this principle is the Secure Sockets Layer (SSL).

e Multiple layers of defense: This principle states that the attributes of
security should not depend on a single mechanism.

e Alignment of security with all modes of operation: The information that
is accessible by a specific architectural service determines the necessary
trust level of this service. An example is the alignment of the trust level
of the diagnosis services and the trust level of the security services. The
diagnostic services either need a minimum trustworthiness or it is neces-
sary to constrain the information that is made available to the diagnostic
services.

e Traceability of Origin: Components and/or software modules introduced
into the system should be from an authentic and authorized source and
means for the verification must be supported. This principle requires
the non-repudiability of the sending component. Thereby, spoofing due
to intentional faults and chance events can be prevented. This princi-
ple is essential for security, but it is also important for diagnosis and
robustness. A communication protocol that violates this principle is the
Controller Area Network (CAN). At the chip-level, every SoC has unique
tamper-proof credentials as a basis for the implementation of these secu-
rity mechanisms. An example would be the use of manufacturing toler-
ances to derive a key and One-Time Programmable (OTP) cells.

e Adequacy of security measures: Computer systems always exhibit a trade-
off between the potential damage of an attack and cost of the prevention
of attacks.

e Psychological acceptability: This principle states that security mecha-
nisms should be as simple as possible. The security services minimize the
additional user effort in order to reduce by-passing of the services by the
user [68].

4.6.3 State Awareness and Robustness

Shrinking geometries, lower power voltages and higher frequencies result in a
significant increase of transient failure rates. Furthermore, due to semiconduc-
tor process variations and manufacturing residuals the likelihood of internal
faults leading to transient failures is growing.

Since many transient faults corrupt the component state without an effect
on the component hardware, the robustness of a system can be increased sig-
nificantly if the component state is monitored by an external observer and reset
in case of an error. Thus, the reset of components after a transient fault is a
suitable solution to deal with increasing transient failure rates. In this context,
a state aware design is required for making explicit the state of components
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and providing support for the restoring of state (e.g., restoration from replicas
or environment). Currently prevalent techniques, such as check-pointing, are of
limited usefulness in real-time system that exhibit an invalidation of real-time
images through the progression of time.

We assume that each component regularly reaches a so-called reintegration
point, at which the component state is clearly defined and can be restored
(e.g., from replicas). The designer of an application has to ensure that every
component visits regularly such a reintegration point. The component state at
the reintegration point contains all application-specific information about the
past history of the component that is relevant for the future operation. We call
this state the ground state. The ground state should be a minimal state of a
component that is explicitly defined during system design. In case of a cyclic
ground state, we call the period of ground state the ground state cycle.

In order to simplify component restart, the ground state needs to be ex-
ternalized at the LIF. An example for an externalization is a periodic ground
state message. The ground state (e.g., stored at replicas) can be relayed back
to the component when performing a restart. We speak of a restart message to
denote the message that carries the externalized ground state back to the origi-
nal component. Also, an external diagnostic component can force a component
into a given ground state in order to perform application-specific component
recovery. Furthermore, forcing a component into a certain ground state facili-
tates testing and debugging. Such a message can also be received by a diagnosis
component in order to perform component diagnosis without the probe effect.

In order to handle transient faults in the communication infrastructure,
the principle of fate sharing is employed. No connection state is stored in the
communication infrastructure, e.g., in intermediate packet switching nodes.
The connection state is only stored in components, i.e., at the endpoint of the
networks. Fate sharing is also a fundamental design principle of the Internet
to achieve robustness and scalability.

4.6.4 Diagnosis

The design of the diagnostic services of the GENESYS architecture will differ-
entiate between active and passive diagnosis. In passive diagnosis, the detected
errors are only logged (e.g., for later maintenance actions). Passive diagnosis
cannot interfere with the application behavior and is thus not safety-critical
even if the monitored application is safety-critical. The multi-cast capability
of the transport service supports the independent observations of the behavior
of components. Special emphasis is placed on architecture-based mechanism
on the diagnosis of transient faults.

In active diagnostic information about detected errors is used to trigger
component restart and system reconfigurations (e.g., restart after a transient
fault). Active diagnostic mechanisms have the same criticality as the applica-
tion services that are diagnosed.

Another essential diagnostic principle is to ensure the traceability of system
behavior. This principle involves the establishment of a view of consistent
distributed system state despite independence of components.
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4.7 System Design and Evolution

In order to be applicable in all considered application domains, the GENESYS
architecture supports the coexistence of multiple design methodologies. The
design and evaluation is possible at different abstraction and integration levels.
Also, design decisions are traceable between abstraction levels and integration
levels.

4.7.1 Model-based Design

A model-based design strategy separates cleanly the logic of an application from
implementation decisions that may change over a system’s lifetime. Therefore,
GENESYS applications can be developed according to the model-based design
paradigm, e.g., based on the MDA by distinguishing between a Platform Inde-
pendent Model (PIM) and a Platform Specific Model (PSM). The PIM captures
all behavioural (i.e., value and timing) and non functional (e.g., dependability,
energy) aspects of an application without concern for the concrete execution
platform. The PSM is expressed in terms of the specification model of the
target platform. The PSM is expressed with respect to specific programming
models (e.g., supported by run-time libraries on the target platform).

4.7.2 Name Space Design

The name space design influences the system structure and must be aligned
with the general architectural style. Therefore, the logical and the physical
system structure are described by separate namespaces. Furthermore, the
GENESYS architecture is developed to support location transparency of com-
ponents. Location transparency requires that the identifier of an entity does
not necessarily reflect the physical location of the entity or the user. For this
reason, we perform a clear distinction between addressing and identification. In
particular, all communication primitives are identical regardless of the physical
position of the communication partners.

It is also possible to map the GENESYS name space to the name space of
legacy systems or to the IP name space by gateway components.

4.7.3 Modular Certification

Certification is a significant cost factor in the development of safety-critical sys-
tems, e.g., in the avionic domain. Consequently, there is a need for systems that
are designed to simplify the certification process. Modular certification sup-
ports this requirement by separating the certification of different subsystems.
Modular certification is of particular importance for mixed criticality systems.
In these systems, the overall system can be subdivided into subsystems with
different levels of criticality. Each subsystem can then be individually certi-
fied to the appropriate level of criticality. This modular certification allows to
reduce cost and to focus assurance effort on the most critical parts of a system.

A fundamental requirement for modular certification is the provision of
effective fault containment mechanisms. Therefore, the GENESYS architecture
introduces well-defined fault containment regions. In the absence of effective
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fault containment mechanisms, all functions would have to be assured and
certified to the highest criticality level of a subsystem in the computer system.

4.7.4 Legacy Integration and Technology Obsolescence

Legacy systems can represent major investments and a complete redevelopment
of these systems is often unacceptable due to cost and time constraints. The
effortless integration of existing legacy systems into a new application environ-
ment is thus of utmost concern. Many large systems consist of a combination
of existing legacy subsystems and newly developed subsystems. The compo-
nent structure of GENESYS is designed to support the integration of legacy
systems. Firstly, a local interface of a component can be used to implement the
interface to the legacy world (legacy-specific gateway component). Secondly,
using optional services legacy protocols can be implemented transparently to
the legacy component.

In addition to changes to the application, many long-lived systems must
maintain their functionality despite a technology change of the hardware base.
In order to handle this technology obsolescence challenge, a GENESYS design
(i.e., a PIM) can be translated into different implementation technologies. The
component-based style of GENESYS makes it possible to modify the technology
of a component implementation without a redesign of the component PIM and
its environment. However, the introduction of a new hardware base requires a
new tool set to translate the PIM onto the new target hardware.

4.7.5 Evolvability

Every successful system changes its context and must adapt to this changing
context. Over time, new requirements emerge and new implementation tech-
nologies become available. Open systems must adapt to dynamically changing
system configurations and environments. Therefore, the GENESYS architec-
ture supports the modification, extension and portability of application ser-
vices. It is possible to perform dynamic run-time introduction, activation/de-
activation and removal of services as well as dynamic binding of applications to
services. Service discovery mechanisms are available for service announcement,
registration and discovery. These mechanisms are identical for both local and
remote services.

As a basis to identify dynamically introduced services in open systems,
the GENESYS methodology supports ontology-based specification of service
semantics. Ontologies can be dynamically modified, e.g., by constructing a
database of semantics of interfaces that can be queried online. As a basis for
tool-support, the service semantics will be expressed in a machine-readable
format in addition to concise natural language descriptions. The service de-
scriptions will provide the knowledge what is required and provided, where
and when the service is available, what quality level is guaranteed and what
access rights are granted over the service. In addition, the description includes
information about the service interaction between a service provider, a service
requestor, and service registry. Thereby, it is defined how to access and interact
with the service.

For several domains (e.g., the mobile domain), the portability of appli-
cations is also of importance. Mechanisms for the hand-over of services are
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required to enable the portability of applications between devices that support
the needed functionality. Also, automatic means to adapt applications to de-
vice platforms with different service interfaces are required. For example, a
mobile phone is connected to a base station and reconfigured to use Internet
in case a WLAN access point becomes accessible.

A further principle is the support for the integration of functionality de-
veloped by the user community. The architecture requires means to develop
functionality for new use cases in a device independent manner (without the
need to standardize interfaces). Furthermore, security implications of malicious
end-users must be considered and suitable abstraction levels or view points are
needed for the end-users.



Five

Reference Architecture Template

HE REFERENCE ARCHITECTURE TEMPLATE is a template for building a
T concrete instantiation of the GENESYS architecture. The reference ar-
chitecture template provides specifications for a comprehensive set of platform
services. These platform services can be partitioned into the following three
service categories:

1. the core services, which are mandatory and are thus part of any instan-
tiation of the GENESYS architecture. The core services are minimal in
the sense that only those services that are absolutely indispensable to
build higher-level services or to maintain the desired properties of the
architecture are included in the set of core services. In GENESYS the
core services must be amenable to certification. For this reason they
must be deterministic and simple. In many cases, the implementation
of a powerful dynamic system service is partitioned into a small basic
core service and a more intricate optional service, since in a static safety-
critical system only the basic core service maybe needed and is therefore
the subject of certification. Consider, for example a dynamic message
scheduler, which must be part of any dynamic resource management.
Such a dynamic scheduler is not included in the core services. However
a much simpler checker that checks the properties of a schedule and as-
certains that the constraints of a static safety critical schedule have not
been violated by the dynamic scheduler is part of the core services.

2. the optional services, which build on these core services. This is an open
set of services that can be extended as needed. All or only a subset of
these optional services can be selected for any particular instantiation of
the architecture. Most of the optional services are implemented in self-
contained system components that interact with the generic middleware
(GEM) of the application components by the exchange of messages. In
case an optional service is mature and stable in can be implemented in the
form of a hardware component, which leads to a significant improvement
in the energy efficiency. Examples for optional services are a security
service, an external memory manager or a Internet gateway service.

3. the domain specific services which are formed by a domain-specific subset
of the optional services, augmented by special services that are character-
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istic for the domain under consideration. For example, in the automotive
domain a CAN overlay network will be a domain-specific service, since
most automotive applications use the CAN protocol.

The selection and implementation of the platform services is part of the
instantiation of the template used to arrive at a concrete architecture (e.g., a
particular chip, a network platform running a distributed application).

5.1 Core Services

The core services of GENESYS are implemented by a trusted subsystem at
each integration level. Of special importance is the lowest integration level,
the chip level, where components, i.e. self-contained IP-cores, are formed on
an MPSoC. At the higher levels the services provided by a GENESYS MPSoC
(e.g., security services) can be used to implement the services at this level.

At the chip level, a GENESYS MPSoC consists of one or more compo-
nents (self-contained IP cores) and a trusted subsystem. A chip-level com-
ponent, consists of a host and a communication interface that connects the
host to the Network on Chip (NoC). The host is formed be the host-hardware
and the allocated software, the job. A job, i.e, the core image for the host-
hardware, may contain a local operating system, but must contain the relevant
GENESYS middleware (GEM) and the application software. The services of
the GEM of a component can be accessed from outside of the component via the
message-based TII (Technology Independent Interface) and from the inside of
a component via commands that are part of the API (application programmer
interface).

The trusted subsystem consists of the Trusted Resource Manger (TRM),
the Network on Chip (NoC) and the communication interfaces to the com-
ponents. The communication interfaces must be parameterized to establish
knowledge in the interface about the permitted temporal behavior of the host.
The Trusted Resource Manager (TRM) performs this parameterization. A host
cannot modify the parameters of its communication interface, such as the in-
stants when a message is sent and how long a message transmission may last.
It is impossible for a faulty host (caused by a hardware or software fault within
a host) to modify the communication schedule set by the TRM.

At the chip-level, the core services of GENESYS are implemented by the
trusted subsystem of the GENESYS MPSoC. Any fault (hardware fault or
design fault) in this trusted subsystem has the potential to cause a failure of
the entire chip.

5.1.1 Basic Configuration Services

The basic configuration services are provided to load the jobs to the available
hardware units of the MPSoC, thus forming the components (IP-cores) of the
MPSoC. In case of a static configuration, the allocation of jobs to the hard-
ware units maybe outside the scope of architectural considerations-the jobs are
already permanently assigned to the hardware units (e.g., in case of an ASIC
implementation of a component, where the software is part of the hardware).
The basic configuration services are also needed if a dynamic reconfiguration
of an MPSoC is performed by reassigning a job to a different hardware unit,
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because the original hardware unit has failed. The basic configuration ser-
vice at the chip level takes into consideration the unique hardware properties
of an MPSoC. In particular, the following assumptions are made about the
GENESYS MPSoC:

e The GENESYS MPSoC is internally structured into independent fault-
containment regions, where the trusted subsystem forms one fault con-
tainment region and each component (IP-core) forms its own fault con-
tainment region. All temporal message errors of faulty IP-cores are con-
tained by the communication system.

e Fault containment regions within a chip communicate with each other
exclusively by unencrypted messages. It is assumed that the physical
construction of the MPSoC precludes that an intruder can eavesdrop the
internal communication within the MPSoC.

e All messages that leave (or enter) the chip can be encrypted, if so de-
sired. This encryption/decryption is performed by a special optional
component (IP-core), the security component. If, for example, a secure
boot is desired then a security component must be present in the MPSoC
to encrypt/decrypt the boot messages.

e From the perspective of safety-criticality, a whole GENESYS MPSoC
may fail with a probability of 10® FIT. Safety-critical functions which
must achieve a higher reliability (e.g., 1 FIT, i.e, 10° hours of operation)
must me implemented redundantly by deploying multiple MPSoCs, such
that the failure of any single MPSoC can be tolerated. This assump-
tion has the consequence that special fault-tolerant services within an
MPSoC—e.g., a fault-tolerant clock synchronization, are not meaningful,
since the total MPSoC may fail without disrupting the system service.

Identification Service

The identification service provides a unique identifier of the hardware under
consideration (e.g., chip at L1, device at L2). This identification is needed

e to inform the boot service about the type of available hardware and the
attributes of the unit under consideration

e to distinguish individual manufactured physical units from each other

The implementation of the hardware identification within the MPSoC must
be tamper resistant, i.e., it should be impossible to modify the unique chip
identification without physically destroying in the chip.

Basic Boot Service

A basic boot service is the primitive configuration service that assigns a job
to a hardware unit of the MPSoC, thus creating a component or IP-core of
the MPSoC. Every hardware unit must have a priori established boot access
ports for the boot messages (i.e., access ports that are physically associated
with the hardware) as part of their TII interface. The boot protocol links the
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development system, where the job images are generated with the physical run-
time systems. By associating the logical names of jobs with the physical names
of hardware units, this service establishes a logical name-space such that the
components of the platform can be uniquely identified and addressed on the
basis of their role in the given application.

The basic boot service can be extended to a Secure Boot service by an
optional security service (see Section 5.2.3).

Inter-Component Channel Configurator

In a first step, the Inter-Component Channel Configurator, which is part of
the Trusted-Resource Manager (TRM) of the MPSoC, configures the chip-local
inter-component communication system by establishing, naming, connecting,
and disconnecting the ports and communication channels of the IP-cores of the
MPSoC according to a schedule that is provided to the TRM by a scheduler
(see Section 7). The TRM checks the validity of the supplied time-triggered
schedule by evaluating a set of safety assertions before setting the protected
communication parameters of the LIFs (Linking Interfaces) of the involved
components. These protected communication parameters designate the cycle
and phase of the time-triggered message transmissions, the maximum duration
of a transmission, the type of message and the address of the receivers/sender.
At any instant, only a single message is sent/received at a port. If concurrent
sending or receiving of messages is desired, multiple ports must be configured.
The allocation and sizing of the message buffers is performed in the memory
space of the component by a cooperation between the GEM and the TRM.

Communication links to the outside of the MPSoC are provided by gateway
components. A gateway component supports two interfaces, an inner interface
to the Network-on-Chip and an outer interface to the chip environment. Viewed
from the chip level, the inner interface is a chip-level LIF, while the outer
interface is an (unspecified) local interface of the gateway component. Viewed
from the device level, this outer interface is a LIF at the device level, while
the inner interface of the gateway component is seen as an (unspecified) local
interface. The gateway components connects the respective interfaces, performs
a name translation and resolves further property mismatches that may exist
between the chip-level LIF (inner interface) and the device-level LIF (outer
interface).

5.1.2 Basic Execution Control Services

The basic execution control services are used to control the execution of a
component. Execution control is realized by sending an appropriate message
to the respective TII port of the component. It is assumed that in every
component there is a local resource manager (LRM) that accepts and executes
these messages. The LRM is part of the GEM (Generic Middleware) of a
component.

The basic execution control consists of the following three commands:

e ExecuteRequests is a message to the respective T1I port of the component
requesting a component to start its execution at the next restart instant
with the restart state that is contained in this message. In case this
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restart state is empty, the component will restart with the static restart-
data that are contained in its core image.

e TerminateRequest is a message to the respective TII port of the compo-
nent requesting a component to terminate its execution. The execution
can be restarted with an Execute Request.

e ResetRequest is a message that is interpreted directly by the compo-
nent hardware without any control by the GEM. It resets the component
hardware and starts the execution of the GEM until the point where an
ExecuteRequest is awaited.

These three commands must be part of every component implementation. De-
pending on the sophistication of the available component hardware and the
LRM inside the GEM, more detailed execution control commands may be sup-
ported by a given instantiation. These commands can relate to power man-
agement (e.g., power gating, voltage level), time-management, scheduling and
other execution control issues.

5.1.3 Basic Time Services

At the chip level the communication infrastructure is deterministic. A system
behaves deterministically if and only if, given a full set of initial conditions (the
initial state) at the initial instant, and a sequence of future timed inputs, the
outputs at any future instant t are entailed [26]. This determinism is achieved
by providing a time-triggered NoC at the chip-level of GENESYS. Such a time-
triggered communication service requires a common notion of time, a global
time, among all components. This global time is established by the basic time
service.

We can distinguish between two different representations of time, the linear
time representation and the cyclic time representation. The linear time rep-
resentation follows the arrow of time, starting at a defined starting point, the
epoch, and counting the number of seconds up to instant now and beyond.

In the cyclic model of time, the continuum of time is portioned into an
infinite set of cycles. A cycle is a period of physical time between the repetitions
of regular (equidistant) events. A cycle is specified by the duration of its period
and the position of its start, the cycle start phase relative to the global time.
Since many embedded systems exhibit a cyclic behavior (e.g., control systems,
signal processing systems, multimedia systems) the cyclic model of time is
well suited to designate progress in these systems. The cyclic model of time
is also most appropriate for the description of the behavior of time-triggered
systems. In a time-triggered system a cycle is associated with every time-
triggered process. Whenever the cycle-start instant occurs, a control-signal is
generated to start the time-triggered process.

GENESYS restricts the duration of cycles such that all cycles are in a har-
monic relationship to each other. Every cycle must be a power-of-two product
of a smallest cycle, with the additional restriction that the duration of one of the
cycles must be exactly the duration of the physical second. These restrictions
are introduced in order to simplify the interleaving of cycles, the generation
of cyclic schedules and the synchronization of the activity of a system with an
external time reference.
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Specification of a period of 1/24 (i.e 1/16) second with a phase
(i.e. the offset from the periodic 1/16 second instant) of
1/26+1/2'1 = 16113 pseconds.

Figure 5.1: Time Format of the TTA

The time format of GENESYS supports these harmonic cycles. It takes
the TAI second as its starting point (which is also in agreement with the IEEE
1588 time standard). The full second can readily be synchronized with an
external time reference, such as GPS time. The GENESYS time format is a
binary format that counts full second in two arithmetic and subdivides the
second in fractions of two arithmetic, as shown in Fig. 5.1. This time format
is extensible in both directions, the instant when the time wraps around (left
limit in Fig. 5.1) and the granularity of the time measurement (right limit of
Fig. 5.1). This time format has been standardized by the OMG [57].

In this time format, the duration of a GENESYS cycle can be specified by
pointing to the position of the bit in the binary time format (Fig. 5.1) that
denotes the period of the cycle. We call this bit the period bit. The bits to the
right of the period bit, the phase bits, specify the phase of a cycle.

Common Time Service

The common time base allows the temporal coordination of distributed activi-
ties (e.g., synchronized messages), as well as to interrelate timestamps assigned
at different components.

The GENESYS common time service provides to each component a counter
value that is globally synchronized within the given integration level. If the
counter value is read by a component at a particular point in time, it is guar-
anteed that this value can only differ by one tick from the value that is read
at any other correct component at the same point in time. This property is
also known as the reasonableness of the common time, which states that the
precision of the local clocks at the components is lower than the granularity of
the common time base. Optionally the common time base can also be synchro-
nized with an external time source (e.g., GPS or common time base of another
integration level). In this case, the accuracy denotes the maximum deviation
of any local clock of the integration level to the external reference time.

In order to enable the temporal coordination of distributed activities within
the system services are provided that can trigger application activities at spec-
ified periodic instances.

Timer Interrupt Service

In order to enable the temporal coordination of distributed activities within the
system, services are provided that can trigger application activities at specified
periodic instances.
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The platform provides a capability to the components to request an inter-
rupt at a selected future instant of the global time.

5.1.4 Basic Communication Services

The GENESYS architecture specifies three services for the communication
among components periodic message exchange, sporadic message exchange and
real-time streaming communication.

Periodic Exchange of Messages

The periodic message exchange service, also called the time-triggered message
service sends a message at its period and phase, the start instant, from one
sending component to on ore more receiving components, i.e. this service
provides multicasting communication. The data that is disseminated with this
service is state information.

Messages are associated with ports. During establishment of a port by the
TRM, the configuration parameters are assigned to a port, such as the period
and phase of a time-triggered message, the size of the message and the set of
receivers of the message.

Before sending a message, the sender updates the state variable associated
with the respective port by overwriting the state variable’s previous content.
The multicasting of the message is performed autonomously by the communi-
cation infrastructure at the previously configured period and phase (i.e., with-
out any start transmission trigger from the service user). The contents of the
state-variable are not consumed on reading by the communication system.

At the receiver side the communication infrastructure overwrites the state
variable associated with the receiving port with the data contained in the mes-
sage. This mechanism is denoted as update-in-place. For reading a message,
the service user retrieves the actual value of the state variable at the specific
port of a receiver (non-consuming read).

Since the transmission of messages is triggered by the progression of the
common time, this service relies on the availability of the common time service.

Sporadic Exchange of Messages

The sporadic message exchange service, also called event-triggered message
services, supports the exchange of event-information at arbitrary instants only
constrained by a minimum inter-arrival time of events.

The sending component places the message in the specified event-triggered
output port. An event-triggered output port includes an outgoing message
queue that resides in the memory space of the sender. As soon as the com-
munication is ready to accept the next message, it will fetch the message from
this queue (consumable read) and transport the message to the receivers that
are associated with the sending port. At the chip level, the message transport
is realized via a time-triggered channel. As soon as the message arrives at the
receiver(s), it will be placed in the input queue(s) associated with the receiver’s
ports. The size of the message queues — outgoing message queues at sending
components as well as incoming message queues at receiving components - is
determined by the respective component itself. If the message queue is already
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full and the component tries to place a new message in the queue, an error is
reported via the TII.

Message reception is realized by retrieving a message from the incoming
message queue (consuming read operation). For handling empty incoming mes-
sage queues, the sporadic message exchange service supports two types of read
operations: If non-blocking read is chosen, the read call returns instantly and
signals the caller that no message has been retrieved. If blocking read is chosen,
the read operation waits until a new message arrives. During normal operation
this message service supports an exactly once semantics, i.e., every message is
delivered exactly once.

Primitive Real-Time Streaming

The primitive real-time streaming service can be utilized for the transmission
of a sequence of variable-size data elements (e.g., frames in a video stream)
with corresponding temporal properties (e.g., average data rate with bursts).
Similar to the sporadic message exchange service, this service uses also queues
at the sender and receiver side. Queues compensate for irregular data rates
that are typical for streaming applications (e.g., MPEG4). For retrieving a
data element out of the queue, a blocking and a non-blocking mode of operation
is supported.

The primitive streaming service does not exercise any flow-control from the
receiver to the sender.

5.2 Optional Services

An optional service encapsulates a well-defined supportive functionality into a
self-contained system component that interacts with the GEM (generic mid-
dleware) of the application components by the exchange of messages. Alter-
natively, an optional service can be implemented directly in the GEM of an
application component. The optional services are useful across many applica-
tion domains and may be needed on many different occasions. They simplify
the system development process by providing ready building blocks that can
be reused on the basis of their Linking Interface Message Specification without
the need to know the internals of the component implementation.

Some of the optional services can be become central services for a particular
application domain (i.e., the services become mandatory in this domain). The
set of optional services is an open set that can be extended and modified as
new services are identified and conceptualized into a self-contained entity.

The partitioning of the software on a GENESYS MPSoC into a set of self-
contained system and application components that interact with each other
solely by the exchange of messages takes advantage of the enormous and cheap
bandwidth of the deterministic NoC that connects the components. It is thus
possible to partition the software cleanly according to functional and fault-
containment criteria without causing an undue performance penalty because
of the distributed nature of the implementation.

As any other component, a system component forms its own fault-containment
region that interacts with the application components or other system compo-
nents exclusively by the exchange of messages. If a transient fault hits a system
component without internal state, the component can be reset immediately. If
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the component contains internal state, then this internal state must be repaired
before the component can continue to provide its services.

It is one of the major contributions of GENESYS that a large monolithic
operating system for an MPSoC is partitioned into the core services and a
set of optional system components, which can be implemented and tested in
isolation and can be distributed. If some of these optional services become
stable, the respective component can be implemented as an ASIC, thus gaining
very significant power, chip area and performance advantages.

5.2.1 Diagnostic Services

The GENESYS architecture provides a number of services that relate to di-
agnostics and robustness. Although these services are optional, they should
normally be included in any instantiation of the architecture. We assume that
the diagnostic services are implemented in a self-contained diagnostic compo-
nent, which forms its own fault-containment region. The multicast message
transport service, described in Section 5.1.4, is used for the support of the non-
intrusive observation of a component’s behaviour by the diagnostic component.

In passive diagnostics, where the diagnostic components monitors the oper-
ation of other components without interfering in the operation of the observed
components, the diagnostic component will analyze and record the observed
anomalies’ and store them in order to support the maintenance engineer. In
such a system, a failure of the diagnostic component will discontinue the diag-
nostics services, but will have no effect on the operation of the other components
that provide the user services.

In active diagnostics, where the diagnostic component can bring about a
change in the operation and possible configuration of the observed system, a
failure of the diagnostic component can be critical because it can bring down
the whole system. The dependability of an active diagnostic service has thus
a critical influence of the total system dependability and must be designed an
analyzed with the appropriate care.

State Externalization

For various reasons, such as state validity checking, state exchange, logging
purposes, global state snapshot, and power gating for energy saving, compo-
nents should periodically externalize their internal state at predefined cyclic
recovery instants. State externalization is very important for the fast recovery
of platforms/components affected by transient faults. The externalised infor-
mation can be used to 1) allow error detection and/or 2) enable checkpointing
and retry mechanisms.

In a time-triggered system, the state externalization can be synchronized
with the processing cycle within the component as shown in Figure 5.2. After
the component has entered its ground state at its ground state instant (at (1)
in Fig. 5.2), i.e., an instant where the internal tasks of the last component cycle
have been completed and all data that is relevant for the next cycle is stored in
a ground-state data structure, the ground state can be sent in a ground-state
message to the diagnostic component (at (2) in Fig. 5.2).
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Ground State

Receive Restart Send Ground
State Message State Message
Time

Figure 5.2: A job’s state cycle. 1) The job is in a ground state and the ex-
ternalization service acquires the image of the state. 2) A message with the
state is sent. 3) A message with restart state is possibly received and the job
restores its state during the interval (3, 1).

Membership Service

The membership service provides a coherent global view of the operational state
of components. At the chip and device level, the membership service is pro-
vided by the diagnostic components on the basis of the periodic ground state
messages that are received from the components. The diagnostic component
sends periodically a membership message to all components. In this member-
ship message, the operational state of each component at its last membership
instant (i.e., the instant when the ground-state message from this component
has been sent) is contained.

At the system level, the membership service may be provided by a fault-
tolerant membership protocol that is part of the inter-device communication
protocol. For example, the TTP protocol provides such a fault-tolerant mem-
bership service.

Analysis of Diagnostic Information

The diagnostic component checks the incoming ground state messages to find
anomalies and records these anomalies in a local database. Additionally, error
messages that are received from the components are examined. The applica-
tion component implementations must ensure that all errors, even if they are
masked by redundancy, are faithfully reported to the diagnostic component. An
application specific diagnostic model analyzes all this data base information to
assist the maintenance engineer in finding faulty components. Particular em-
phasis is placed to find out whether a transient, an intermittent or a permanent
failure is present in a component, since the maintenance strategy is different
for each one of these faults.

Component Restart Service

In systems where active diagnosis is allowed, the diagnostic component will
reset and restart a failed component by sending a restart message (at (3) in
Fig. 5.2) to the TII interface of a failed component, with an internal state that



5.2. OPTIONAL SERVICES 71

is expected to be acceptable at the next future restart instant in order to force
the component into a restart. The component restart service is also used to
restart and perform state restoration in case of power gating.

5.2.2 External Memory Management Service

In many GENESYS instantiations there may be the need to provide, in addition
to the internal scratch-pad memory of a component a (large) external memory.
While the organization and attributes of the component-internal memory is
a local issue of the component and of no relevance at the architecture level,
the external memory that is provided in the form of a system component and
accessed by many application components must be properly managed from the
point of view inter-component data integrity. Access to the external memory
is controlled by this memory component which acts as an intelligent memory
controller that communicates with the application components exclusively by
the exchange of messages.

Access Control of Memory Partitions

This services partitions the external memory into memory regions with different
access attributes and manages the access to these memory regions such that
the global integrity constraints of an application are maintained.

If an external memory region is solely an extension of the internal memory
of a component and is accessed sequentially by a single component only, then
the access control to this memory region is clear-cut.

In case of concurrent access of a memory region by different components,
the memory manager must enforce a locking schema such that the integrity of
the shared data is not compromised. If the external memory is organized as a
transactional memory, then memory transactions can access the shared data in
parallel. However, a permanent change of the shared data is only performed if
all concurrent transaction commit. If one of the concurrent transactions aborts,
all other concurrent transactions must abort as well and changes to the shared
data are lost and never made visible to any other transactions.

In a multi-criticality system, where applications of different criticality co-
operate, it must be ensured that only a process that has the proper safety
classification is allowed to update the safety-critical data. Processes of lower
criticality may read the data by a non-blocking protocol, but may not modify
the data. From a security point of view, the access privileges to data are de-
termined by the given security policy. For example, a confidential process may
read data from a lower security process but may not write data to this process.

Stable Storage

In many applications stable storage (non-volatile memory) is required such that
persistent data remains intact even if the system goes through power/down-
power/up cycles. If this stable storage is provided by the hardware inside
a component, it is not visible at the architectural level. However, hardware-
technological considerations suggest that it is more economical to provide only a
single stable storage component on an MPSoC, e.g., an IP-core that has control
over a FLASH memory. This FLASH-memory controller has to communicate
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with the other components of the chip by the exchange of messages and must
manage the access to the stable storage.

Since it is more difficult to recover after a transient fault if the affected
component has an internal state than if the component is without an internal
state it is recommended that components store their internal state redundantly
in the stable-storage component, such that after the reset of a component the
most recent internal state can be recovered from the stable storage component.

Secure Storage

Secure Storage keeps data in an encrypted form and ensures that only au-
thorized processes, services and applications get access to the data. Secure
storage can be implemented as pure software but hardware protection may be
required to get a high enough level of security. Non-volatile memory is also
often required. The security services described in the next Section will be used
to implement secure storage.

5.2.3 Security Services

The GENESYS architecture provides by design mechanisms for the security
related isolation of a job. The physical separation of the IP cores together with
the one-to-one mapping between IP cores and jobs ensure data separation of
different jobs. The restriction of the inter-component communication exclu-
sively to message passing ensures by design that no hidden channels among
components of different confidentiality can exist that bypass the message pass-
ing mechanisms.

A basic identification service — the provision of a tamper-resistant unique
identification of any GENESYS MPSoC is part of the core services. Using this
core service, a dedicated optional security component can be provided that
makes available enhanced security services, such as secure key management,
encryption and decryption of all messages that leave or enter the MPSoC and
a secure boot service. Depending on the application requirements, symmetric
or asymmetric ciphers can be supported.

Security Key Management

Secure Key Management is an optional service for GENESYS integration levels
L1, L2 and L3. The objective of this service is to establish a chain of trust. Keys
are required for many cryptographic functions. In most cases the security of the
system depends on the secrecy of the employed keys. Therefore, the keys should
not be stored in plain text in the memory or on a disc, but have to be sealed in a
cryptographic envelope. To operate on such an envelope a non-encrypted key is
required, which is usually called the root key. The root key serves as the starting
point for the chain of trust. The security management service embeds the root
key in a tamper resistant memory which guarantees that no other service or
job can access it in plain text. Whenever a job or any optional service wants
to access a key contained in an envelope (protected by the root key) it has to
issue a decryption request to the Secure Key Management Services for that
specific key. If the request is granted, the Security Key Management Service



5.2. OPTIONAL SERVICES 73

will decrypt the requested key in a protected region that can only be accessed
by the Security Key Management Service itself. In the next step it delivers the
decrypted key securely to the requester. The granting of decryption requests
depends on the employed security policies (e.g., one possibility would be that
only jobs authenticated by the Secure Boot service may have access).

Encryption and Decryption

This security service provides the basic algorithms for the encryption and de-
cryption of messages given that the trusted keys are available. These algorithms
may be implemented in the security component with substantial hardware sup-
port, in order to take advantage of the performance gain and energy efficiency
of a hardware implementation. Any application component can send an outgo-
ing unencrypted message to the security component. The security component
will encrypt the message using the provided keys and pass the message to the
gateway component that sends the message to the component environment.
In the other direction an encrypted incoming message will be sent form the
gateway component to the security component that decrypts the messages and
passes it on the intended receiver.

Random Number Generation

In addition to the ciphers for encryption and decryption the security component
contains a random number generator. A true random number generator is
a device that generates random numbers from a physical process. A major
requirement is that this process is completely unpredictable. Thus, such devices
can be based based on quantum phenomena or chaos theory.

Random numbers are required in both symmetric and asymmetric cryptog-
raphy as a way of generating keys. A random number generator which does not
have adequate randomness may compromise the security, since the integrity of
the communication between any two parties is conditional on the continued
secrecy of these keys.

The security mechanisms can be used to build a secure execution environ-
ment. A secure execution environment is a hardware protected execution envi-
ronment for critical functions that offers protection against SW based attacks
and also to some extent against hardware tampering. It enforces properties
including system integrity, device identity and control over built-in R&D fea-
tures. Lower level security services are used to provide the following higher
level services.

Service Authentication

Service Authentication is an optional service for GENESYS integration levels
L1, L2 and L3. It is performed when there is a request to register a service to
the service manager (see service registration/deregistration).

Secure Boot Service

The secure boot service ensures that the binary image of the job itself that
is downloaded from a trusted server has not been modified by an intruder. It
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performs an authentication and integrity check on the job and it admits the
job’s execution only if the checks succeed.

Service Access Control

Service Access Control is an optional service for GENESYS integration levels
L1, L2 and L3. It involves granting and controlling access rights to use a
particular service.

5.2.4 Resource Management Services

In addition to the basic configuration services described in Section 5.1.1 more
advanced dynamic resource management services can be provided by dedicated
resource management components. In GENESYS integrated resource manage-
ment takes a holistic view on the management of the diverse resources, such
as:

e Power management: which is concerned with the instantaneous power
consumption of a unit

e FEnergy management: which is concerned with the most efficient use of
energy to expand the life-time of battery operated devices

e Time management: which is concerned with the allocation of comput-
ing resources to time-critical tasks such that deadlines are not missed.
Scheduling is an important aspect of time management.

e Memory management: which is concerned with the optimal allocation of
memory

o Quality of service (QoS) management: which is taking a comprehensive
view on the services of a system in order to provide utmost utility.

e Quality of Ezperience (QoE) management: which is taking account of the
subjective expectations of the end user in order to optimize the personal
experience of using the system.

The resource management services of GENESYS cover resource management
at the chip level, at the device level and at the system level.

Local Resource Management

Each component (IP-core) at the chip level must have its own local resource
management (LRM) that is part of the generic middleware (GEM) of the IP-
core. Each LRM encapsulates the local policies and mechanisms used to ini-
tiate, monitor, and control computations on the corresponding IP core. The
capabilities of this LRM depend on the hardware characteristics of the re-
spective IP-core and the functionality of the chip-local operating system. For
example, if the IP-core hardware supports power gating and dynamic voltage
and frequency scaling, then these capabilities must be controlled by the LRM
and offered to the next level of resource management, the chip-global resource
manager (GRM) by messages across the TII (technology independent inter-
face).
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Global Resource Management

The Global Resource Management (GRM) consists of two parts, the Trusted
resource manager (TRM) and the Un-trusted Resource Manager (URM). The
functionality of the TRM, which is part of the core services, has been pre-
sented in Section 5.1.1. Only the TRM that is part of the trusted subsystem
may directly interact with the LRM via the TII interface. This restriction is in-
troduced in order to avoid that a faulty component sends an incorrect message
to the TII of a healthy component and thus causes a fault-propagation. It is
the responsibility of the TRM to check messages that are intended for the TTI
of another component with respect to provided safety assertions. The resource
management proper is done by the URM which is a normal component, such
as any other component in the system. The URM will include the resource
management software, such as a dynamic message scheduler and a dynamic
energy scheduler.

Device Level Resource Management

At the device level (level L2) where a number of devices are integrated, a
dedicated system component, the device-level resource manager (DRM) takes
a global resource management view of all chips that form the device, develops
a resource management strategy and interacts with the URM on each chip to
instantiate this strategy. The DRM is an un-trusted component, just like any
other system components. The resource management decisions of the DRM
are checked by the local TRMs to ensure that none of its decision is violating
a safety assertion.

Configuration and Reconfiguration

In a dynamic system, it is the responsibility of the DRM to detect and configure
a new component that has been introduced into the platform at run time. In
a second step the application services must be reconfigured to take advantage
of the services that are offered by this new component. Furthermore, the
presence of this new component must be advertised to the other components
of the platform.

From the point of dependability, reconfiguration is a very sensitive topic.
Any fault in a component that has the authority to reconfigure a system can
cause a correct configuration to be reconfigured to a faulty configuration and
thus lead to a total system failure. For this reason, the DRM of a safety-
critical system may be triplicated to mask the failure of any one of the three
DRMs that form the triade. Each URM is then receiving three messages and
votes on these three messages in order to mask the failures of any faulty DRM.
In GENESYS we do assume that the failure rate of a chip is larger than the
failure rate of a safety-critical service in a safety-critical system. It follows that
a failure of a URM, which is hosted on a chip, is non-critical, since it will be
masked by the replicated chips that must be available in any case to achieve
the required overall dependability of the safety-critical service.
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5.2.5 Gateway Services

Viewed from the chip-level, a gateway component is a component that has an
inner interface, the LIF to the NoC of the chip and a local outer interface to
the environment of chip. Viewed from the device level, the local outer interface
becomes the device level LIF and the inner interface to the NoC becomes the
local interface.

The gateway component establishes a link between two worlds-the inner
world of the MPSoC and the outer world of the environment of the MPSoC.
Since the information representations and the protocols in the environment of
the chip, i.e., the outer world, are wide-ranging the set of gateway components
is open-ended.

In general a gateway component has to resolve all property mismatches
that exist between the internal world of the MPSoC and the environment. In
particular a gateway component has to provide one or more of the following
services:

e Provision of the physical interface (mechanical and electrical) to the out-
side.

e Protocol translation: the protocol at the outer interface has to conform
to the give LIF standards of the environment, while the protocol at the
inner interface is determined by the chip-level LIF

e Address mapping: The address space of the chip-level is constrained by
the number of IP cores on the chip, the name space of the environment,
e.g., the Internet is wide open. The gateway component has to map
internal address to outer addresses.

o Name translation: the name-spaces within the MPSoC and the outside
world are in many cases incoherent. The gateway component must resolve
this incoherency.

o External clock synchronization: The outer interface of a gateway compo-
nent may have access to an external time reference (e.g., GPS time) that
must be brought into the GENESYS MPSoC.

o Firewall erection: The gateway component must protect the inner of the
MPSoC from malicious outside intruders.

In the following we will describe some few typical gateway components realizing
that this is an unbounded open set

Wireless connection

In the open systems of level 3, where mobile devices interact with base sta-
tions and with each other by the exchange of wireless messages, the gateway
component must contain the physical sender and receiver for these messages.
It must control the parameters such that a tolerable error-rate is maintained
while minimizing the energy consumption. The detection of new partners that
dynamically enter the scenario is in the responsibility of this gateway compo-
nent.
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Internet Connection

A standard gateway component can be provided to establish a link to the
Internet. This gateway component may use the services of the wireless con-
nection discussed above to physically gain access to a Internet base station.
The internet connection component will perform address translation, proto-
col translation and will erect a firewall such that malicious intruders are not
able to enter the MPSoC. Since the unidirectional message transmission that is
part of the GENESYS core services is fully compatible with the design philos-
ophy of the Internet, the fate-sharing principle, the integration of a GENESYS
subsystem into the Internet is straight forward.

Legacy Integration

The integration of legacy applications into the GENESYS architecture is per-
formed by gateway components. The behaviour at the outer interface of a
gateway component corresponds fully with the architectural style of the legacy
system, while the behaviour at the inner interface corresponds with the ar-
chitectural style of GENESYS. The property mismatches between these two
interfaces are resolved by this legacy specific gateway component.

Fault tolerant Clock Synchronization

In a safety-relevant system, a high availability of the global time base must
be assured by a distributed fault-tolerant clock synchronization. This synchro-
nization service must not depend on the correct functioning of any particular
clock.

Synchronization theory [42] requires that at least four clocks are present
in order to mask a Byzantine failure of any one clock. This implies that in
a system that provides fault -tolerant clock synchronization at least four MP-
SoC, each one with its independent oscillator must be present and these four
MPSoCs must be connected by redundant communication links in order to
tolerate the loss of a communication link. The distributed fault tolerant clock
synchronization algorithm will be executed in each one of these four gateway
nodes in order to arrive at a fault-tolerant global time base.

Inside an MPSoC fault-tolerant clock synchronization is not an issue, since
the probability that the oscillator fails is smaller than the probability that the
whole MPSoC fails for other reasons.

Process Input Output

Gateway components are also used to interconnect analog and digital sensors
and transducers to the GENESYS system. Such a process input/output compo-
nent will read the raw data, will perform reasonableness checks and will convert
the data into the standard engineering units that are used in GENESYS. The
I/O data will then be packed into GENESYS messages and distributed to the
other components of the system.

The process 1/O component can be used to monitor a process to detect
significant events that need attention by other components. These events are
distributed to the other components by the event-message mechanism that is
provided as a basic GENESYS service.
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The optional hot insertion and hot replacement service at L2 enables the ad-
dition, removal and replacement of components for maintenance reasons with-
out having to power down the system.

Hot replacement enables the exchange of obsolete or malfunctioning devices
without having to power down the system in high availability industrial control
systems. Hot insertion enables the addition of new devices without having
to reconfigure, manually add drivers or shut down the system. The system
recognizes the device and it is capable of using it as soon as it is detected and
configured. The focus is usually on high flexibility and reconfigurability.

5.2.6 Mobility Services

Mobility is an important aspect of open systems, e.g., a smart mobile device.
The technical solution supporting mobility is often based on some kind of
cellular network infrastructure. This is a much more general concept than
the generally known cellular networks for mobile phones or WLAN. It can be
applied e.g. for body area networks. In commercial operated networks mobility
is managed mainly by the network infrastructure, but in many other cases the
mobile device does most of the mobility management.

One basic need is to continue sessions when devices are moving around.
Another basic capability is the routing of incoming communication to the tar-
geted mobile device. Services supporting mobility are built on top of basic
communication mechanisms specified as core services.

Component/Service Detection

The fundamental property of open systems is that their configuration changes
dynamically and is not known at design time. Any platform intended for open
systems must provide the basic mechanisms for the detection of components
that are introduced to the system ad-hoc. Typically these mechanisms include
protocols for advertisement and registration. If the system is built around one
central unit that is always present, the mechanisms can be centralized, but in
the general case they have to be distributed. Component detection is often
useful for static systems too. For example, it is often necessary for the device
to detect its configuration at boot time.

The platform should also provide application developers the basic mecha-
nisms to access the services provided by the platform as well as the application
services built on top of the platform. These mechanisms should be quite generic
to facilitate application portability across different platforms and implementa-
tion technologies. For this purpose the platform needs some kind of service
manager. The service manager can be combined with the resource manager
because the availability of certain services can depend on the availability of
associated resources. There is also a connection to platform security due to the
need to handle authorization and access rights.

Connectivity Management

One basic need is to continue sessions when devices are moving around. An-
other basic capability is the routing of incoming communication to the targeted
mobile device. Services supporting mobility and connection management are
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built on top of basic communication mechanisms specified as core services and
implemented by special gateway components.

Mobile Device Controlled Mobility: Mobile Device Controlled Mobility
is an optional service for GENESYS integration level L3. With this ser-
vice the mobile device is actively controlling the connection to the cellular
network infrastructure. All the subservices of this service are running on
the mobile device.

Its subservices are as follows:

e Cell Detection: This subservice informs the mobile device about
reachable cells in the network infrastructure. It can be used when
the mobile device and the network infrastructure are operating and
it returns information of the set of cells reachable in the network
infrastructure.

e Connect: This subservice establishes connection between mobile de-
vice and a cell. It also passes identity information to the cell if
needed by the system (this may be needed to track the location of
the mobile device if the system supports such capability). It can be
used when the mobile device is within the reach of at least one cell
of the network infrastructure, but not connected to the network. As
a result the mobile device is connected to the network via a selected
cell.

e Cell Changeover Notification: This subservice notifies the mobile
device that it has to change the communication to another cell in
order to avoid interrupting the on-going session. It activates when
the mobile device is connected to the network and about to move
out of the reach of the current cell and generates a notification that
the connection to the current cell is about to break.

Infrastructure Controlled Mobility: Infrastructure Controlled Mobility is
an optional service for GENESYS integration level L3. With this service
the cellular network infrastructure is responsible of the mobility manage-
ment functions. There is a network controller that can be either central-
ized or distributed.

Its subservices are as follows:

e Mobile Communication Service: This subservice runs on the mobile
device. It gives information of connection status and notifies of
incoming communication. It can be used when the mobile device is
connected to the network.

e Connect: This subservice establishes connection between mobile de-
vice and a cell. It also informs the network controller about the new
mobile device in the network. It activates when the mobile device
enters within the reach of the cellular network infrastructure (either
switched on inside the network or moves inside the network) and
connects the mobile device to the network.

e Hand-Over: This subservice moves the mobile device connection to
a new cell. It activates when the cell connected to the mobile device
detects that the mobile device is about to move out of the cell. It
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Figure 5.3: Structure of a job

determines the new target cell and informs the new cell that it has
to take care of the communication of the mobile device. It also
hands-over all the application relevant information to the new cell
and triggers the Mobile Communication Service to notify the mobile
device about the hand-over.

Additionally to the Connection Management the Session Management Service
is an optional service for GENESYS integration level L3. It manages the op-
timal (in terms of e.g. energy or QoS) execution of sessions in a distributed
computing environment. It also supports session mobility (moving the execu-
tion of sessions between devices without disrupting the service).

5.2.7 Generic Middleware (GEM) Services

In Section 5.1.1 we have introduced the notion of a job as the core image
that is loaded onto a hardware unit in order to form a component (or IP-
core). From an architectural point of view, the internal structure of the job is
of no avail, provided the message interfaces of the component, as outlined in
Section 4.2.1, are well-specified. However, in order to make it is easier to define
these message interfaces it is expedient to provide a model of the component-
internal structure, in particular of the software elements that form a job.

We consider a job to be structured into a component-local operating system,
a middleware, and the application software as outlined in Fig. 5.3. The soft-
ware interface between the operating system/middleware and the application
software is called the API (application program interface). At this interface
commands are provided that control the execution of the hardware.

At the API inside a component the message passing interface (MPI) between
the GEM (generic middleware) and the application software can adhere to
established software standards for message passing [18]. However at the LIF,
only the architecturally visible three unidirectional message communication
services established in Section 5.1.4 are of relevance.

The middleware can be further partitioned into generic middleware (GEM)
and application-specific middleware. From the architectural point of view, the
services of the GEM are of significance. These services are offered across the
component LIF if they relate to the operational aspects of a component and
across the TTT if they relate to the meta-level aspects of a component, such as
component configuration. In this Section we focus on the operational services
of the GEM that are offered at the LIF of a component.
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Voting Service

The voting service supports the implementation of triple modular redundancy
(TMR). The integration level at which this services is applied has an impor-
tant impact on the achieved reliability. Since a chip is considered as a fault
containment region of an ultra-dependable system, this services should be em-
ployed at integration levels higher than the chip-level in such an application.
Nevertheless, such services are possible and useful at all the levels of the system
hierarchy.

The voting service takes the results of three independent replica determin-
istic fault-containment regions as an input and delivers a voted result as an
output for further processing.

The voting service can be used for two main purposes: 1) Voting-on-value -
where the correctness of a job output is checked and 2) voting-on-state - where
the correctness of a job state is checked [56]. The period of voting-on-state,
which in general is different from a period of voting on value, determines the
size of vulnerability window. A vulnerability window is created when voting-
on-value becomes impossible because a critical number of jobs (single job in the
case of TMR) are already affected by errors. Since an error will manifest itself
in the state of a job, it will be discovered during the next voting-on-state and
recovered thereafter which in turn will end the vulnerability window. Thus,
the voting-on-state determines the length of the vulnerability window.
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Event Recognition and Handling

After recognition of one or more events, the information about the events is
made available according to prioritization rules regarding the event and the
interesting parties, if known. FventHandling is a central service for dynamic
applications at L2 and L3.

High-Level Protocol Implementation

The core communication mechanism of GENESYS supports the exchange of
unidirectional deterministic multicast messages. In many scenarios it is advan-
tageous if a bidirectional sequence of such message exchanges is captured in
the abstraction of a higher-level protocol that can be invoked at the API by a
single command.

A simple example of such a higher-level protocol is a client-server protocol.
The client initiates the communication, requesting that the server performs a
service, transferring a parameter set if necessary. The server waits for incom-
ing communication requests from a client, performs the requested service and
dispatches a response to the client’s request. In order to execute such a client-
server request, first the necessary communication channels must be configured,
either statically within the MPSoC or dynamically. All these actions can be
performed in the GEM of a component without user involvement at the API.

The MPI (Messaging passing interface) - standard can be implemented in
the GEM of a component to support a standardized communication pattern
among remote and local components that conform to this standard.

Receiver Controlled Streaming

In Section 5.1.4 Primitive Real-Time Streaming has been introduced as a core
service. The receiver controlled streaming service extends this primitive stream-
ing service by introducing bi-directional flow control in order to handle irregular
data dependant streaming traffic. High and low watermarks at the queues are
introduced in order to inform the application when a minimum or maximum
queue level is reached. The queue sizes (incoming and outgoing queue) and the
high and low watermarks can be configured by the service user.

5.3 Domain Specific Services

The domain specific services presented in this Section relate mainly to the
consumer electronics domain. Most of the services that are needed in the
industrial domain have already been covered in the optional service section.

5.3.1 Data Management Services

Among the domain-independent services of the GENESYS platform is stable
(Non-Volatile) Storage (see in section 5.2.2). This is a primitive core service
to store permanent data. The services specified in this section are higher level
services built on top of this core service.

File system is an optional service for GENESYS integration levels L1 and
L2. It provides the basic file system capabilities such as naming, hierarchical
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organisation and metadata as well as the necessary security mechanisms (e.g.
access control).

Database management system is an optional service for GENESYS inte-
gration levels L1 and L2. It provides advanced data organisation and retrieval
capabilities, such as data modelling language, schemas, database query lan-
guage and transaction mechanism. It also supports concurrency, integrity, and
recovery. Similar to the file system, it provides the necessary security mecha-
nisms.

5.3.2 Combined Quality-of-Service and Resource Awareness

In many systems and applications, services depend on restricted or limited
resources. As there may be several services competing over these resources,
optimal system performance, measured in Quality-of-Service (QoS), relies thus
on smart resource allocation. For systems of higher complexity that depend
and interact with their environment, built-in mechanisms are needed to adapt
this resource allocation to the systems status and the requested services in or-
der to optimize performance. In this regard, it seems appropriate to picture
a negotiation between several bidders (the services) for restricted goods (the
resources) to understand the flexible processes of resource allocation in such sys-
tems. Such negotiations benefit from information, here from awareness about
services, their QoS, and resources, from knowledge about the dependencies be-
tween resources offered to a service and the QoS achievable with it, and the
ability to plan, using and providing information from and to L1, L2, and L3.

For the later, the following two optional services are required in addition
to the respective domain-independent services (see sections 5.1 and 5.2) that
relate to the previous items.

Service & Resource Predictor

Service & Resource Predictor is an optional service for GENESYS integration
levels L2 and L3. It provides access to information about a system’s future
status regarding resources, running services, and QoS of services. It informs
about services scheduled for a period of time, their expected QoS, and their
allocated resources, about resources expected to be available at a period of
time, and accepts and handles requests to schedule the execution of services
or to remove services from the schedule or to reconfigure scheduled services
to update its information base. Altogether, it answers what QoS will likely
be available from service S at time t, what QoS progression is expected from
service S in the time period [t1, t2], what resources will likely be available at
time t, and what resources progression is expected in the time period [t1, t2].

Service & Resource Planner

Service & Resource Planner is an optional service for GENESYS integration
levels L2 and L3. It provides knowledge about how to optimize the future
execution of multiple services on bounded resources. Said knowledge becomes
available to other services that might change the services execution. Given
access to information about services, their QoS and value, and resources, this
service infers the optimal resource allocation in regard to the value of services
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under the given constraints and infers the optimal resource allocation schedule
in regard to the value of services under the given constraints. It also handles
requests to schedule the execution of services or to remove services from the
schedule or to reconfigure scheduled services to update its information base.
Altogether, it answers what is the optimal resource distribution in regard to
the value to the system or the user given constraints on services / resources
and what is the optimal resource distribution strategy in regard to the value
to the system or the user given constraints on services / resources and actual
predictions.

5.3.3 Multimedia and Graphics

This is a rather mature domain, where solutions, standards and APIs exist
that can be translated to GENESYS services. There is no reason to reinvent
the wheel. However, the core services of the GENESYS platform have to
be available such that the higher level multimedia and graphics application
services can be easily implemented.

For multimedia data streaming is important. Platform core services needed
for source and sink ends of push and pull streams as well as synchronization
of multiple streams. Synchronization of multimedia streams (e.g. lip sync) is
typically based on time stamps created at the time of content creation and
embedded in the streams.

For concretizing the kind of core services needed for multimedia, consider
the standards created by the Khronos Group?, and in particular the OpenMAX
standards. The OpenMAX includes APIs at three abstraction levels:

e AL (Application Layer) facilitates the capture and presentation of audio,
video and images in multimedia applications on embedded and mobile
devices. It includes the ability to create and control player and recorder
objects and to connect them to configurable inputs and output objects
including content readers/writers, audio inputs and outputs, display win-
dows, cameras, analog radios, LEDs, and vibra devices.

o IL (Integration Layer) defines a media component interface to enable
developers and platform providers to integrate and communicate with
multimedia codecs implemented in hardware or software.

e DL (Development Layer) contains a comprehensive set of audio, video
and imaging functions that can be implemented and optimized on new
CPUs , hardware engines, and DSPs and then used for a wide range of
accelerated codec functionality such as MPEG-4, H.264, MP3, AAC and
JPEG.

Figure 5.6 illustrates the software landscape for the OpenMAX.

The OpenMAX IL is the most relevant layer for GENESYS. It is a component-
based media API that consists of two main segments: the core API and the
component APIL.

The OpenMAX IL core is used for dynamically loading and unloading com-
ponents and for facilitating component communication. Once loaded, the API
allows the user to communicate directly with the component, which eliminates

Imore information available at http://www.khronos.org
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Figure 5.6: Software landscape for OpenMAX AL, IL and DL standards (source
The Khronos Group Inc.)

any overhead for high commands. Similarly, the core allows a user to establish
a communication tunnel between two components. Once established, the core
APT is no longer used and communications flow directly between components.

OpenMAX IL components represent individual blocks of functionality. Com-
ponents can be sources, sinks, codecs, filters, splitters, mixers, or any other
data operator. Depending on the implementation, a component could possibly
represent a piece of hardware, a software codec, another processor, or a combi-
nation thereof. It should be noted that the OpenMAX definition of component
is different from GENESYS definition. In some cases an OpenMAX component
can be a GENESYS component (e.g. in the case of pure HW implementation),
but in other cases it can be part of a GENESYS job. It is also possible to cre-
ate OpenMAX components dynamically. Therefore the concept of OpenMAX
component is closer to GENESYS application service rather than GENESYS
component.

The individual parameters of a component can be set or retrieved through a
set of associated data structures, enumerations, and interfaces. The parameters
include data relevant to the component’s operation (i.e., codec options) or the
actual execution state of the component. Buffer status, errors, and other time-
sensitive data are relayed to the application via a set of callback functions.
These are set via the normal parameter facilities and allow the API to expose
more of the asynchronous nature of system architectures.

Data communication to and from a component is conducted through inter-
faces called ports. Ports represent both the connection for components to the
data stream and the buffers needed to maintain the connection. Users may send
data to components through input ports or receive data through output ports.
Similarly, a communication tunnel between two components can be established
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Figure 5.7: OpenMAX IL component architecture

by connecting the output port of one component to a similarly formatted input
port of another component.

Figure 5.7 depicts the component architecture. There is only one entry
point for the component (through its handle to an array of standard functions)
but there are multiple possible outgoing calls that depend on how many ports
the component has.

Synchronization is enabled by the use of synchronization (sync) ports on
a clock component. The clock component also implements all rate control by
exposing a set of configurations for controlling its media clock. The clock may
be controlled by the IL client (application). A real-time reference (global clock)
is needed, anyhow.

Component registration and discovery is outside the scope of OpenMAX
IL (implementation dependent) but these mechanisms are obviously needed.
There is a need for resource management, since several components can share
processor, memory and/or communication resources. OpenMAX IL does not
fully address resource management, but has hooks for both resource manage-
ment and policy. They include component priorities and behavioural rules.

The control communication between the client (application), core and com-
ponents has been described in the OpenMAX IL in terms of calls and callbacks.
In GENESYS a more natural communication style is by using messages. In
most cases the command-response communication pattern is used, but not al-
ways (For example, there is a need to subscribe to events).

Below we list some basic generic services that are needed as building blocks
for a OpenMAX IL compliant system.

OpenMAX IL is an optional service for GENESYS integration levels L1 and
L2. It provides the basic capabilities of the OpenMAX IL media component
interface for dynamically loading and unloading components and for facilitating
component communication. Its subservices are as follows:

e Allocate OpenMAX IL component: This subservice is provided by the
OpenMAX IL core. It allocates a specific OpenMAX IL component as
requested by an OpenMAX IL client. This is in principle analogous
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to the (sub)service provided by the service manager to get access to an
application service, and can be seen as a special case of application service
discovery with multimedia specific service properties and ontology.

e Setup OpenMAX IL communication tunnel: This subservice is provided
by the OpenMAX IL core. It sets up a communication tunnel to con-
nect given OpenMAX IL components as requested by an OpenMAX IL
client. This is closely related to the basic streaming core services of
the GENESYS platform. However, since the concept of OpenMAX IL
component is different form the GENESYS component, the associated
communication services are also different. In particular, the communi-
cation between OpenMAX IL components can happen strictly within a
single GENESYS component.

e Send command to OpenMAX IL component: This subservice conveys
commands sent by an OpenMAX IL client to specific OpenMAX IL com-
ponent. This is similar to the basic message based communication of
the GENESYS platform, except that it can happen also strictly within a
GENESYS component.

e Subscribe to OpenMAX IL event: This subservice allows an OpenMAX
IL client to subscribe to a named event of a specific OpenMAX IL com-
ponent. The subservice ensures that the component is aware that the
client is interested in the named event and will send indications of each
occurrence of the event. Sending indications is similar to the basic mes-
sage based communication of the GENESYS platform, except that it can
happen also strictly within a GENESYS component.

5.3.4 Trust and Privacy

Trust and privacy are important security aspects of personal communication
systems. The issue is complicated by the fact that privacy is sometimes in
conflict with security. Especially this is the case if privacy requires anonymity
and this is not allowed in a highly secure operation. Therefore privacy services
are always optional.

Identity Management

Identity Management is an optional service for GENESYS integration level L3.
It manages the identity of different users of the system. System supported user
identity is necessary for security, trust management and privacy protection. Its
subservices are as follows:

o Identity creation: This subservice creates a logical user identity known by
the system and maintains identity structures, such as aliases and groups.

e Sign in: This subservice verifies the identity of a physical user, links the
physical user to a logical user known by the system and maintain this
information while the physical user is connected to the system. It sup-
ports single sign in for multiple usage sessions. The user has to provide
the necessary means for identity verification (e.g. a password or biomet-
rical data). As a result, the physical user is associated with logical user
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identity and granted access to the system with the rights defined for the
logical user.

Trust Management

Trust Management is an optional service for GENESYS integration level L3.
It allocates trust to users or services. The origin of the trust can be the local
identity management or a trusted third party. Its subservices are as follows:

e Trust allocation: This subservice creates a trust token and allocates the
trust level. The link between the identity and trust token is protected
by the trust management service and hidden from normal (unauthorized)
users and services.

e Trust query: This subservice verifies the validity of a trust token and
handles queries of the trust level.

Privacy protection

Privacy protection is an optional service for GENESYS integration level L3.
Privacy protection has two main aspects. One is to provide the support for
anonymity of the user in service execution. Anonymity is in principle in conflict
with security, but with appropriate trust mechanisms anonymity can be ensured
within an acceptable security level. The other privacy aspect is the protection
of sensitive personal information. Its subservices are as follows:

e Privacy protected service execution: This subservice provides mecha-
nisms to hide user identity and other private data when accessing a ser-
vice while still providing the necessary trust information. It allows a user
to access a service without disclosing her identity even when the service
has to maintain a defined security level. For this purpose the service is
provided with the means to verify that the user can be trusted at the
required level.

e Privacy protected personal information: This subservice prevents privacy
breach when accessing personal information. Privacy metadata is associ-
ated with the data for this purpose. When a user wants to access sensitive
personal information of herself or another user, she is given access to the
information only if the owner of the information has allowed it.

5.3.5 Open Systems and Ambient Intelligence

In ubiquitously computing environments like smart spaces and ambient intel-
ligence environments, a number of advanced functions are needed to adapt the
system to the context and user preferences as well as help users and other
entities to utilize the system. These services, all of them optional at L3, ad-
dress a wide range of topics like situation awareness, personalization, or service
composition.

Situation Reasoner

Situation Reasoner is an optional service for GENESYS integration level L3.
It interprets the contextual state of an entity as a situation. In a smart space
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this entity might be a user but it can also be any component of the system.
The Situation Reasoner is a general-purpose reasoner and thus provides the
means to deduce new contextual information based on available information.
The process of achieving this new information is based on Al techniques and a
local repository of explicit rules or knowledge, which can be configured either
by an administrator of the smart space or by another component or service.

Dialog Manager

Dialog Manager is an optional service for GENESYS integration level L3. Tt
provides dialogs appropriate for current situation and context that facilitate
the user to access the application services of the smart space. To achieve
this, it associates situational events with the appropriate system reactions and
chooses the appropriate content and form. One task of the Dialog Manager is
to provide access to system services for the user of a smart space via system
dialogs. Additionally, it provides system reactivity, i.e. methods to define
reactions of the system based on contextual events.

Service Orchestrator

Service Orchestrator is an optional service for GENESYS integration level L3.
It provides facilities for dynamic composition of application services from other
services, managing of a corresponding service repository, and plays the role of
a workflow engine for executing the composite application services.

User Profiler

User Profiler is an optional service for GENESYS integration level L3. Tt
supports personalization and adaptation of a system or an application to the
specific needs of the user according to the user’s usage patterns. Depending on
the application or system, it might depend on the Situation Reasoner to infer
a classification of the user, use learning to build the user’s profile, or provide
the user with the facilities to define the preferences.

Context Archiver
Context Archiver is an optional service for GENESYS integration level L3. It
gathers all context events and provides a context querying service.

Smart Space Gateway

Smart Space Gateway is an optional service for GENESYS integration level
L3. It facilitates remote access to smart spaces and enables bridging between
them. Furthermore, it provides a possibility for external systems to advertise
their application services to the nodes of smart spaces.






Six

Development Methodology

HIS CHAPTER introduces the GENESYS methodology framework described
T in more detail in [60]. The methodology framework is based on three main
building blocks; the process model, the modelling language, and a set of eval-
uation methods. An integrated development environment is also introduced,
upon which the selected modelling and evaluation tools can be integrated to.

The objective of this chapter is to define a methodology framework for de-
veloping embedded systems according to the GENESYS cross-domain architec-
ture style and reference architecture template. The methodology framework is
composed of a set of key artefacts, which provide the basis for building specific
methodology instances.

The first key artefact of the methodology framework (Figure 6.1) is the
modelling process; the Y-chart model that separates application, platform and
system architecture design phases. Each design phase defines the input, output
and trigger definitions.

The second key artefact is the primary modelling language; the Unified
Modelling Language (UML) adapted to embedded systems engineering with
the MARTE (Modeling and Analysis of Real-time and Embedded systems)
profile. Other modelling languages are allowed, if proper model transforma-
tions between the primary language and specific ones are supported. A set of
architectural views are also defined for each design phase.

The third contribution of the methodology framework is the quality evalu-
ation part that defines an extensive set of evaluation methods and tools that
are integrated together by a tooling platform, introduced as an integrated de-
velopment environment. The defined tool environment shall support tracing
modelling artefacts between process phases, transforming and extending mod-
elling capabilities according to the needs of designers and work at hand, and
providing commercial and open source tools for executing an instance of the
methodology framework.

6.1 Principles

The methodology framework is based on seven principles which are introduced
next with the supporting parts of the methodology framework.
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Figure 6.1: The Methodology Framework

6.1.1 Embedded Systems Engineering Process

The methodology framework supports the full lifecycle of embedded system
with the top-down and bottom-up approaches. The top-down development
model assists in developing new embedded systems according to the cross-
domain architecture style and the reference architecture template providing
support for design and evaluation. The bottom-up development model sup-
ports the adoption of the style and template by providing support for inte-
grating legacy components to the system design models and upgrading an old
platform to conform with the cross-domain architecture style and the reference
architecture template.

To make it easy to adopt the process model it has been divided into a set
of independent development phases, which are smoothly interoperable.

Support: The process model, the defined methods, techniques, tools and
guidelines.

6.1.2 Model Driven Development

The methodology framework supports the development of embedded systems
based on the cross-domain architecture style and reference architecture tem-
plate. The approach follows the model driven development; models are primary
artefacts which are represented on two abstraction levels as platform indepen-
dent models (PIM) and platform specific models (PSM). Three kinds of model
transformations are supported: vertical, horizontal and hybrid.

The top-down vertical transformation is used to convert requirements to
PIM, PIM to heterogeneous computation models and code. Reverse engineering
supports code-to-models transformation.

Horizontal transformations provide support for transforming a model to
another model at the same abstraction level. Models for performance analysis
and reliability prediction are extracted from the PSM.
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Hybrid transformation supports an activity, which includes several devel-
opment phases in a loop and requires models at multiple abstraction levels,
e.g. test modelling, test generation, test execution, and design updates based
on test results.

Support: PIM and PSM modelling practice for embedded systems engineer-
ing. Some transformations have been identified, supported by existing tools
or/and specified as part of the defined integrated engineering environment.

6.1.3 Model Representation

The methodology framework supports different model representations. A view
provides a projection of the related entities of the architecture, e.g. a struc-
tural view and a behavioural view. Textual languages are used for describing
intended behaviour of services, a modelling language for describing structure
and behaviour and a specific interface language for service interface descrip-
tions. The selected languages are extended for describing non-functional prop-
erties and service semantics. Mappings from requirements to models and from
models to computing resources are supported, as well as model consistency
checking.

Support: Views, languages, mappings and appropriate model verification
techniques.

6.1.4 Modelling Semantics

Semantics is defined at two levels: interface semantics at all integration levels
(L1-L3) and service semantics of open systems on Level 3. Semantic models
allow extending the meaning of services at design time. Service semantics is
expressed in a machine readable format for dynamically introduced services of
open systems on Level 3.

Support: Service categories, interdependencies of services, rules for usage
of services defined by the cross-domain architecture style and reference archi-
tecture template.

6.1.5 Formal Methods

The framework provides a formal modelling language which allows a precise
definition of system behaviour, model checking capabilities, modular proofing,
i.e. module or subsystem based proofing, interactive proving of theorems, and
verification of causal and temporal behaviour in a limited scope.

Support: A formal language for modelling behaviour of critical parts of
embedded systems, a model checking tool, guidance for interactive proofing of
modular systems, and a method and tool for verification of causal and temporal
behaviour.

6.1.6 Quality and Non-Functional Properties

The framework supports modelling and evaluating non-functional (NF) and
quality properties at the model level:

e scalability required due to the diversity of used technologies and applica-
tion domains, related to other NF/quality properties, e.g. performance
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e composability which is related to miss-match identification of service in-
terfaces and semantics

e performance and power/ energy
e dependability, including reliability, availability, safety and security

e evolvability by focusing on checking the use of ’standard’ design practices
and variability management

e trade-off analysis between the above mentioned NF/quality properties

Support: Methods and tools for designing and evaluating the defined NF /qual-
ity properties

6.1.7 Integrated Development Environment

The framework provides an integrated development environment, which auto-
mates the early V&V process flow and supports repetitive design and V&V
tasks and unit test generation. Early V&V supports HW/SW partitioning,
simulation and (virtual) prototyping, and heterogeneous simulation including
models and code. The tool environment automates mappings by providing
support for vertical transformations between abstraction levels and horizon-
tal transformations at the same abstraction level. Moreover, the environment
allows the user control the design flow.

Support: Tools for semiautomatic development and integration of GENESYS
systems.

6.2 Process Model

Figure 6.2 represents the main phases of the embedded systems development
based on the cross-domain architecture style and the reference architecture
template. Despite of phases, the process model is iterative and incremen-
tal, illustrated by the bidirectional arrows between the System Allocation-
/Configuration/Refinement, Quality Evaluation and Realisation phases. The
links backward to Application Architecture Design and Platform Architecture
Design from Quality evaluation and Realisation are also illustrated.

System engineering starts with the requirements specification phase, which
results in the definition of the functional properties, non-functional properties,
quality requirements and constraints of a system. The evaluation criteria are
derived from the defined quality requirements and prioritized according to the
scope and importance of the requirements. Evaluation criteria define goals
for quality evaluation. Scoping helps in classifying the requirements into two
categories: application specific and platform specific requirements, which form
the input for application architecture design and platform architecture design.

The application architecture design phase follows the principles defined by
the cross-domain architecture style and takes into account the existing services
available at the application service repository and the platform module library.
Application architecture design results in a platform independent model (PIM)
of the application architecture.

Platform architecture design is done according to the cross-domain architec-
ture style and the reference architecture template. The reference architecture
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Figure 6.2: Overview of the process model

template defines the structure and behaviour of the platform core services, clas-
sified according to the integration levels they belong to. The cross-domain style
defines three integration levels: chip (Level 1), device (Level 2) and (open/-
closed) system (Level 3). The module library provide core and optional services
at two abstraction levels: model level and code level (if the realization is avail-
able). If a particular service is missing from the platform module library, a
new optional service is defined at the PSM (Platform Specific Model) level.
The platform architecture design phase outputs an instance of the PIM (Plat-
form Independent Model) at a specific integration level that is further used as
a system-platform model upon which the application-PIM is transformed and
allocated to.

The system allocation/configuration/refinement phase associates/maps the
application architecture design model onto the platform architecture design
model resulting in the system architecture model, which consists of a set of
views: structure, behaviour, and allocation (deployment), which are required
for the next phase; quality evaluation. In the system architecture design phase,
the platform architecture is configured for the use of a specific platform. In
fact, in this phase the whole system architecture is the first time described
as a whole, and therefore, several refinements are typically needed. These
refinements may be required before and after performing the quality evalua-
tion phase. Architecture modelling and evaluation is a highly iterative and
incremental process, and what steps need to be performed depends on the
improvements defined as the results of quality evaluation.

Depending on the evaluation methods used, specific models may be needed
for quality evaluation purposes. Thus, the diagrams of the defined views are
transformed horizontally for the specific case at hand.

The evaluation process is iterative; it starts from the quality requirements of
the highest priority and ends up to the quality properties of low priority. Each
quality property is evaluated separately, and thereafter the tradeoffs analysis
is conducted. If conflicts are encountered, a new iteration is to be taken (i.e.
System Allocation/Configuration/Refinement and Quality Evaluation phases).
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When quality requirements are met, the realization of the system is made by
manufacturing hardware and implementing software. Realization includes a set
of refinement and testing phases, which are not discussed here. The assump-
tion is that after unit, integration and validation tests, a new application and
an optional (domain-specific) service are accepted. Thereafter, the new appli-
cation can be included to the application service repository as a new reusable
service and the validated architecture into the repository of validated system
architecture models. The focus is on how to develop applications on top of plat-
forms that follow the principles defined the cross-domain style and reference
architecture template.

6.2.1 Legacy Integration Process

The reference architecture template must provide support for the integration
of legacy components in embedded systems engineering. In order to do so, the
methodology framework provides the following process models, covering legacy
systems capture, reuse and integration. This general process is depicted in
Figure 6.3.

The legacy integration capture process model foresees two different integra-
tion paths, one related to legacy applications and their interfaces, and another
one related to legacy platforms. Both of the phases take as input the legacy
system to be introduced to the methodology framework.

Despite the proposed process model being similar in case of legacy integra-
tion of application and platform elements, these two tasks must deal with two
very different problems that have to be treated separately with very different
tooling.

On the one hand, the application reverse engineering phase takes the legacy
system source code, in the best cases accompanied by application designs, as
input. Therefore, the work to be done consists of identifying the jobs and
interfaces in the system in order to create GENESYS compatible components
that could be afterwards reused in future designs. This phase can be partially
automated by using reverse engineering tools and source code analyzers.

On the other hand, the platform reverse design phase uses the specifica-
tion of the software/hardware platform as input. These specifications might
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Figure 6.4: Overview of the System Requirements Specification phase

be described in a formatted natural language (e.g. datasheets), UML or a more
formal language (e.g. SystemC, VHDL, PSpice) or as a combination of these
two. Therefore, the automation of this phase depends on the used input for-
mats. As output both phases will provide a set of models and views compatible
with the methodology framework that will be included to the repositories to
enable an efficient reuse of the legacy services.

6.3 System Requirements Specification

The System Requirements Specification phase (Figure 6.4) produces the re-
quirements documents for the development of applications and platforms of
the cross-domain style enabled embedded systems. This phase also specifies
the evaluation criteria to be applied in the Quality Evaluation phase.

Requirements engineering is the task of identifying which functionality a
system-to-be should implement. Additionally, non-functional requirements
have to be addressed that define characteristics concerning the development
(e.g. composability and evolvability) and properties of the system (e.g. re-
liability and performance) beyond the pure functionality. Due to the special
characteristics of the embedded systems domain, a requirements engineering
method is required that takes care that the functional as well as the non-
functional requirements specified can be verified on the implemented system.
This is important to achieve certification and assure safety and other quality
aspects for humans and machines interacting with the system.

With regard to the methodology framework, the requirement engineering
activities involved in the System Requirement Specification phase are the ones
related to the elicitation, analysis and documentation of requirements. Mean-
while, verification and validation activities of the requirements engineering are
covered during the quality evaluation phase, where the system design is evalu-
ated against its non-functional requirements, and the system realization where
the system design is transformed to simulations and target code of the system.
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Requirements management activities, such as versioning and traceability of the
requirements, are activities transverse to all phases of the methodology; i.e. are
not covered on specific phases but are handled all along the lifecycle.

Requirements elicitation. The objective of the activity is to build and
understand the problem that the system-to-be is supposed to solve. Elicitation
seeks to discover all potential sources of requirements including;:

e Goals: high level objectives that the system needs to satisfy.

e Domain knowledge: is necessary in order to allow requirement engineer
to obtain specific knowledge not directly provided by the stakeholders.

e Stakeholders: provide different viewpoints with regard to the functional-
ity that the system must provide.

e Operational environment: the system-to-be will be restricted by several
factors, among them are, for example, the restrictions with regard to
software or hardware where it should be deployed or the interfaces that
it must provide in order to interact with legacy systems.

e Organizational environment: impact of the structure, culture and internal
policies of the organizations involved needs to be assessed in determining
requirements. Thus, there will be project and process related require-
ments caused, for example, by the need of following a certain project
management standard like the V-Model XT or by the need of a certain
certification, this is especially relevant for safety critical systems.

e Laws or regulations: usually system is constrained by the fulfilment of
specific constraints related to regulations or laws such as safety regula-
tions, data protection laws and similar.

The most common techniques for capturing requirements are: interviews, ques-
tionnaires, scenarios, prototypes or facilitated meetings.

Requirements Analysis. The aim of requirement analysis is to structure
and prioritize requirements. The activity results in a model of the business
requirements, the application requirements, a model of the requirements and
constraints for the platform and a set of quality criteria. This activity involves
the following tasks:

e Classifying requirements: grouping requirements into logical entities. Dif-
ferent criteria can be used: priority, architecture/application, functional /non-
functional, associated risk, etc.

e Prioritizing requirements: establishing the relative importance and risk
of each requirement and establishing an implementation priority.

e Conceptual modelling: abstract behaviour and structure models of the
system are designed in order to get understanding of the problem and
transfer this understanding to the developers involved on the system ar-
chitecture design.
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Requirements negotiation: addresses problems within the requirements
where conflicts occur between stakeholders’ needs, between requirements and
resources, or between system capabilities and constraints. Requirements doc-
umentation. In this activity, each requirement is described by the following
fields:

e Id: a unique identifier
e Text: a textual description that describes the requirement

e Source: states the origin of this requirement. The following categories
are considered: customer / operational environment / organizational en-
vironment / law / regulation.

e Kind (Functional / Non-Functional / Quality): states if the requirement
is related to the fulfilment of a certain functional capability or if it is
related to the fulfilment of a certain quantitative or qualitative constraint
or quality attribute. An example of a constraint is a time deadline and
an example of a quality attribute is performance, e.g., responsiveness of
the system.

e Scope (Application / Platform / System): states if the requirement im-
poses a constraint on the application or on the architecture.

e Development phase: this information is used in order to trace the model
elements from other artefacts during the development phase that con-
tribute to satisfying the requirement.

e Status: this field will describe the current state of the requirement. There
are four possible states for a requirement: feasible (the requirement has
been considered valid by a requirements engineer or a checking engine),
unfeasible (an opposite case), satisfied (it has been already satisfied) or
undetermined (the requirement has not been analyzed yet).

e Risk: associated to this requirement
e Priority: assigned to this requirement

The most important fields for quality requirements are: Id, Kind, Scope, and
Priority. Moreover, the requirements of the execution qualities, e.g. reliability,
need an attribute including the required, estimated, predicted and measured
values.

As a method the goal-oriented requirement engineering approach is pro-
posed together with the usage of use case and scenario analysis. A goal ex-
presses some objective to be achieved by the system. High level goals, such
as business or user requirements, can be gradually refined into more concrete
sub-goals by asking how the requirement is supposed to be fulfilled; thus, those
sub-goals will contribute to the fulfilment of the higher level goal. This refine-
ment process can be repeated until a suitable granularity is achieved. If the
refinement and subdivision of requirements is performed correctly it is sufficient
for the system to fulfil those primitive requirements, as all other requirements
are fulfilled by composition. In the methodology framework requirements are
described as SysML diagrams by using the hierarchical relation that is estab-
lished among requirements.
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Use cases are used especially in order to document application architecture
requirements. A use case defines a system-level capability without revealing or
implying any particular implementation or even design of that capability. Each
use case is related to a certain amount of requirements. A use case is associated
with pre and post conditions that constrain its activation. Use cases describe
the context where the system is used, including the system and associated
actors. An actor is an object outside the scope of the system which interacts
with it. A stick figure in UML2 and SysML use case diagrams illustrates
an actor that can also be any entity, which provides information or requests
information such as control outputs from the system.

A use case should be detailed by relating them to some scenarios. A scenario
is a particular actor-system interaction corresponding to a use case. A scenario
models message sequences among object roles collaborating to produce system
behaviour in its operational environment. Additionally state machines are used
for describing the operation modes of a system. The set of use cases and related
scenarios define the initial usage profile of the system that is further refined in
the system refinement phase.

6.4 Architecture Design

This section defines the three phases of architecture design: the application ar-
chitecture design, platform architecture design and system architecture design,
the last being the result of the System Allocation/Configuration/Refinement
phase. First, an overview related to these phases is given including the com-
monalities, e.g. the selected modelling languages and models with their justi-
fications. Thereafter, each architecture design phase is presented separately.

6.4.1 Modelling Languages

Application, platform and system architecture descriptions are a combination
of textual and graphical descriptions. English is used for textual descriptions.
Graphical models are described by a selected set of languages defined in Fig-
ure 6.5.

The service interface descriptions have to define the following information:
syntax for accessing a service, service semantics (i.e. the goal of a service) and
behaviour of a service (i.e. how the purpose of the service is achieved).

Based on a short experimentation, the UML-MARTE [59] was selected for
a common modelling language. Moreover, SystemC is needed for platform
architecture design. The BIP (Behaviour, Interaction, Priority) model is ap-
plied to L1 core services. The following sub-profiles of MARTE are applied to
architecture modelling.

e NFP - Non-Functional Properties: For defining non-functional and qual-
ity properties

e HLAM - High Level Application Modelling: For application architecture
modelling

e GCM - Generic Component Model: For defining the structure of appli-
cations
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e GRM - Generic Resource Modelling: For platform architecture modelling

e Alloc - Allocation Modelling: For allocating applications to platform ser-
vices

e SRM - Software Resources Modelling: For modelling operating systems,
concurrency and interactions of applications.

e HRM - Hardware resources modelling: For detailed hardware modelling

o GQAM - Generic Quantitative Analysis Modeling: Platform modelling
for analysis

6.4.2 Views, Models and Transformations

Figure 6.6 gives an overview of the required architectural descriptions; applica-
tion service description, platform service description, system architecture de-
scription and micro architectures. Two last mentioned descriptions are based
on the application and platform service descriptions but include some extra
views or models required for completing the architectural description of that
specific phase.

Because quality evaluation is the next phase after architecture design, it has
strong influence on which views and models are required. Typically, structure,
behaviour and allocation views are necessary for quality evaluation. Structure
can be presented in different abstraction levels; for example, an application
service can be modelled as a Distributed Application Subsystem (DAS) com-
posed of a set of jobs or as a job, and therefore, the structural view includes
two models; one for defining the structure of DAS and one for defining the
structure of involved jobs. They both belong to the structural view but can be
modelled by using different constructs of the modelling language. Moreover,
design information of interfaces is required for evaluating composability and
evolvability of the system architecture. If the specific information required for
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Figure 6.6: Architecture modelling phases including views, models and trans-
formations

quality evaluation is not available, the architectural models are to be trans-
ferred into another model that is suitable for the evaluation purposes at hand.

6.4.3 Application Architecture Design

The Application Architecture Design phase is concerned with the design of the
applications from both functional and non-functional points of view. One of the
most important challenges regarding the methodology framework is to enable
service based development of embedded applications by using the core and
optional services provided by the architecture template as the basis. The most
important artefacts of the applications are jobs that interact with each other
via unidirectional messages. The interface of a certain job is composed by the
definition of those messages. In order to be able to perform this composition,
the services provided by the different jobs have to be defined, not only from a
syntactical point of view, but also from a behavioural point of view.

In order to provide developers with models that are expressive enough, it is
important to present the structures of the services and jobs in the application
architecture model. The next sub-sections will cover the modelling of these
views using UML-MARTE. MARTE is a UML profile and, therefore, it cannot
be used without it. It is important to note that UML provides several ways
to describe some aspects of the system models. This fact makes it difficult to
provide a unique method to create the models as many different diagrams can
be used to specify the same aspects in the models. For example, in many cases
state machines and activity diagrams can address the same behaviour.

The goal of the Application Architecture Design phase is to produce a
platform independent model of an embedded application or applications. The
phase produces the following views:

Structural view: The structural view contains the definition of DAS (i.e.
interaction between jobs), the jobs, LIFs and messages that take part in
the application under design.
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Syntactical view: The syntactical view contains the description of the pro-
tocols that manage the access to a certain service. (The interface descrip-
tion is partly defined by the structural view and the syntactical view).

Behavioural view: The behavioural view defines the behaviour of the appli-
cation at two levels: as behaviour of the application and as behaviour of
the jobs involved in the application.

Non-functional view: The non-functional view provides information about
non-functional aspects of the application models, such as timing con-
straints, performance, reliability, etc.

Structural view

The structural view describes the application as a whole and the building
blocks, i.e. jobs and interfaces, which it is combined of. The structural view
of an application provides information regarding the construction of the ser-
vice. Services are defined by their interfaces. Therefore, the structural view is
described as follows:

e Describe the jobs involved in the application under design.

e Describe the service interfaces of each job and messages passed through
each interface.

e Describe the application as a composite of jobs. Reuse the available
application service descriptions.

e Describe platform services accessed by the jobs.

The structural view has to describe the applications in terms of jobs. Moreover,
the different services involved in the application must be defined in terms of
their interfaces and the kind of messages they request/provide. Lastly, struc-
tural descriptions also include passive elements that help different jobs to com-
municate. The MARTE profile provides two specific sub-profiles for this kind
of view: High-Level Application Modelling (HLAM) sub-profile and Generic
Component Model (GCM) sub-profile. These two sub-profiles along with the
UML2 constructs allow a rich description of applications, services, and their
interactions.

Descriptions of the jobs and their LIFs of an application are given in a
UML class diagram. The goal of this diagram is to describe each of the jobs
of an application along with all the messages that job produces/accepts (i.e.
the LIF). Since jobs represent an active component of an application, each job
will be represented by a single UML active class. The semantics of the UML
active class will be extended using the specific <<RtUnit>> stereotype from
the MARTE HLAM sub-profile to match the definition of a job. The stereotype
gives a class the semantics of a task or a set of tasks that are executed in some
computing resource of the underlying platform. The stereotype includes prop-
erties that may increase expressivity of a class. In the case of programmable
processors, there may be need to decompose jobs to finer grain tasks that are
scheduled by e.g. an operating system. The <<RtUnit>> stereotype serves
also this modelling purpose.
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Figure 6.7: Example job and LIF

The job description is completed with the definition of the messages ac-
cepted and produced by each of the defined jobs. This message list will compose
a job’s linking interface (LIF). Following the cross-domain architecture style,
the LIF of a job will be composed of a list of input and output unidirectional
messages, each of which will be represented in our class diagram as a UML in-
terface element. To link interfaces and jobs, the class defining a job implements
all the interfaces that compose its LIF. The semantics of the UML interface
are further refined by the application of the <<FlowSpecification>> stereo-
type from the MARTE GCM sub-profile. This stereotype provides the interface
the semantics of a unidirectional messages gateway and specifies whether the
interface will produce or consume a message. Note that bidirectional interfaces
are not allowed since each interface addresses a single interaction. Figure 6.7
shows an example description of a job that provides an output message. The
produced message is specified by a UML property defined in the interface and
stereotyped with the <<FlowProperty>> stereotype from the MARTE GCM
sub-profile. This stereotype gives the property the semantics of the message
produced or consumed by that interaction interface. Note that this property
must always be typed as a UML signal.

Input interfaces, similarly to output interfaces must always specify the mes-
sage they will consume. Additionally, input interfaces must declare a UML
signal reception element that will be also included in the class implementing
that interface.

Once jobs and interfaces have been defined, the job classes of interaction
ports are to be defined to enable application composition. Therefore, a UML
port element is created for each interface in each job. These ports are stereo-
typed with the <<FlowPort>> stereotype from the MARTE GCM profile to
provide them with the GENESYS semantics. Note that the directions defined
in the <<FlowSpecification>>, <<FlowProperty>> and <<FlowPort>> stereo-
types for the same interface must always be coherent.
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Figure 6.8: Service interfaces of the platform services

Lastly, the platform services used by the deployed jobs in the system are to
be defined. The platform services have been specified by implementation inde-
pendent interfaces. Therefore, UML classes will be used to represent the ser-
vice interfaces of the platform services. These classes are stereotyped with the
<<PpUnit>> stereotype from the MARTE HLAM sub-profile. This stereo-
type refines a UML class by giving it the semantics of a protected passive
element of the system.

An instantiation of the methodology framework should provide a model
package including the definitions of all service interfaces of the platform ser-
vices. These definitions are stored in the Application Services Repository.
Figure 6.8 depicts two definitions of two different front-ends of platform ser-
vices. These services are then instantiated in our application models via UML
associations from the client jobs to the accessed platform services.

Applications (DASs) are compositions of jobs that further use application
and platform services for achieving the desired functionality/capability of a
system. A UML composite diagram is used for composing DASs. Using this
diagram we will create a class that will host the whole application and we will
create a property in the class for each of the jobs previously defined. Then we
will link the input and output ports of the jobs via UML connectors. To achieve
multi-level composability, it is possible to leave outer ports to the hosting class.
Figure 6.9 shows a cruise control system using UML2 and MARTE.

Syntactical view

The syntactical view of the application describes how the services are accessed.
A syntactical description includes

e a description of the messages involved in the access of a certain service,
and

e a description of the communication protocols used.

The syntactical view of a service is often mixed with its structural view
since service syntaxes are tightly coupled to structural elements. For example,
messages are coupled to LIFs.
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Figure 6.9: A cruise control system composite diagram example
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Figure 6.10: Example sequence diagram showing the interactions between
GENESYS jobs

In order for clients to be able to access GENESYS services it is mandatory
that the service-users are aware of the syntax the services understand. In this
kind of applications the syntax of a service is defined by the messages that are
exchanged by service-users and services and by the order in which these signals
and messages are sent from service-users to services and vice-versa. Since the
GENESYS architectural style states that all the GENESYS messages must be
unidirectional all the protocols have to be implemented in the behaviour of the
jobs. As we previously said, messages are introduced in application models as
UML signal elements. The data included in a message is described using UML
properties.

The fact that communication protocols have to be embedded in each job’s
behaviour makes it difficult for GENESYS application designers to reuse (third
party) applications/services/modules. To cope with this issue, the syntactical
view of a job must somehow provide application designers this information. If
the behavioural view of the job is provided, the communication protocol can be
inferred from it. However, if behavioural views are not available, the GENESY'S
methodology framework assumes that third party module developers provide
a UML sequence diagram specifying the interactions between their reusable
elements and GENESYS jobs. An example is provided in Figure 6.10.

Behavioural view

The behavioural view of an application describes the control flow between jobs
and applications. It is possible that many implementation details appear in
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Figure 6.11: Example of a UML state machine diagram

behavioural views, since it is common to use variables, function-calls and even
code in them. The behavioural view is very important in the early validation
phase since it provides a means to test the system’s functionality and evaluate
that the system fulfils its quality requirements related to applications. The
behavioural view is also crucial in the system realization phase, since the be-
haviour described in this view is what the developers will implement in the
final product.

The behavioural view is defined in two different granularity levels. In the
coarser grained definition, the behaviour of the jobs is defined using UML state
machine diagrams. State machines allow the designers to specify the number of
tasks that compose a single job and also specify the communication protocols
followed by the application jobs. Figure 6.11 shows a simple state machine of
a job composed of three tasks.

UML regions in the state machine diagram represent different tasks inside
a single job. The cross-domain architectural style states that the jobs must
react to interactions on their LIFs. However, some jobs (e.g. sensors) may
need to do their work periodically based on a time event. Therefore, the only
transition triggers permitted are based on messages (represented by UML signal
events) and based on time (represented by UML time events). To complete the
descriptions of these triggers we will need to specify:

e For signal events (i.e. message arrivals), the port in which the message
has been received.

e For time events, a <<TimedEvent>> stereotype from the MARTE Time
sub-profile will be applied to the event to formalize the timing specifica-
tion.

Finer grain behavioural descriptions will further refine these top level be-
havioural descriptions. The methodology assumes that behavioural refinements
are made by linking UML activity diagrams or UML opaque behaviours to the
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"Effect” fields on state machine transitions. An example of a UML activity
diagram is provided in Figure 6.12.

GENESYS jobs will access the platform services to complete their function-
ality. These interactions between the application and the platform services will
be introduced in the fine grain behavioural descriptions via API calls.

Non-functional view

Embedded systems are complex hardware/software systems often constrained
by strict functional and non-functional requirements. From this requirements
set, non-functional requirements are often the most important ones and also
the most difficult to specify in design models. The GENESYS methodology
framework introduces the non-functional view in the application models that
allows the designer to specify as many non-functional properties as necessary
for their application domain.

Non-functional properties are represented as UML properties stereotyped
with the <<NFP>> stereotype from the MARTE NFPs sub-profile. A non-
functional property must always be typed with a UML data type element
stereotyped with <<NfpType>>. The used data type can be extracted from
the MARTE BasicNFP _Types library or created extending the NFP_CommonType
data type in the same library. Moreover, constraints can be applied to the el-
ements owning the non-functional properties. In case a constraint that affects
a non-functional property is applied to an element it must always be stereo-
typed with the <<NfpConstraint>> stereotype from the MARTE NFPs sub-
profile. Note that UML state machines, opaque behaviours and activities are
also classes, and therefore they may own non-functional properties.

Any instantiation of the methodology framework in a concrete application
domain should always define the non-functional property set applicable to that
domain, as well as a set of application guidelines in order to keep the model
transformations coherent

6.4.4 Platform Architecture Design

The Platform Architecture Design phase deals with the modelling of the plat-
form architecture that supports the applications designed during the Applica-
tion Architecture Design phase. The platform architecture is a logical archi-
tecture that is later realized as hardware and software.
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The GENESYS architectural principles define three integration levels at
which applications might be developed: System Level (L3), Device Level (L2)
and Chip Level (L1). Each of these levels addresses different application de-
scription challenges through the use of modelling techniques.

Chip level applications focus on developing hardware systems that will be
implemented on single chips (e.g. Multi-Processor SoCs). Platform compo-
nents at this integration level consist of IPcores. These IPcores implement
computation, storage and communication resources that are either taken from
IPcore libraries or developed/acquired if inexistent. Software consists typi-
cally of RTOS, device drivers and middleware on top of which services and
applications are designed at the chip level.

Device level applications focus on creating complete embedded devices.
They make use of platforms that can, for example, be composed of a set of
chip level platforms providing services to device level applications. Additional
middleware and services may be used on top to facilitate efficient interface to
applications.

System level applications are composed of a set of distributed devices that
interact with each other. At this integration level only software platforms may
need to be considered since the devices composing the application already have
their hardware/software architecture defined.

The platform architecture modelling produces the models of the following
views:

Structural view: The view describes the platform architecture from its struc-
tural point of view. The platform architecture model is composed of re-
sources (both SW and HW) at various level of granularity (e.g. processor,
computing node, multiple interconnected computing nodes). Resources
provide services described by using the core and optional services pro-
vided by the GENESYS template and/or new services if proper platform
services are not available.

Behavioural view: The behavioural view describes the behaviour of the ser-
vices included in the platform structural view. Basically, the behavioural
descriptions of the high-level services are taken from the Platform Module
Library that includes the descriptions of the core and optional services
defined by the GENESYS reference architecture template.

Non-functional view: Similarly to the non-functional view defined in the ap-
plication design phase, the non-functional view in the platform architec-
ture design phase allows the platform designers to specify non-functional
properties and constraints applicable to each platform element. This view
follows the same methodological patterns as the non-functional view of
application architecture.

Structural view

The structural view is meant to describe the elements that compose the ex-
ecution platform of a GENESYS application. These elements can be both
hardware elements (e.g. CPU, buses, memory, etc.) and/or software elements
(e.g. threads, semaphores, etc.). MARTE provides the Generic Resource Mod-
elling (GRM) sub-profile to model the resources of an execution platform from
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a high abstraction level, and the more specific Software Resources Modelling
(SRM) and Hardware Resources Modelling (HRM) sub-profiles for finer grain
resources modelling.

An important aspect of the platform structural view models is that it must
include references to the GENESYS platform services. The platform structural
model will be crucial for the further allocation and quality analysis steps.

Behaviour view

According to MARTE GRM, resources are used to model the execution plat-
form from a structural point of view, while the resource services supply the
behavioural point of view.

In addition to the behaviour descriptions of core and optional services
of GENESYS, there are various execution support services like transferring
data, sharing resources, communications and synchronization of tasks. The
behavioural view is presented as the interfaces and their state machine de-
scriptions (i.e. protocol) of the above mentioned services.

Regarding the methodology framework, in order to model the behaviour
of the platforms, UML behaviours (i.e. activity, sequence and state machine
diagrams) could be useful to model interactions within the platforms.

In order to ease a link between the models and the analysis/simulation tools,
the GENESYS methodology provides the option of using opaque behaviour
UML model elements. Opaque behaviours are defined by pieces of code or
pseudo-code regarding its specification; therefore, using this approach, it is
very simple to establish a link between the UML4+MARTE models and other
modelling languages like SystemC or BIP.

Platform Module Library

Platform Module Library provides the ready-made services defined by the ref-
erence architecture template. The definitions of platform services have three
dimensions: abstraction, integration and aggregation. These dimensions have
different purposes. Each service has two abstraction levels: model and code/im-
plementation, which are intended for the use of different stakeholders. The
integration level defines the scope of a service; the platform can be applicable
on one, two or all integration levels. The definition of the integration level is
a property of a service that guides the architect to select a proper service for
the platform architecture under work. The aggregation dimension is used for
separating common services from variable services and managing their relation-
ships. Thus, the dependencies between services are defined by the aggregation
dimension implemented as a taxonomy of services.

The service taxonomy categorizes services into groups of correlated services,
which make it easy the platform architect to find a service that fit to a platform
architecture design. Core services are used in each GENESYS compatible
system, i.e. it is to be checked that all core services have been used in the
platform architecture design. Other services are generic and domain specific
optional services, which embody variability that has to be managed by the
module library management mechanisms. Optional services need definitions
of their relationships with core and other optional services, service specific
properties and rules that help in selecting, configuring and using a service in
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Figure 6.13: Periodic Exchange of Messages Service API

architecture design and evaluation phases. These definitions specify explicitly
how to deal with variability, i.e. they define facts and rules for variability
management. The implementation of variability mechanisms depends on the
organization who instantiates the platform module library. Thus, there can be
different kinds of taxonomies, depending on the usage of the platform module
library.

System designers using the GENESYS architecture template are provided
with a set of services that simplify the design and implementation tasks. These
services are instantiated as part of the platform architecture that supports ap-
plications. Following the approach described above, GENESYS services can
be seen as black boxes that provide the designer with higher level views. Fig-
ure 6.13 shows an example GENESYS service, the Periodic Exchange of Mes-
sages Service.

The service model includes a service interface description with the available
interfaces of the service as well as the inputs and outputs. This representation
is sufficient for platform designs but in order to perform non-functional analyses
on the system models level a more detailed description is needed. The service
interface operations are stereotyped with MARTE::GRM <<GRService>>,
which denotes the definition of the service interfaces for the clients.

Each of the GENESYS platform services is treated from the architect’s
point of view as a black box that provides him/her the desired functionality.
A complete description needs a behavioural description. Behavioural represen-
tation which is the most widely used by analysis tools is the state machine.
MARTE also provides some stereotypes for adding non-functional properties
to the behavioural diagrams.

From the designer’s point of view, a new GENESYS service does not differ
as a concept from the development of a concrete application within the scope of
GENESYS. The design of a new service must go through the six phases of the
GENESYS development process. However, the application models must clearly
state the service interface under design using the <<GRService>> stereotype.
Figure 6.14 shows an example.

6.4.5 System Allocation/Configuration/Refinement

The System Allocation phase of the GENESYS process model is related to the
mapping of the applications to the platform architecture elements that will
support their execution.

This phase includes an allocation view, platform architecture configuration
view, scheduling view and additional information, e.g. probabilities of state
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Figure 6.14: The <<GRService>> stereotype in new service design models

transactions, needed for quality evaluation purposes.

The allocation view defines how applications and services are deployed on
the computing and communication resources provided by the execution plat-
form. Typically platform architecture elements need to be configured through
configuration parameters. Additional information required for specific evalu-
ation methods is provided by adding the required information to the models
provided by the earlier design phases. An allocated system contains all the
necessary information to implement the final product. If the vertical model
transformation is supported, simulation and target code can be generated from
the validated system architecture models.

The MARTE profile includes a specific sub-profile Alloc that allows a de-
signer to specify which application elements will be associated to which plat-
form resources. In this section we will use again the cruise control system
(CCS) example to illustrate allocation modelling in MARTE.

The platform model of the cruise control system controller consists of a CPU
managed by a system fixed priority scheduler. Three threads have been defined,
all of them hosted by the system scheduler. Lastly, two shared protected vari-
ables have been defined, each of them with a blocking call for acquiring and
releasing the variable lock (i.e. a mutex).

The allocation is performed using the structural views of both applica-
tion and platform models and using the <<Allocate>> stereotype on UML
abstraction dependencies. The <<Allocate>> stereotype allows further de-
scribing the nature and kind of the allocation as well as any constraints to
be applied during the allocation process. Additionally both application and
platform elements are stereotyped with <<Allocated>>.

Figure 6.15 shows the structural view of the application model allocated on
top of the structural view of the platform model. Each of the operations and
receptions in the controller has been allocated on the three threads and the
passive protected units have been mapped to mutex-protected variables.

The system refinement includes schedulability analysis that tries to assure
that a system meets its real-time requirements. This evaluation can be ad-
dressed through various simulation and analytical methods. Many of the lat-
ter mentioned quality evaluation methods have been implemented by different
schedulability analysis tools such as Cheddar [71], MAST! and TIMES [7].

These tools use allocated models as input with some extra information

I Modelling and Analysis Suite for Ral-Time applications. htpp://mast.unican.es
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regarding execution times, periods, deadlines, etc. These models can be ex-
tracted from the scheduling view. MARTE provides the Schedulability Analy-
sis Modelling (SAM) sub-profile for further annotating allocated models with
scheduling information.

Figure 6.16 outlines two different approaches for schedulability analysis.
The first one focuses on is feasibility analysis by using schedulability analysis
models. The second one aims at application-platform performance analysis
using transaction level simulations.

6.5 Quality Evaluation

The Quality Evaluation methods give support for evaluating the following
quality properties: performance, power/energy efficiency, dependability includ-
ing reliability, availability and safety, composability, and evolvability. Please,
see [60] for more elaborate descriptions, as the limited space does not allow to
include details of the quality evaluation techniques.

Quality attributes can be classified into two categories; functional qualities,
which are observable at execution time (i.e. execution qualities), and non-
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functional qualities, which are observable during the product life cycle (i.e.
evolution qualities). Functional qualities, e.g. performance and dependability,
express themselves in the behaviour of the system, while non-functional quali-
ties, e.g. composability and evolvability, are embodied in the static structures
of systems.

The interest of the quality attributes for system architecture is in how qual-
ity attributes interact with, and constrain, each other, and how they affect the
achievement of other quality attributes. Therefore, a set of quality attributes
are to be handled at the same time and tradeoffs between quality attributes are
to be calculated and managed. For example, dependability is a concept that
includes four quality attributes: reliability, availability, safety and security.
Moreover, a new concept 'trustworthiness’ focuses on a holistic view of quality
including the following attributes: correctness, safety, availability, reliability,
performance, security and privacy. The holistic approach aims at applying mul-
tidimensional optimization techniques on a set of quality attributes that can
have intrinsic and/or extrinsic relationships on other quality attributes. An in-
trinsic relationship exists if one quality attribute affects another. For example,
models to predict reliability depend on a system’s anticipated performance.
This relation between reliability and performance is intrinsic. Extrinsic rela-
tionships occur when attributes behave in an opposing way, e.g. an increase in
reliability decreases performance. In this case, the relation between reliability
and performance is extrinsic. However, the relations between two attributes
do not exit per se but they are properties of system architecture [23].

In the following sections, the quality evaluation methods specific for each
quality attributes (QA) are outlined.

6.5.1 Performance evaluation

Performance evaluation means a process of estimating through using perfor-
mance models in quantitative terms what would the performance properties of
the system being designed when implemented, whereas after implementation
it is more of measuring the values of properties (the latter is not addressed in
the sequel).

Performance evaluation in the context of real-time embedded systems de-
velopment tries to provide insight to three main issues:

e Responsiveness: Is the system capable of producing responses to user (ex-
ternal) service requests in defined response times or at defined through-
put?

e Resource adequacy/utilization: Does the system have resources and their
capacity enough for the currently planned applications? How efficiently
are the resources utilized?

e Scalability: Does the system facilitate extensions/reductions and scale
up/down resources and their capacity enough to accommodate future
applications/ changes in applications?

Performance evaluation methods can be classified to three main classes:
analytical methods, simulation methods and monitoring methods [33]. Future
embedded systems integrate an increasing number of concurrent applications on
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Figure 6.17: Input, output and support for performance evaluation

MPSoCs. Therefore, performance evaluation is taking more and more impor-
tance in the industry, while it is unfortunately becoming increasingly complex.

In many cases, what the developers of complex applications need is an
evaluation of performance with a coarse, but guaranteed, error margin. The
key issue there is on the existence and capabilities of appropriate tools, and
on whether the assumptions that they put on the behaviour of platforms and
applications are valid for the system under test. The GENESYS architecture
principles on complexity management, component-based design, composability,
etc., will allow raising the abstraction level at which performance modelling and
evaluation is performed, and should have a significant impact on this situation.

Figure 6.17 outlines two different approaches as examples where the main
focus of the first is software architecture performance analysis/evaluation us-
ing Layered Queueing Network (LQN) performance models; and the second is
aimed at application-platform performance analysis/evaluation using transac-
tion level simulation of workload models of an application mapped on capacity
models of an execution platform.

6.5.2 Power/energy evaluation

It is obvious that to be able to manage power-energy issues, trade-offs, of-
ten dynamic, with respect to performance are needed. Applications that are
usually considered to transform to embedded software do not consume power-
energy per se, but their execution on a MPSoC causes power-energy consump-
tion in the various components of the platform (processors, memories, inter-
faces, interconnects, power supply/conversion itself etc.). Therefore, there is
an interaction of application architecture and platform architecture in handling
power/energy issues and an assumption is made that the MPSoC platform
contains appropriate means for planning/deciding (e.g. some kind of power-
energy /resource manager) and for controlling (e.g. DVFS controls, clock-gating
and/or power-gating).

In the era of MPSoCs, the power/energy estimation needs to be done at
system-level, i.e. effects of both the application and platform should be in-
cluded. When executing the application functionality in the form of embedded
software, as well as system (platform) software, on a platform causes power to
be consumed in the hardware resources and their interactions: processing ele-
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ments, various memory elements and interconnections. The amount of energy
spent depends on the internal state of each element.

In addition to spreadsheet and analytical models of power/energy, system-
level simulation is the most researched technique.

6.5.3 Reliability and availability evaluation

Reliability is defined as the probability of the failure-free operation of a system
for a specified period of time in a specified environment. Service reliability
extends the traditional reliability definition, requiring in turn that either the
system does not fail at all for a given period or it successfully recovers state
information after a failure for a system to resume its service as if it was not
interrupted. Availability is measured as the probability of a software service
or system being available when needed. Reliability and availability are often
defined as attributes of dependability, which is ”the ability to deliver a service
that can justifiably be trusted”. From an architecture point of view, reliability
and availability are execution qualities of a system.

In [22] architecture-based reliability evaluation methods are categorized into
state-based, path-based and additive models. All of them are analytical meth-
ods. The state-based models use the probabilities of the transfer of control
between components to predict the system reliability, whereas the path-based
models compute the reliability of composite components based on the possible
execution paths of the system. The additive models address the failure inten-
sity of composite components, assuming that the system failure intensity can
be calculated from component failure intensities.

Simulation models are used in testing and operational phases [21]. The
aim of simulation is to identify components’ criticality to the reliability of
an application and detect faults and the number of failures in applications.
Thus, simulation models are domain specific and can be regarded as optional
approaches in the GENESYS methodology. Monitoring methods use a running
system as a source and therefore they are considered only if they give support
for architecture-based reliability prediction.

The GENESYS methodology supports the reliability and availability eval-
uation by defining methods and techniques that help to consider reliability and
availability at three levels: system, architecture and components. Therefore,
reliability and availability evaluation is based on the following works: reliabil-
ity prediction of components based architectures [65], reliability prediction in
model-driven development [66], reliability evaluation of service architectures
and software families [29] and trustworthiness evaluation and testing of open
source components [17]. These approaches have been selected for the starting
point based on their contradictory contributions to reliability evaluation con-
cerning scope of evaluation, modelling languages, abstraction levels, evaluation
techniques and tool support. Except the last one, the methods are analytical
methods based on architecture models. The last one is an integrated approach
that exploits reliability measurements in order to improve the accuracy of pre-
diction.

Figure 6.18 depicts the overview of the phase where the reliability and
availability of the components, architecture and the whole system are pre-
dicted based on analytical models and measured reliability values of existing
components. The overview is based on three prediction approaches which will
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Figure 6.18: Input, output and support for reliability /availability evaluation

be introduced next. All these approaches are model-driven. Thereafter, a
couple of mature commercial tools that support different kinds of analysis are
introduced.

6.5.4 Safety analysis

A safety critical system is a system that an action incidence (not performed, or
performed incorrectly in logic or in time), could result in danger, injury, death,
or property damages. An intrinsically safe system, on the other hand, cannot
cause harmful exposures or damages under normal or abnormal conditions even
when the equipment and personnel are in their most vulnerable condition [47,
43].

Safety properties are normally defined by using two factors: hazard and
its risk. Hazard is a system state potentially causing accidents, the risk is
concerned with the degree of acceptance of the hazard in certain environmental
conditions, determined by severity, probability, exposure time, operation modes
and possible mitigation of the hazard’s effect.

A safety assessment process provides analytic evidence showing compliance
with system requirements. The process includes specific assessments conducted
and updated during system development; both processes interact along the
product life-cycle. A general safety assessment processes are structured as
follows [16]: Functional Hazard Assessment (FHA), Preliminary System Safety
Assessment (PSSA) System Safety Assessment (SSA), Common Cause Analysis
(CCA).

The inherent properties of the GENESYS architectural style and its do-
main specific instantiations, allows a modular certification approach. For the
instantiated systems (aligned with the GENESYS architectural style and ser-
vice template), the overall system can be subdivided into subsystems with
different levels of criticality; each of them can then be individually certified
to the appropriate level of criticality, avoiding the full product certification
to the highest criticality level of all subsystems, reducing cost and simplifying
the complexity of certification effort [53]. Overview of the safety analysis in
depicted in Figure 6.19.
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Composability Evaluation

Composability is a concept that refers to integrability and interoperability of
components and services. Integrability is the ability to make separately de-
veloped components and services of the system to work correctly together.
Systems are based on integrated components, when the components are used
as building blocks in product development. However, the black-box nature of
components and insufficient component documentation make the integration
of components difficult. Successful component integration requires that the
component matches the functional and quality requirements of a system and
interoperates with other components of the system.

Two approaches have been suggested to be used together to estimate and to
avoid integration mismatches in these two cases: model-based integration and
component-based integration. The approaches are different, but their results
are complementary. The purpose of both approaches is to identify clashes,
which yield mismatches. Corresponding with the approaches, two types of
clashes/mismatches can be detected:

e Model-based integration yields model constraint and rule clashes/mis-
matches

e Component-based integration yields component feature clashes/mismatches.

The model-based integration approach tries to combine information from dif-
ferent views to allow precise reasoning. Integrating architectural views means
that problems and faults are still relatively easy (and inexpensive) to fix, be-
cause architectural issues are considered early in the development life-cycle.
The component-based integration approach can be used early for risk assess-
ment of existing components/services while little information is available. The
approach uses a set of conceptual features for describing components and the
connections between the components. When composing systems, many poten-
tial architectural mismatches can be detected by analyzing their various choices
for conceptual features. Feature mismatches may occur when components have
different or same (collision) characteristics for some particular feature, such as
concurrency, distribution, dynamism, layering, encapsulation, supported data
transfers, triggering or capability. Component features can be derived through
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observation and assumptions of their external behaviour (black-box analysis)
without knowing their internal workings.

6.5.5 Evolvability Evaluation

Evolvability is a concept related to several quality attributes, e.g. flexibility,
adaptability, extensibility, maintainability, and modifiability. Therefore, many
evaluation methods cover one or more quality attributes of evolvability. Most of
these methods are scenario based methods, and thus the first step in evolvability
evaluation is to define what to evaluate and why. The idea is to first concentrate
on the part of the system architecture that influences the most on quality (e.g.
size, criticality, complexity), and when that part is proofed to be correct, the
evaluation focuses on the other parts that have lower impact on quality.

6.6 Integrated Tool Environment

This section introduces the proposed architecture for the GENESYS design
environment. The high level architecture of the tool environment is illustrated
by Figure 6.20.

The basis of the tool environment is the interface to the development infras-
tructure server that manages all the assets (models, source code, documents,
etc.) required during the development process. It should support team col-
laboration and versioning for all kinds of artefacts. This storage layer also
incorporates traceability and navigation support by allowing the inter-artefact
link creation and traversal.

The tool orchestration layer support the tool interactions on the client side.
Its main purpose is to organize the information flow between the tools and to
offer a tool automation environment for the automatic execution of point tools
triggered by the design workflow.

The generic workbench offers integration interfaces for the point tools and
implements a generic user interface (GUT) that gives access to the lower layers of
the framework (design artefact handling, queries, transformations, navigation,
design workflow).

Point tools (performing a specific step in the development process) can
be either integrated on the top of the core design environment or (in case of
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Figure 6.21: Overview of transformations in the development workflow

COTS tools) can be interfaced with custom tool adapters. Point tools are
invoked either by the user or (in case of automatic tools, like code generators,
or some analysis tools) by the tool orchestration layer.

The Design Artefact Store (DAS) supports the management of various de-
velopment artefacts like models, source code, documents, reports, and so on.
The DAS is a server component that stores the design artefacts in a central
(versioning) repository. It also contains an artefact catalogue (project tree for
all development projects) and user rights management in order to support the
access control rule definition on the various design artefacts. The query en-
gine supports the definition of custom queries/views on the repository or on
different models. The navigation and traceability support module implements
a uniform inter-element trace definition, maintenance, and navigation frame-
work that allows the tracing of concepts throughout design steps. The model
transformation module executes automatic transformations on the various ele-
ments in order to synchronize various models or to derive analysis models from
engineering ones.

The communication and event layer serves as an interface for the developer
PCs (clients) that run the GENESYS Development Environment. The client-
server architecture allows for real-time team collaboration both on models and
textual documents and the immediate synchronization of models between de-
velopers on model changes.

The GENESYS tool environment has to support several different model
transformations in order to provide all the functionalities described in the ear-
lier Chapters. In the followings, a brief outline of the most important trans-
formations will be given. Figure 6.21 illustrates the key transformation paths
in the development workflow. Only some important models and modelling
languages are shown. Dashed lines represent manual or semi-automatic trans-
formations, continuous lines represent automatic ones. Bidirectional arrows
represent bi-directional (or synchronization-like) transformations.

MARTE to BIP transformation is summarized as an example (Table 1).
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Table 6.1: Summary of mapping from MARTE to BIP

Due to the fact the UML-MARTE and BIP are two different languages they
focus on different aspects of embedded systems. Thus, there are issues that pre-
vent a full transformation without making assumptions. Many of these issues
occur due to the great degree of semantics that MARTE stereotypes introduce
in the annotated models. The issues located during the MARTE to BIP trans-
formation development suggest that making a backward transformation could
be difficult since BIP does not store any kind of MARTE semantics annota-
tions. This problem could be resolved by identifying behavioural patterns and
associating them with concrete MARTE concepts.

The IBM Jazz platform? is a novel integrated collaboration enablement
technology. It is still under development, but it supports nearly all the fea-
tures required for the Infrastructure Server of the GENESYS tool chain. It
contains a versioning artefact store (only on the file level), collaboration utili-
ties, requirements management and traceability framework, and a customizable
design workflow. Its main drawback is the lack of central model management
and transformation support, and the lack of tool automation support. As it
has an open, extensible architecture, these missing functions can be added by
integrating other tools to it.

Eclipse EMF CDO? is a distributed implementation of the industry stan-
dard Eclipse Modeling Framework (EMF). It features a central model reposi-
tory stored in a standard relational database that can be reached by multiple

2IBM Jazz Platform Information Portal, http://www.jazz.net/
3Eclipse EMF CDO Project Home Page, http://www.eclipse.org/modeling/emf/
?project=cdo#cdo
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clients simultaneously. Although some important features are still missing (e.g.
model versioning) it can be a solid foundation for the model artefact store.
Given its open architecture, the integration of versioning and query/transfor-
mation support should be feasible.

One of the key technologies is the selection of an appropriate model trans-
formation technique. The complexity and diversity of transformations during
the development process necessitates the selection of a powerful tool. There
are several proposals, like VIATRA2* and ATL® from the Eclipse project, but
none of them has all required features (live and batch transformations, EMF
integration, incremental pattern matching, etc.).

In case of client side technologies, the selection is straightforward. The
Eclipse Framework is the most widespread tool integration framework nowa-
days, and its importance still growing. It contains several components that can
be easily reused by the tool environment.

As a summary, we can state that most of the important technologies are
present currently, but there are several missing elements that should be created
in order to achieve a complete model-driven tool chain that will be capable of
handling real size development projects.

6.7 Conclusion

The definition of the GENESYS methodology framework is based on seven prin-
ciples which were derived from the requirements identified and defined by the
authors with the help of industrial partners involved in the GENESYS project.
To summarize, we justify the completeness of the GENESYS methodology
framework by illustrating how these principles are supported by the method-
ology framework.

Principle 1: Embedded systems engineering process The methodol-
ogy framework provides the following support for the whole life-cycle of em-
bedded systems engineering:

e A process model with appropriate modelling and evaluation methods that
support modelling and early verification and validation from require-
ments specification to validated system architecture models (top-down
approach).

e 7 Each modelling and evaluation phase is supported by as a set of tools
which can be integrated by means of the platform of the integrated tool
environment.

e Adoption of the UML-MARTE modelling language is supported by guide-
lines and a set of examples.

e A process model defines how the existing services and components (mod-
els or code) from the application service repository and the platform mod-
ule library could be used in application and platform architecture design.
Appropriate integration techniques have been introduced (bottom-up ap-
proach).

4VIATRA2 Model Transformation Framework, http://www.eclipse.org/gmt
5Atlas Transformation Language, http://www.eclipse.org/m2m/atl
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It should be noted that the methodology framework allows for exploration,
refinement and iteration. For example, the approach can be applied with more
abstract (and less detailed) models for feasibility assessment at an early stage
of development. Later on the drawn conclusions can be validated with more
mature (and more detailed) models until finally signed off for realisation.

Principle 2: Model driven architecture development The model driven
architecture design is supported as follows:

e The process model follows the Y-chart model by separating application
and platform architecture design at the abstract (logical/PIM) level. The
PSM model is achieved by allocating application models to platform mod-
els and transforming and configuring the combined models for a specific
system model. These three architecture design phases (application, plat-
form and system allocation/configuration/refinement) are separate and
provide models at different abstraction levels.

e A set of identified model transformations (horizontal and vertical) have
been defined as part of the integrated development environment.

The top-down vertical transformation is supported by the selection of a lan-
guage suite, i.e. UML2, SysML and MARTE. Horizontal transformation, i.e.
model-to-model transformations are needed for quality evaluation. The defined
MARTE-BIP transformation is an example of such a needed transformation.
That is to be supported by the interactive development and integration envi-
ronment. Hybrid transformation is supported only in one case, where model-
based reliability testing is integrated with reliability prediction. As summary,
all transformations, i.e. vertical, horizontal and hybrid need improvements and
further research activities.

Principle 3: Model representation The model representation is sup-
ported by defining:

e the views required in each modelling phase,

e a primary modelling language and possible extensions needed in different
phases of the modelling process,

e how applications are to be mapped to the platform model, and

e schedulability analysis techniques and tools for checking architectural
models before the quality evaluation phase.

Although the model representation is covered to a large extent, we antici-
pate that representation of quality properties and model consistency checking
still need further studies, at least in applying MARTE in real industrial cases
and making existing tools smoothly applicable in instances of the GENESYS
methodology framework.
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Principle 4: Modelling semantics Semantics modelling is covered only to
the extent supported by the UML2 modelling language, e.g. semantics of ex-
changed data and interface types. However, in order to fully exploit semantics
modelling, much more should be defined; For example, service semantics as part
of the platform module library and application service repository; ’standard-
ization’ of linking interfaces and technology independent interfaces by means
of interface ontologies; and defining rules for instantiation and run-time usage
of platform services and developing (semi)automatic tool support for design
time and mechanisms for run-time management. Thus, modelling the seman-
tics of embedded systems services will be one of the key research items of future
Artemis projects.

Principle 5: Formal methods The use of formal methods for modelling
platform services for safety critical systems is supported by:

e Theory of formal modelling based on user functionality hierarchy and
logical component architecture.

e Verification by model checking and/or interactive theorem proving

e Verification tools for model checking and manipulation and evaluation of
timed automata.

The use of the BIP framework for composability evaluation is possible by
implementing the defined model transformation. The use of existing model
checking tools will be possible through the integrated development environment
but further studies are needed on the development of appropriate adapters for
commercial, proprietary and/or open source tools.

Principle 6: Evaluation of quality and non-functional properties.
The evaluation methods, techniques and tools introduced in this report cover
most of the quality and non-functional properties that were defined to be of
high importance in embedded systems engineering in the Artemis SRA.

The only exception is information security. Information security evaluation
was intended to be covered by the results of the ITEA/Eureka project €-
Confidential, which was running concurrently with GENESYS and a trusted
security platform as its focus. However, the results available were not mature
enough to be included in this document.

The draft version of the €-Confidential methodology introduces an overview
of the Secure Software Development Lifecycle (SSDL) methodology with a set
of phases and activities. These activities can be merged to the GENESYS pro-
cess model in the similar way as the safety analysis activities have been done.
For example, in €-Confidential the architecture design phase includes ’Cre-
ate threat model’ and ’Secure architecture review’. The Create threat model
activity is part of the system allocation/refinement/configuration phase and
the secure architecture review activity should be part of the quality evaluation
phase in the GENESYS process model. Because any evaluation method or
technique was not introduced in SSDL, we decided not to provide a partial non
validated evaluation method for one important quality attribute. However, we
assume that security evaluation could exploit and adapt many of the existing
safety evaluation techniques and methods.



6.7. CONCLUSION 125

Principle 7: Interactive development and integration environment.
The methodology framework should facilitate early validation and verification
by supporting HW and SW partitioning, simulation and (virtual) prototyping,
and heterogeneous simulations including models and code. This principle is
covered by the integrated development environment to the following extend:

e Model transformations in the development workflow have been identified
and shortly specified. MARTE-BIP transformation is introduced as an
example.

e Live, bidirectional and incremental model transformations between DSLs
and MARTE are considered as a solution for integrating domain specific
design with standard based model based early V&V.

The support for integrated, automated model-to-model and model-to-text trans-
formations is a key to the success of the model-driven development approach.
Therefore, an initial specification of an interactive development and integra-
tion environment has been defined. However, further research and experimental
studies are required in order to make it possible to orchestrate model based
embedded systems engineering based on diverse models, methods and tools and
provide forward and backward traceability for the whole design flow. Especially
there are two research items that needs further investigations: a) integration of
distributed model storage and model transformation support and b) creation
of a uniform and extensible solution for tracing artefacts throughout the life
cycle of embedded systems.
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(TTNoC). It serves for the interconnection of multiple, possibly heterogeneous

IP blocks called micro components. Figure 7.1 illustrates the structure of the
GENESYS prototype.

I ] I 1 I 1
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Figure 7.1: Overall structure of the GENESYS Prototype

Micro components (MCs) are made up of a host and the Trusted Interface
Subsystem (TISS). The purpose of the TISS is to ensure that a fault of a host

127
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cannot lead to a violation of the micro component’s temporal interface specifi-
cation. Besides this, special purpose micro components for integrated resource
management and reconfiguration, e.g. the Trusted Resource Manager (TRM)
and Resource Management Authority (RMA), are included. The TRM and the
RMA are used for integrated resource management and realize part of func-
tionality of the Global Resource Management(GRM). The RMA is responsible
for computing new allocations of communication resources, which are written
into the TISSes by the TRM.

7.1.1 Implemented Architectural Services of the Reference
Architecture Template

The prototype implements selected core services, namely periodic communi-
cation, sporadic communication, common time and reconfiguration. Further-
more, the optional service for voting is implemented.

Periodic Communication

The NoC transports periodic messages from one sender port of a micro com-
ponent to a set of receiver ports at distinct micro components. The periodicity
stems from the specification of periods and phases (temporal offset with refer-
ence to the begin of a period). The instant of transmission, which is expressed
in the notion of periods and phases in a time-triggered communication sched-
ule, is known a priori at each participant of communication. Consequently,
communication is predictable and deterministic with respect to timing, la-
tency, and arrival time. Periodic messages are transported in encapsulated
communication channels, which assure that a fault, e.g., a software fault, in
the micro component cannot disrupt the communication between other micro
components or local computation in unrelated micro components. By design,
encapsulation entails error containment. That is, encapsulation prevents tem-
poral interference, e.g., stalling messages or delaying computation in another
micro component, and spatial interference, e.g., overwriting a message pro-
duced by another micro component. As a result of encapsulation, we avoid
dealing with interfering subsystems, which is more difficult to understand than
to reason about the behaviour of clearly encapsulated subsystems. In other
words, encapsulation facilitates complexity reduction and composability. In
the GENESYS reference architecture, the Trusted Subsystem is the architec-
tural element that enforce encapsulation and error containment among micro
components.

Sporadic Communication

Similar to periodic messages, the NoC supports sporadic messages. For spo-
radic messages, the constraint of periodicity of messages is relaxed. That is,
a sporadic message need not necessarily be sent in each period. The sending
micro component makes the decision, whether a message is sent or not, de-
pending on the application semantics of the software executed in that micro
component.
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Common Time

The NoC maintains a global notion of time. The purpose of the common time
in GENESYS is to synchronize communication activities between micro com-
ponents. For this purpose, each micro component contains a local replication
of that common time, whereas these replications are internally synchronized
to a precision of one macro tick (approximately 953 ns in the current proto-
type implementation). Additionally, this core service establishes accuracy to
an external reference time. For instance, the reference time is supplied by an
external, deterministic communication network, which also entails a common
time, such as Time-Triggered Ethernet (TTE), or an external time synchro-
nization technologies such as GPS, DCF77, or NTP.

Voting

To detect and tolerate single-core failures in a dependable system, Triple Mod-
ular Redundancy (TMR) can be implemented. When using Triple Modular
Redundancy, a core is replicated and a voter is used to perform a majority
vote over the results of the replicated cores. Thus, the intended service can be
provided even in case of a failure of one of the replicated cores. Such a voter
has been implemented in the scope of the prototype in the form of a hardware
middleware module (coded in VHDL) named the Voter Plug-In. The Voter
Plug-In takes advantage of the time-triggered nature of the communication
service, which allows the voter to determine exact time instances at which the
input data from the three replicated cores should be valid and equal. There-
fore, the Voter Plug-In operation is organized in time slices, starting with the
first state data sent by one of the replicated cores and lasting until the correct
result is provided by the voter. Such a time slice is called a voting round.
Since voting is performed only on state data, a Voter Plug-In round consists
of receiving three state ports of equal length from the three replicated cores,
determining the correct voting result, and forwarding this result and the cur-
rent state port status (valid data/corrupted data) to the attached application
computer.

Reconfiguration

Reconfiguration denotes the process, when resource allocations (e.g., the time-
triggered communication schedule, introducing new periodic and sporadic mes-
sages) are modified in the NoC. New resource allocations can be calculated by
a general purpose micro component at run-time, or can be determined offline
before deployment and fetched at run-time. The reconfiguration core service
investigates new resource allocations by checking the compliance with con-
straints in the time-triggered communication schedule, it also tracks potential
collisions in the NoC, and approves it for distribution.

7.1.2 Outline

Section 7.2 describes the hardware, on which the GENESYS prototype has been
built. Furthermore, it reveals the internal design of micro components used in
that prototype. Section 7.3 explains features and functions of the implemented
demonstration application. The results of this implementation are summarized
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in the following section 7.4. Finally, we validate the implementation concerning
the architectural core services in section 7.5.

7.2 Prototype Hardware

An MPSoC development kit depicted in Figure 7.2 has been used for the pro-
totype implementation. This MPSoC development kit consists of several PCB
devices equipped with FPGAs of the Altera Cyclone II'TM series and different
CPUs. The board serves as an emulation of an MPSoC, where the FPGA
implements the NoC and the CPU boards represent the micro components.

Figure 7.2: The MPSoC Development Kit equipped as used in the prototype

7.2.1 Mainboard

The basis of this prototype set-up is a Mainboard (see Figure 7.3) that provides
9 Powerlink extension slots, on which the other PCB devices can be mounted
as add-on boards. Furthermore, the PCB devices can be stacked vertically
beginning at the Powerlink extension slots on the Mainboard. Besides the
Powerlink extension slots, the Mainboard possesses one Cyclone II EP2C70
FPGA.

7.2.2 FPGA Board

An FPGA Board as shown in Figure 7.4 is assembled with an Altera Cyclone
IT EP2C35. This FPGA is free to take particular entities of the GENESYS
prototype. On the one hand, an FPGA Board can be used to hold a Front-End
in order to wrap the physical signals of the uniform network interface to the
interface of CPU Board that is used to realize application functionality (i.e.,
that hosts the implementation of a job). On the other hand, an FPGA Board
can also contain a Front-End plus a "softcore” CPU (e.g., a LEON3 SPARC
V8 Processor core, an Altera Nios II Embedded Processor). In the latter case,
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Figure 7.3: The MPSoC Mainbaord

the FPGA Board embodies a complete host and provides the computational
resources for the execution of a job itself.

Figure 7.4: The FPGA Board

7.2.3 Basic I/0O Board

The Basic I/O Board provides interfaces to the external environment. Usually,
a Basic I/O Board will be stacked upon an FPGA Board, so that the host in
the FPGA Board can operate the physical interfaces of the Basic 1/O Board.
It features a serial RS232, CAN, LIN, TTP/A, Ethernet, and GPIO.
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Figure 7.5: The Basic I/O Board

7.2.4 Multimedia I/O Board

Similar to the Basic I/O Board, but the interfaces can be regarded as multi-
media devices. For instance, a Multimedia Board is equipped with an AC97
compatible audio device. Also, a colour touch screen LCD display can be driven
by the Basic I/O Board. Moreover, the Multimedia Board contains an USB
controller that can function as an USB host as well as an USB device.

Figure 7.6: The Multimedia I/O Board with touch screen LCD display
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7.2.5 Physical Constraints

Note that the MPSoC Development Kit does not provide a single FPGA to
hold a whole design of the GENESYS prototype. Instead of this, all entities
are spread across several FPGAs of FPGA Boards. Thus, the MPSoC Devel-
opment Kit "emulates” an SoC. The reason for this hardware partitioning is
that no single FPGA, which would have been big enough to house a complete
GENESYS prototype, had been available at that time, when the development
of the GENESYS prototype started.

7.2.6 Partitioning of the Prototype

The MPSoC Development Kit is the main prototype hardware. We run the
GENESYS prototype on this hardware. Figure 7.7 graphically describes the
distribution of architectural entities to the given hardware components.

The design example, i.e. the GENESYS prototype, on the MPSoC Devel-
opment Kit features 9 hosts. The RMA as well as the Gateway occupy one host
each. The Diagnostic Unit reserves another one (at slot 0). The 6 remaining
hosts are free for the DASs of the demonstration application. The TRM is a
stand-alone unit and is not realized on a host.

In total, the design example features 10 TISSs, which are connected by
the TTNoC consisting of 6 Fragment Switches. The Fragment Switches are
arranged into an 2x3 mesh topology in this design example.

Moreover, we learn from Figure 7.7 that the TSS (the 6 Fragment Switches,
the 10 TISSs, and the TRM) resides in the EP2C70 FPGA of the Mainboard.
The 9 hosts are implemented in the EP2C35 FPGAs of the FPGA Boards
mounted on the Powerlink extension slots of the Mainboard. Basic I/O Boards
and Multimedia Boards, which are required by the demonstration application.

Each host utilizes one Nios II Embedded Processor as its application com-
puter. Besides this, a host possess memory controllers to operate the memory
chips of the FPGA Boards, and other peripherals such as a JTAG for debug-
ging. All peripherals are interconnected by the Altera Avalon Memory-Mapped
Interface. Considering the entities of the GENESYS prototype, a host must be
equipped with a Port Memory (32 KByte on-chip memory) and a Front-End
suitable for the Avalon Memory-Mapped Interface. Besides this, the Gateway is
a host that features an additional Time-Triggered Ethernet (TTE) Controller.

In fact, the design of the TRM is similar to a host, except for the number
of memory controllers, as there a not as many memory chips available on the
Mainboard as on an FPGA Board.

7.2.7 Micro components

In this section we examine the interiors of micro components, as they are used
in the demonstration application.

Trusted Resource Manager (TRM)

The TRM in this GENESYS prototype uses a Altera Nios IT CPU and executes
a custom embedded real-time operating system. Figure 7.8 list the hardware
components that make up the TRM. Moreover, Table7.1 lists parameters of
the TRM such as operation frequency and available memory.
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Figure 7.7: Partitioning the GENESY'S prototype on the MPSoC Development

Kit

‘onnections

[ [l T[] |

0o O o o

Module Name Description Clock Base End IRQ

cpu Mios Il Processor

instruction_master Avalon Memory Mapped Master clk

data_master Avalon Memory Mapped Master IRQ O IRQ 31F—

jtag_debug_module Avalon Memary Mapped Slave 0x00008000 (0x000087FT
ssram CYTC1371 _registered

s0 Avalon Memary Mapped Slave clk 0x00600000 [0x007 T
epcs_controller EPCS Serial Flash Controller

epcs_control_port Avalon Memary Mapped Slave clk 0x00008800 |(Ox00008FFT >—ﬁ|
sysid System ID Peripheral

control_slave Avalon Memory Mapped Slave clk 0x00009040 [0x00009047
LED_pio PIO (Parallel 110)

s1 Avalon Memory Mapped Slave clk 0x00009070 |0Ox0000907F
SwitchCtrl_pio PIO (Parallel 110)

=1 Avalon Memary Mapped Slave clk 0x00009050 (0x0000905F
jtag_uart UTAG UART

avalon_jtag_slave Avalon Memary Mapped Slave clk 0x00009060 (0x00009057 >—{I:|
portmemory On-Chip Memory (RAM or ROM)

s1 Avalon Memary Mapped Slave clk 0x00000000 [0x00007 1

s2 Avalon Memary Mapped Slave ttnocclk 0x00000000 [0x00007 1
ttsoc_frontend TTSoC FrontEnd (Avalon)

pi Avalon Memory Mapped Master ttnocclk

ci Avalon Memory Mapped Slave 1k 0x005FFFFT
timer_1 Interval Timer

=1 Avalon Memary Mapped Slave clk 0x00009000 (0x0000901F
timer_2 Interval Timer
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Figure 7.8: Components within the TRM
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CPU Altera Nios II/f
2 KB instruction cache, 2KB data cache

~ 91 MHz

System Frequency

Memory 2 MB external SSRAM
32 KB internal Port Memory
Local I/O 1 user LED

"Enable” wires for all Fragment Switches

Table 7.1: Parameters of the TRM

RMA and Nios II based Hosts

The RMA and one type of host used in the demonstration application utilize
the same hardware design. Consequently, the difference lays in the executed
software.

onnections Module Name Description Clock Base End IR@
B cpu Nios Il Processor
instruction_master ‘Avalon Memory Mapped Master clk
—< data_master Avalon Memory Mapped Master IRQ O IRQ 31
ftag_debug_module Avalon Memory Mapped Slave 0x00005000 |[0x000057TF
E epcs_controller EPCS Serial Flash Controller
epcs_control_port Avalon Memory Mapped Slave clk 0x00005800 |0x00005FFfF
E sdram 'SDRAM Controller
s1 ‘Avalon Memory Mapped Slave clk 0x02000000 [OxO2FFffff
E ssram CY7C1371 _registered
s0 Avalon Memory Mapped Slave cli 0x00400000 (OxQOSTTTFT
= sysid System ID Peripheral
— control_slave ‘Avalon Memory Mapped Slave clk 0x00006050 |0x00005057
B led_pio PIO (Parallel 110)
— s1 Avalon Memory Mapped Slave clk 0x00006040 (0x00006041
E jtag_uart JTAG UART
— avalon_jtag_slave ‘Avalon Memory Mapped Slave clic 0x00006060 |0x00005057 )—{1]
B portmemory On-Chip Memory (RAM or ROM)
— s1 Avalon Memory Mapped Slave clk @ 0x00000000 [0x00003Fff
s2 Avalon Memory Mapped Slave ttnocclk & O0x00000000 |0xQ0003FFf
C B ttsoc_frontend TTSoC FrontEnd (Avalon)
pi Avalon Memory Mapped Master ttnocclk
M ci ‘Avalon Memory Mapped Slave 1k 0x007 £ 1F
= timer_1 Interval Timer
— s1 Avalon Memory Mapped Slave clk 0x00006000 (0x0000601T
B timer_2 Interval Timer

Figure 7.9: Design of the RMA and Nios II based hosts

Further information concerning this design entity are given in Table 7.2.

CPU Altera Nios II/f
2 KB instruction cache, 2KB data cache
Floating Point Unit (FPU)

~ 91 MHz

System Frequency

Memory 16 MB external SDRAM

2 MB external SSRAM

16 KB internal Port Memory
Local I/O 1 user LED

Table 7.2: Parameters of the RMA and Nios II based hosts
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Time-Triggered Ethernet Gateway

Figure 7.10 shows the hardware design of the Time-Triggered Ethernet (TTE)
Gateway. Apparently, its "heart” is the Time-Triggered Ethernet Controller,
which realizes the connectivity to TTE networks.

B sdram 'SDRAM Cortroller
——3| s1 Avalon Memory Mapped Slave clk 0x01000000 [OxOL1TFFTFf
B jtag_uart JTAG UART
—_— avalon_jtag_slave Avalon Memory Mapped Slave clk 0x02606040 (0x02505047
B epcs_controller EPCS Serial Flash Controller
epcs_control_port Avalon Memory Mapped Slave clk 0x02605800 |0x02605FfF
B timer_1 Interval Timer
—_— sl Avalon Memory Mapped Slave clk 0x02606000 |(0x0260601T
B timer_2 Interval Timer
s1 Avalon Memory Mapped Slave clic 0x02606020 |0x0260603T g
B sysid System ID Peripheral
—_— control_slave (Avalon Memory Mapped Slave clk 0x02606060 (0x02508067
E cpu_gateway Nios Il Processor
= instruction_master Avalon Memory Mapped Master clk
[_"—< data_master Avalon Memory Mapped Master IRQ O IR0 3164
jtag_debug_module Avalon Memory Mapped Slave 0x02605000 (0x026057 ff
B ttecontroller TTEController
—_— txeni (Avalon Memory Mapped Master clk
— txgueue Avalon Memory Mapped Master clk
(—< rxcni (Avalon Memory Mapped Master clk
r—< rxqueue (Avalon Memory Mapped Master clk
config (Avalon Memory Mapped Slave clk 0x02600000 (0x02503fFff ]
clksync Avalon Memory Mapped Slave cli 0x00005040 [0x0000507 >——~[
B cpu_clksync Nios Il Processor
instruction_master Avalon Memory Mapped Master clk
data_master Avalon Memory Mapped Master IR O IR 31—
ftag_debug_module Avalon Memory Mapped Slave 0x00004800 (Ox00004FFf
B mem_clksync On-Chip Memaory (RAM or ROM)
s1 Avalon Memory Mapped Slave clk 0x00002000 |Ox00003FFf
B portmemory On-Chip Memory (RAM or ROM)
51 (Avalon Memory Mapped Slave clk & 0x00000000 |0x0Q0000fFf
s2 Avalon Memory Mapped Slave ttnocelk & O0x00000000 |Ox00000FFf
C B ttsoc_frontend TTSoC FrontEnd (Avalon)
pi (Avalon Memory Mapped Master ttnocelk
—_———% ci Avalon Memory Mapped Slave ttnocelk 0x02200000 |0x0O23FFFFF b—Hl

Figure 7.10: Internals of the TTE Gateway

CPU Altera Nios II/f
2 KB instruction cache, 2KB data cache
System Frequency | =~ 52 MHz

Memory 16 MB external SDRAM
16 KB internal Port Memory
Local I/O 1 user LED

Table 7.3: Parameters of the TTE Gateway

Aeroflex Gaisler LEON3 based Hosts

The LEON3 CPU, part of the open source Gaisler Library (GRLIB), is a
SPARC V8 compliant soft-core (i.e. synthesisable) 32-bit processor. LEON3 is
highly configurable by the use of VHDL generics. The main features are: there
is support for MMU, FPU, symmetric multi-processor setups, instruction/data
caches, on-chip debug support, hardware multiply /divide AMBA v2 is used to
interconnect the CPU with periphery cores like a memory controller, a SD-card
IP-core or an UART controller.

When work on this GENESYS prototype started, LEON3 had been the
only soft-core CPU available for our target technology that has MMU support
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on Linux. Even though there are MMU-less Linux patches available, without
MMU, programs need to run in physical address-space (fork restrictions) and
e.g. kernel module loading is not possible. We wanted to use Linux, especially
for the Multimedia host, because of the wide selection of available open-source
software and drivers.

So, the LEON3 based host is the most significant design in the GENESYS
prototype, as the majority of the micro components are realized this way. Ac-
cordingly, this subsection describes the design of the LEON3 user host in
more detail. We focus on where GRLIB is extensively used for interfacing
FPGA board hardware and the available extension boards (Multimedia and

I/O board).
Gloichmann/
X |
Opencores TUVienna || ooy 5 SDRAM || TU Vienna
I e hear | wsml'l“u Contraller Frontend
I_ _ T
GRLIB

Amba AHE Amba AHB Bus 1 l
1 r ||— -

GRLIB
GRLIB GRLIE GRLIB TU Vienna
GRLIB Etharnet
Multiprocessor Timer General BOOT ROM ‘ LCD Controller | | Controller
IRQ Cantroller Purpase IO | |
GRLIB t t

LRIt i Amba APB Bus

| GRLIB
APB UART |

GRLIEB
5P| C

Figure 7.11: Design of the LEON3 based hosts

The LEON3 system features a high performance Amba AHB bus as well
as a APB bus for low-bandwidth intensive IP cores. Figure 7.11 illustrates
the design of the LEON3 user host. Cores connected with blue arrows are bus
slaves, while cores connected with red arrows are bus masters. The periphery
available on the extension boards is optionally controllable by the dashed IP
cores.

7.3 Demonstration Application

One MPSoC Development Kit has been used for the demonstration applica-
tion [55]. This demonstration application consists of two Distributed Applica-
tion Subsystems (DASs): the control DAS and the multimedia DAS.

7.3.1 Overview

Figure 7.12 depicts the design of the demonstration application. The chip
"TTSoC I” realizes both, the Control DAS and the Multimedia DAS. The figure
shows the used micro components (MCs), as well as their physical positions on
the Development Kit. Figure 7.13 further outlines the mapping of implemented
function onto the prototype hardware of the MPSoC Development Kit.
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Figure 7.12: Overview of Demonstration Application
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Figure 7.13: Mapping functions onto MPSoC Development Kit

A PC is used to run a racing car simulation where a simulated car provides
sensor values as inputs and takes the Control-DAS output as its actuator set-
values. A driving wheel sensor, which is made up of a steering wheel and
a Soekris Net 4801 embedded PC, is connected via Ethernet to the MC 2
and provides wheel, gas and brake pedals sensor input to the Control-DAS.
Concerning the Multimedia-DAS, a video of a spinning three dimensional cube
is calculated on MC7 and sent to MC 5 and MC 6, which also demonstrates
the multi-cast capabilities of the TTNoC.

Figure 7.14 shows the complete hardware setup that has been used for
the demonstration application. This comprises the MPSoC Development Kit,
a PC to run the simulation engine, and auxiliary devices such as a Time-
Triggered Ethernet (TTE) switch,a Soekris Net 4801 embedded PC, and a
steering wheel with pedals. The usage of each of these components is explained
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Figure 7.14: Complete hardware set-up for the demonstration application

in the following.

7.3.2 Control Distributed Application Subsystem

The control DAS is realized on a single (emulated) chip which communicates
over its Time Triggered Ethernet (TTE) gateway with the open-source racing
car simulation TORCS running on a PC system. Furthermore, the (emulated)
chip interfaces a steering wheel and brake and acceleration pedals on one of its
MGCs (i.e. MC2).

The set-up is used to control a vehicle in the racing car simulation. The
actual set points for all the simulated actuators are calculated on the respec-
tive micro component in the chip by processing the simulated sensor values
in a closed feedback-loop. This allows experiments with Steer-By-Wire and
Brake-By-Wire applications: e.g. Anti-Lock Braking System (ABS), Electronic
Stability Control (ESC), Cornering Brake Control (CBC), etc.

For the control DAS we decided to implement a simple Brake-/Steer-By-
Wire based Anti-Lock Braking System (ABS). ABS helps to keep a car steerable
during (emergency) braking. All wheels are prevented from getting locked, thus
they do not skid uncontrollably. A typical ABS (for e.g. motor-cycles, cars, air
planes, ...) consists of an Electronic Control Unit (ECU), two or more wheel
speed sensors (one sensor for each wheel) and two or more actuators responsible
for modifying the braking force applied on each wheel.

During a braking process, speed of the wheels is constantly checked and
if one or more wheels rotate considerably slower than other wheels, a locking
condition is prevented by reducing the braking force on those wheels that start
to lock.

TORCS (The Open Racing Car Simulator) is an open-source (GPL) racing
car simulation initially developed by Eric Espie and Christophe Guionneau in
the year 2000. The simulator can be used as ordinary car racing game, as Al
racing game and as research platform. For the latter use, TORCS has already



140 CHAPTER 7. PROTOTYPE IMPLEMENTATION

Figure 7.15: Screenhost of TORCS Racing Car Simulator

been chosen multiple times because of the clean C++ design, nice graphics for
visualization and adequate simulation (e.g. Northern Illinois University uses
it for teaching and research, Frauenhofer ESK Research Institute for visualiza-
tion, haptic feedback studies have been carried out for Nissan Motor by Kevin
Roundy, ...).

Figure 7.15 shows a screenshot of TORCS. The simulation includes tire and
wheel properties (tire pressure, springs, dampers, stiffness, etc.), car proper-
ties (forces, weight, transmission, suspension, engine, etc.), and aerodynamic
properties (ground effect, spoilers, ...). Beside the adequate simulation model
for testing brake-by-wire, the software design of TORCS features the develop-
ment of so called "robots”. Each car in a race is controlled by a single C++
class that may take input from physically present wheels and pedals, from an
Artificial Intelligence (AI) or from the network. This will make it especially
easy to directly control a car from the GENESYS prototype.

All channels of the control DAS operate in a frequency of 64 Hz, i.e. a
periodicity of 15,625 ms.

Even though messages and ports could be organized more efficiently for this
demo (e.g. to use a single port to transport all wheel speed values instead of
4), we decided to model a more realistic layout (e.g. as if each wheel speed
originated from a different speed sensor).

Sensor

The sensor consists of an USB steering wheel connected to the single-board
computer Soekris net4801 that operates Debian Linux 2.6. The USB steering
wheel is supported by the Linux Input Drivers project, so we can sample joy-
stick input data from the input subsystem. Furthermore, we have implemented
an UDP IP streamer that opens the joystick input device, parses the joystick
events for the wheel, pedals and button events and streams them to a config-
urable target UDP IP address. By using a bootable 512MB compact flash card
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where all required data and configuration is stored on, the Soekris single-board
computer starts and operates autonomously after power-up.

User 1I/0

The User I/O MC consists of a LEON3 based host equipped with the I/0
extension board. The host’s application computer runs the Snapgear Linux
2.6 distribution. The single Ethernet interface of the host is set up to receive
IP packets from the sensor (driving wheel). We have implemented an UDP IP
receiver (counterpart of the sensor’s streamer) that maintains a shared memory
with the joystick state data. We regard the shared memory as Local I/O
interface.

Further, we have developed the user I/O job to interact with other jobs
of the control DAS and to use Linux process synchronization mechanisms to
obtain data from the Local I/O Interface (shared memory with joystick state
data).

According to the communication schedule, joystick state data is periodi-
cally sent to the ABS and Steer controller. Table 7.4 summarizes the Linking
Interface (LIF).

’ service name \ service description ports
driving wheel | driving wheel input from | angle: outgoing, 4 byte,
the user state, 64 Hz
buttons state of 6 user input but- | setting: outgoing, 4
tons byte, state, 64 Hz
pedal_gas gas pedal input from user | gas: outgoing, 4 byte,
state, 64 Hz
pedal_brake brake pedal input from | brake: outgoing, 4 byte,
user state, 64 Hz

Table 7.4: control DAS’s LIF of User I/0O

Anti-Lock Braking System (ABS) Controller

This MC consist of a Nios II based host and runs a real time operating system.
The ABS controller job implements a simple ABS found in one of the driver
robots of The Open Racing Car Simulation (TORCS): braking force from the
brake-pedal is reduced, if one or more wheels turn considerably slower than the
actual car speed (see Listing 7.1).

void apply_abs(uint32_t car_speed, uint32_t fr_wspeed, uint32_t
fl_wspeed , uint32_t rr_wspeed, uint32_t rl_wspeed, uint32_t=
break_force)
{
float slip = 0.0f;

if (car_speed < ABSMINSPEED) return;

slip += fr_wspeed x WHEELRADIUS;
slip += fl_wspeed * WHEELRADIUS;
slip += rr_wspeed *= WHEELRADIUS;
slip += rl_wspeed * WHEELRADIUS;
slip = car_speed — slip /4.0f;

if (slip > ABS.SLIP)
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{

xbreak_force = xbrake_force — MIN(xbrake_force, (slip —
ABS_SLIP) /ABSRANGE) ;

Listing 7.1: Control DAS ABS Algorithm

For practical reasons, our implementation of the ABS controller also pro-
cesses acceleration input (gas pedal). The job does not require a Local 1/0
Interface, because it only processes data exchanged via the LIF.

LIF: pedal_brake, pedal_gas, speed_wheel, speed_car, actuator_brake,
actuator_gas

Steer Controller

Similar to the ABS controller, the steer controller consists of a Nios II based
host. The steer controller job processes steering user input and applies a fixed
driving wheel to steering translation according to:

steeringoutput = steeringinput X 0.75

This job does not require a Local I/O Interface, because it only processes
data exchanged via the LIF.
LIF: actuator_steer, driving wheel

User Info

This MC is made up by a LEON3 based host equipped with the Multimedia
extension board. For this host, we also use the Snapgear Linux 2.6 distribution.
The user info job displays data from the sensors on the LCD display.

This job does not require a Local I/O Interface, because it only processes
data exchanged via the LIF.

LIF: driving wheel, speed_wheel, speed_car, pedal_gas, pedal_brake

Simulation

We have set up the simulation (TORCS) on a PC notebook with Debian 2.6,
RTAIT extensions and a TTE-PCMCIA network interface. A RTAI application
kernel module writes actuator set values received from the ABS controller via
TTE into a structured shared memory, respectively reads sensor data from the
shared memory and sends it to the ABS controller. TORCS offers interfaces
to extend the racing simulation with robot drivers. We have implemented such
a robot driver that communicates with the RTAI application kernel module
by means of the structured shared memory. For practical reasons, the robot
driver also implements auto-transmission. Table 7.5 describes the LIF of the
Simulation job.

7.3.3 Multimedia Distributed Application Subsytem

Within this DAS there is video data exchanged between all participating MCs.
We structured the video data into single frames. Each frame is represented as a
bitmap, where each pixel is described by its colour. The colour is encoded in 8
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] service name

\ service description

\ ports

speed_wheel

wheel speed sensor
output from the
simulation

front_left: outgoing, 4
byte, state

front_right: outgoing, 4
byte, state
rear_left:
byte, state
rear_right: outgoing, 4
byte, state

outgoing, 4

speed_car

actual car speed measured
at transmission driveshaft

speed: outgoing, 4 byte,
state

actuator_steer

steering actuator

angle: outgoing, 4 byte,

state

front_left: incoming, 4
byte, state
front_right:
4 byte, state
rear_left:
byte, state
rear right: incoming, 4
byte, state

gas: incoming, 4 bytes,
state

Table 7.5: control DAS’s LIF of Simulation

actuator_brake | wheel brake actuators

incoming,

incoming, 4

actuator_gas the car’s accelerator

bit sized words and the highest resolution we want to support is 240 x 320 pixels.
We target 24 frames per second, thus the video data bandwidth totals to 1800
Kbyte/sec that we need to transfer in a single encapsulated communication
channel (ECC). All ECCs operate with a period of % kHz and transport 3600
Byte sized parts of a whole frame in frame packets. A frame packet can be
transferred in a single message and is made up of one header word (4 byte)
that describes the position of the packet data in the actual frame.

This DAS features multiple application modes that are switched during
runtime (on-the-fly reconfiguration) every 4 seconds by the Diagnostic Unit
(DU). The available application modes are described in Table 7.6.

] mode \ NoC bandwidth \
normal
negative 1800 Kbyte/sec

degradation level 1
degradation level 2

900 Kbyte/sec
450 Kbyte/sec

Table 7.6: Multimedia DAS application modes
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Cube

MC 7 consists of a Nios II based host and runs a real time operating system
with the cube job. This job uses a simple graphics library (included in one of
Altera’s demo designs) that calculates the video of a spinning three dimensional
cube.

There are two virtual frame buffers: one active and one inactive. The active
one is constantly transferred over the NoC to potential receivers.

We render the cube in accordance with the currently active application
mode into the inactive virtual frame buffer. Each time the computation of
the frame is finished and after the active frame buffer has been completely
transferred over the NoC at least once, the two frame buffers are swapped with
each other.

’ service name \ service description \ ports ‘

frame_data

normal mode: outgoing,
spinning _cube | rendering a spinning cube | 3604 byte, event

negative mode: outgoing,
3604 byte, event
degradation level 1: out-
going, 1804 byte, event
degradation level 2: out-
going, 904 byte, event

Table 7.7: Multimedia DAS’s LIF of Cube

This job does not require a Local I/O interface, because it only processes
data exchanged via the Linking Interface (LIF).

Display

Both MCs, where the display jobs are deployed to, consist of LEON3 based
hosts equipped with the Multimedia extension board We use Snapgear Linux
2.6. for each of them. According to the application mode, actually the degra-
dation level, the received frame data is processed differently:

normal and negative mode : the frame is rebuilt in 1:1 scale and written
to the display frame buffer

degradation level 1 : the frame is rebuilt in 1:2 scale and written to the
display frame buffer

degradation level 2 : the frame is rebuilt in 1:3 scale and written to the
display frame buffer

The display frame buffer is accessed over the job’s Local I/O interface.
LIF: spinning_cube
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7.4 Results of the Demonstration Application

In this section we try to give an impression of what the live-action demonstra-
tion application looks like. Figure 7.16 show screenshots of the control and
multimedia DASs.

Figure 7.16a depicts a screenshot of TORCS, which is run on the PC note-
book. We also see in the corners, how the driver / player uses the steering
wheel and acceleration and brake pedals.

Figure 7.16b shows a photography of these Multimedia I/O Boards (with
LCD display) that implement the "Display” service of the demonstration appli-
cation. These set-up also proves the feasibility of multi-casting in the TTNoC,
as the same bitmaps are calculated by a single micro component and sent to
the two micro components equipped with the LCD displays.

7.5 Validation of implemented Architectural Services

The demonstration application extensively uses many of the GENESYS’s ar-
chitectural services and therefore allows an assessment about the effectiveness
of the GENESYS reference architecture template.

7.5.1 Composability

In the demonstration application we organize our application into two separate
and independently operating Distributed Application Subsystems (DASs) that
offer their set of functionality to the user. Each DAS is composed of multiple
micro components, which is the atomic unit of abstraction (and thus also the
unit of distribution and fault containment) on chip level.

We execute a single job on each micro component that solely interacts with
other jobs through the well-defined Linking Interface (LIF) specification (clear
separation of processing and interaction). We accomplish a considerate reduc-
tion of complexity, as we have a clean partition of the whole application and
also don’t need to deal with implementation details within micro components,
but only with their LIF when we compose them to the complete application.

By using a service-oriented model that provides a structured view on LIFs
of interacting jobs, we are able to further decrease design ramifications to a
cognitively easily manageable problem: the engineer just needs to define what
services a job requires to be able to provide its own services - either to other
jobs or the user itself.

With respect to the demo application, the GENESYS Architecture provides
sufficient means to manage complexity and uphold composability.

7.5.2 Communication in the deterministic Network-on-Chip
The demonstration application uses periodic as well as sporadic communica-
tion. Therefore, we can draw the following conclusions.

Determinism

Determinism is established by the time-triggered communication schedule ac-
cording to which all communication takes place. By architectural design the
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Figure 7.16: Impressions of demonstration application
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demonstration application cannot violate this feature of the GENESYS Archi-
tecture: The TRM only allows valid time-triggered communication schedules
and the demonstration application, like any application on a chip, must obey
this rule.

Encapsulation

A conflict free time-triggered communication schedule is ensured by the TRM
and guarantees temporally and spatially separated communication channels
that have static end-to-end latencies and guaranteed bandwidth. During trans-
mission, messages belonging to one communication channel cannot influence
messages of any other communication channel.

The demonstration application consists of two independent subsystems that
coexist on the same chip. There is a total of 38 on-chip and 11 off-chip encap-
sulated channels. We found no evidence that one of the subsystems has any
influence on the other: message delivery and functionality remained unchanged
at the subsystem under test regardless whether the other subsystem is active
or not. Concerning types of communication, the demonstration application
successfully uses both periodic as well as sporadic messages in various channel
configurations (uni- and multicast).

7.5.3 Common Time

The GENESYS Architecture proposes a common global time base to synchro-
nize communication activities. In the demonstration application we realize this
feature in the following way: a common clock domain directly implements the
common time for the communication service, while different, independent local
clock domains drive the micro components.

The demonstration application consists of multiple hosts that not only are
different with respect to their application computer, but also require different
system clock frequencies. In fact, even hosts with the same hardware (and thus
same system clock) are not in the same clock domain: each of them operates
autonomously its own clocks.

The demonstration application fully relies on this feature of the GENESYS
Architecture and the implementation supports it without any noticeable prob-
lems.

7.5.4 Reconfiguration

The current implementation supports integrated resource management with re-
spect to NoC bandwidth (re-)allocation during runtime that we call "on-the-fly
reconfiguration”. The multimedia part of the demonstration application relies
on this feature for switching between different bandwidths to realize degrada-
tion levels. We encountered no difficulties with this core service.

7.5.5 Off-chip Gateway

In our prototype implementation we facilitate off-chip communication by means
of a Time-Triggered Ethernet (TTE) gateway. In the demonstration applica-
tion, we establish multiple channels from the chip to a PC notebook with a
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TTE PCMCIA network adapter and vice verse via that TTE gateway. Once
a TTE link is established (clients are synchronized to the rate master), the
communication is stable and no message is lost.



Eight

Migration Path and Relationship to
Domain-Specific Architectures

8.1 Network on Terminal Architecture (NoTA)

NoTA is a modular service-based system architecture for mobile and embedded
devices. It is an open architecture with the primary goal to define a unified
interface for embedded devices in order to ease the development and integration
of interoperable services and devices. The development of NoTA is driven by an
open architecture initiative, initially started at Nokia Research Center in 2003,
with the aim to provide a solution that can be used throughout the industry,
academia and developer community. Since then several releases of interconnect
implementations have been developed and are now open to the public. These
results are currently used in industrial product implementations.

NoTA does not define services for any specific domain or products, but
provides a service-oriented framework for the design of embedded applications,
which is driven by end-user requirements [40]. NoTA identifies devices that
consist of service nodes and application nodes. Devices communicate via the
so called Device Interconnect Protocol (DIP). The DIP offers two communi-
cation modes: message-based communication and streaming communication.
The message-based communication is bi-directional and used by application
nodes to exert control over service nodes. The streaming communication is
unidirectional and enables the transfer of data (e.g., multimedia data).

8.1.1 System Structuring

NoTA provides three distinct abstraction levels for system design, denoted
as functional architecture, logical architecture, and implementation architec-
ture [72]: The functional architecture describes the functional aspects of the
system by means of application nodes (AN) and services nodes (SN) intercon-
nected by the DIP. Application nodes interact with the user of the system and
make use of the services provided by the SNs. Service nodes provide their
services to ANs and utilize the services of other SNs to fulfill their specified
service. Services provided by ANs and SNs are solely exploited via service
interfaces. These interfaces are described by the Service Interface Specifica-
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Figure 8.1: NoTA System Structure

tion (SIS), which defines the service syntax, the behavior (time-free via finite
state machines) and bounds for non functional properties such as latencies,
bandwidth and energy consumption [49].

The logical architecture describes the grouping of ANs and SNs to subsys-
tems. Besides this logical viewpoint, subsystems also exhibit a physical view-
point: All resources required for implementing the ANs and SNs are part of the
hosting subsystem and are not shared with other subsystems. Hence, services
of different subsystems can access shared resources solely via the service in-
terface. Thus, the partitioning of services into subsystems is a first important
design decision influencing system performance versus service independency
and encapsulation.

The implementation architecture describes the physical implementation of
the system. At this viewpoint, the conceptual element provided by NoTA is
a device. A device is a physical entity that provides resources like processors,
buses, memories, and peripherals, which can host one or more subsystems.
An exemplary implementation architecture of a NoTA system is depicted in
Figure 8.1.

8.1.2 Device Interconnect Protocol

The DIP represents the communication infrastructure of a NoTA system. The
DIP consists of two protocol layers - the Low Interconnect (L_IN) and the High
Interconnect (HIN) (cf. Figure 8.1). Essentially, the L_IN connects subsys-
tems by mapping the communication requests of services to the actual physical
communication infrastructure. It provides uniform socket-based communica-
tion mechanisms. The L_IN is further responsible for the discovery of the
physical entities that are the endpoints for the communication activities. For
providing a uniform interface to the H_IN independent from the underlying
physical transport protocol, the L_IN is split in two layers. While the higher
layer provides stable services that are independent from the transport protocol,
the services of the lower layer are tailored to the characteristics of a particular
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physical interface.

The main purpose of the HIN is the registration, discovery, and activa-
tion/deactivation of services. Service registration and discovery is managed by
one dedicated H_IN - denoted HManager. A new service is registered at the
HManager with its service ID and its interconnect address, i.e. the information
on which device and subsystem the particular service is located. For service
discovery, a query containing the service ID is sent to the HManager, which
resolves the according interconnect address. Service IDs are allocated based
on a service ontology by a dedicated service node, the Service Level Resource
Manager [45].

The DIP is nearly independent of a specific communication technology.
Hence, it is possible to replace an off-chip network with an on-chip network with
low overhead, e.g., when a chip is replaced by an IP core due to technological
advancements. In such a case, the transport protocol specific part of the L_IN
needs to be adapted, whereas the remaining parts of the DIP, in particular the
interface towards the application and service nodes, remain unaffected.

8.1.3 Commonalities and Contrasts of NoTA and GENESYS

Both architectures, NoTA and GENESYS, are driven by very similar objec-
tives: to tackle the ongoing digital convergence in modern embedded systems
and the resultant challenges. This section elaborates on similarities of both
architectures, but also points out the major differences.

Commonalities

Service Orientation: Both architectures focus on the identification and spec-
ification of services. In terms of GENESYS, this is the identification of
cohesive subsystems, the DASs, and their further decomposition into jobs,
each of which is providing a well-defined application service. In NoTA
the system’s functionality is described by means of service nodes and
application nodes, which are logically grouped to subsystems. Further-
more, system design is concerned with a reasonable allocation of those
functional entities onto physical hardware entities. In NoTA the term
device is used to denote a component, i.e., the entity that represents the
integration of hardware and software to implement a dedicated part of
the overall system’s functionality. Depending on the level of integration,
the terms used in GENESYS are IP cores, chips, and devices.

Component-Based Design: Modularity, reuse, and insensitivity to techno-
logical changes are major foci of both architectures. For this purpose,
both architectures push the construction of components with explicitly
defined interfaces. A component is a self-contained subsystem that can
be independently developed and used as a building block in the design
of a larger system. It is a replaceable part of a system that encapsu-
lates the implementation. This encapsulation of functionality facilitates
the evolvability of the system: For instance, due to the explicit interface
specification, components can be exchanged without the need to alter
any interacting components as long as the component’s behavior at its
interfaces remains stable.
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Interface Specification: To enable component-based design and to achieve
interoperability between components, interface specifications need to pre-
cisely describe the component’s behavior in the value domain and the
temporal domain. This includes functional and non functional properties
(e.g., dependability properties) as well as syntactic properties of the ex-
changed information. Furthermore, a semantic specification is required to
decide on the interoperability of different component implementations.
In GENESYS components are interconnected via LIFs. A precise LIF
specification includes input and output assertions, specification of syntac-
tic, temporal and dependability properties, semantic specification, and a
periodic ground state (i.e., interface state at the restart instant of a com-
ponent). The interface specification in NoTA, denoted Service Interface
Specification (SiS), is split in two parts [49]: The control interface de-
scribes the input and output messages sent or received by a service as
well as the externally observable states of the service. The data interface
comprises a list of data types each service supports for communicating
with other services as well as a description of non functional properties
for the data transfer between services.

Stable Platform Services: Both architectures define a stable set of plat-
form services that can be utilized for the development of applications.
The interface to these services is independent from the actual under-
lying implementation technology. This minimizes the migration effort
of already implemented applications to new technologies. The platform
services that are available in every instantiation of the architecture are
denoted core services in GENESYS. They form the stable waist of the
architecture and hide changes of the implementation technology from the
application. Among the core services are basic communication services,
diagnostic services, security services, and resource management services.
NoTA provides a stable API to ANs and SNs to access the services pro-
vided by the DIP (e.g., service registration and discovery). The H_IN is
completely independent from the underlying communication technology;
thus, the application would be unaffected from technology changes.
Since particular applications (e.g., legacy software) would require addi-
tional functionality that exceeds the capabilities of the platform services,
both architectures provide means for extensibility: The GENESYS waist-
line architecture serves exactly for this reason. While the set of core
services remains stable, optional services can be used to extend the ar-
chitecture and provide higher-level services to an application developer.
Similarly, the basic services provided by NoTA can be extended using
proxy layers upon the H_IN, which enable the provision of higher-level
services (e.g., the Khronos protocol stack) upon the NoTA communica-
tion infrastructure.

Differences

Architecture Extent and Focus: NoTA is a framework for the develop-
ment and integration of applications, mainly targeted to the needs of the
consumer applications industry. It provides well-specified interfaces and
a standardized interconnect protocol in order to facilitate the integra-
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tion of independently developed services. The GENESYS architecture
goes beyond this core functionality. It defines architectural principles;
each instantiation of the GENESYS architecture needs to adhere to, i.e.,
a guideline how to develop a concrete instantiation of the architecture.
In addition, it describes a concrete set of services: core services (e.g.,
communication services, diagnostic services) and optional services (e.g.,
security services).

Guarantees for Architectural Properties: It is the intention of NoTA to

provide an interface to the applications that abstracts completely from
the implementation technology, i.e., from the transport layer that is ac-
cessed by the L_IN to connect different components. Although functional
and non-functional properties of component interactions are included in
the SiS (e.g., communication latency, energy efficiency), it is hard to
guarantee those properties, since they very much depend on the actual
implementation of the underlying platform. For instance, if Ethernet is
used for data transport, a maximum transmission latency between com-
ponents A and B cannot be guaranteed in case a (perhaps faulty) com-
ponent C monopolizes the communication link to component B.
Also GENESYS abstracts from the concrete implementation technology.
However, the architectural style enforces characteristics of the used plat-
form that ensure that important properties of the architecture can be
guaranteed. For instance, the periodic message transport service ensures
the timely transport of messages with respect to guaranteed bandwidth,
transmission latency and latency jitter. Also, fault isolation between
components is provided by encapsulation mechanisms of the GENESYS
architecture. Thus, only platforms that ensure those properties are suit-
able technologies for GENESYS.

Multiple Integration Levels: For the design and integration of embedded

applications with NoTA a single level of abstraction is used: Multiple
devices, each of which is hosting one or more subsystems, are integrated
via the DIP. The internal physical structure of a device is only of minimal
relevance for NoTA: The device is required to provide adequate resources
for the implementation of the hosted subsystem(s) and if multiple subsys-
tems are located on a single device, the only way subsystems can interact
is via the service interfaces. So NoTA does not explicitly state at which
level the integration of ANs and SNs takes place, i.e., a NoTA application
can be implemented on a single chip, on multiple chips, or on a set of
physical devices.
GENESYS rigorously distinguishes multiple integration levels. At each
integration level the only way components can interact is via the LIFs
of the component. At the system level devices are integrated, which are
interconnected by an inter-device LIF. If the internal structure of the de-
vices is of relevance for the system designer, a device is decomposed into
a set of chips, interacting via inter-chip LIFs. If relevant, chips are fur-
ther decomposed into a set of IP cores interacting via inter IP core LIFs.
The interface specification is identical at each integration level. However,
the functional and non-functional properties of the LIFs may differ at the
individual integration levels depending on the deployed communication
infrastructure.
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8.1.4 Instantiation of NoTA as middleware on top of
GENESYS

The similarities between NoTA and GENESYS, as discovered in the previous
section, raise the question, whether it might be possible to combine the benefits
of both architecture and instantiate NoTA as optional service on top of the
GENESYS architecture. It is the purpose of this section to provide a theoretical
evaluation of this matter.

Compatibility in System Structure

The first question to be answered is, whether the way to structure systems in
both architectures matches. In NoTA, applications are described in terms of
service nodes (SNs) and application nodes (ANs), which interact via strictly
defined interfaces. The counterparts hereto are jobs in the GENESYS termi-
nology.

In NoTA, subsystems are used to group SNs and ANs that belong together
to larger functional units. Subsystems in the terminology of NoTA are not only
logical constructs, but also represent a physical entity that provides adequate
resources to implement the hosted services. Hence, subsystems also consist of
a physical interfaces to the physical interconnect. If interacting subsystems
are located on the same device, this interface might connect the subsystem to
an intra-device interconnect, whereas subsystems located on different devices
communicate via an inter-device interconnect. The GENESYS architecture
provides the concept of DASs to perform a logical integration of multiple jobs
to a single logical entity. A direct equivalent to the concept of subsystems is
not provided, since the physical structuring of a system depends on the in-
tegration level in GENESYS: At the chip-level, the GENESYS architectural
styles enforces a strict one-to-one mapping of jobs to IP cores. Thus, multiple
jobs that form a logical unit and require spatial proximity for an efficient im-
plementation due to their interaction patterns are implemented as IP cores on
the same chip. This corresponds to the representation of NoTA subsystems.

In order to implement the physical interface of a NoTA subsystem, a ded-
icated gateway IP core can be used in the GENESYS architecture to inter-
connect each chip to a chip-external network. The next integration level in
GENESYS, the device level, provides the encapsulation of several chips into
one device. This is analog to the integration of multiple NoTA subsystems into
a single NoTA device. The physical interconnection of NoTA devices to the
overall system is represented by the system level in GENESYS.

NoTA on top of GENESYS

The GENESYS architecture is devised by experts from industry, research in-
stitutes, and academia of many different domains to ensure that important
requirements of all targeted domains are covered in the resulting architecture
template. That is, the GENESYS architecture comprises know-how and experi-
ence of different fields of application, to facilitate its deployment across domain
boundaries. In particular with respect to temporal guarantees for communica-
tion and encapsulation of applications, the GENESYS architecture could im-
prove the existing platforms for consumer applications, since those properties
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Figure 8.2: Placing NoTA as Optional Service in the GENESYS Waistline
Architecture

are key requirements for component-oriented design, component integration,
and reuse.

To broaden the applicability of the GENESYS architecture for consumer
applications, the provision of the NoTA application programming interface as
optional service on top of the GENESYS core services would be highly ad-
vantageous. This could ease the change for consumer applications from their
specialized hardware platform towards GENESYS and would increase the ac-
ceptance of the GENESYS architecture in this high-volume domain.

To facilitate this instantiation, mainly the DIP of NoTA needs to be realized
as optional service for GENESYS. Firstly, the DIP provides a stable interface
to the applications; secondly, parts of the lower layer of the DIP are used
to adapt the interconnect implementation to the actual transport protocol.
The examples described in [44, 62] use such adapters to stack the DIP on
top of the MIPI UniPro protocol. Likewise it is reasonable to build the DIP
as an optional service on top of the GENESYS core services and to develop
an adapter that connects the NoTA interconnect to the core communication
services of GENESYS.

The GENESYS architecture seems to be well-suited as an implementa-
tion platform for NoTA: The DIP provides message-based communication and
streaming communication. Both types of communication are also natively pro-
vided by GENESYS (via periodic or sporadic message based communication
as well as real-time streaming). The example outlined in Figure 8.2 depicts a
GENESYS system at the chip level using, e.g., the TTSoC architecture [37] as
platform to provide the core services at this level. The main extensions of NoTA
compared to the GENESYS core services are service registration/discovery and
NoTA-specific resource management. In NoTA, the so-called resource manage-
ment service node (RMSN), is used to implement this functionality. The RMSN
is realized as a dedicated node in one subsystem. The same strategy can be
followed when implementing NoTA as optional service for GENESYS, i.e., to
use a dedicated job for implementing the functionality of the RMSN.

8.1.5 Résumé

The development of NoTA and GENESY' is inspired by very similar challenges.
For solving those challenges many commonalities between both architectures
can be found. The main similarity is the component-orientation and that both
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architectures take the achievement of composability and interoperability as an
objective with top priority. As a consequence, both architectures are based on
service specifications which include rigorous specifications of interfaces.

In contrast to GENESYS, NoTA is tailored to applications of the consumer
domain. Therefore, the NoTA framework is not intended to provide services
for a broad range of applications across different domains. Hence, the design
of NoTA focuses on the provision of a minimal set of services that is required
to facilitate the integration of applications provided by various parties.

Due to the similarities of both architectures and their non-contradicting
architectural concepts, it seems possible to combine both concepts by realiz-
ing the NoTA interconnect as optional service on top of the GENESYS core
services. This could beneficially influence both architectures: GENESYS by
taking advance of a mature architecture from the consumer applications do-
main which may strengthen the position of GENESYS in this domain. NoTA
by using a platform that is designed to provide fault-tolerance and resilience
against transients [54] in order to improve the reliability of the products in the
consumer domain. Given that a cost-efficient instantiation of the GENESYS
architecture is available, the use of GENESYS as platform for the implementa-
tion of NoTA-based consumer applications could result in a substantial quali-
tative improvement of products of this domain. First results will be shown by
the prototype instantiations of the GENESYS architecture developed in the
scope of the project as well as by upcoming research projects.

8.2 Integrated Modular Avionics (IMA)

ARINC standard 651 [1] is known as IMA and addresses the design of ar-
chitectures aimed at the separate implementation and integration of avionic
applications. IMA represents an integrated system architecture that focuses
on: (i) the use of shared resources for reducing unwanted resource duplica-
tion to a minimum for lowering the acquisition costs, weight, and volume of
avionics equipment, (ii) the support of modular interchangeable hardware com-
ponents that allow a high volume production, which will positively affect the
production costs, and (iii) the introduction of improved diagnostic techniques
to improve the scheduling of maintenance actions and reduce and eliminate the
unconfirmed removal of Line Replaceable Units (LRUs) [63]. In the Boeing 787
Dreamliner, e.g., the use of the IMA approach enables a weight reduction of
about 900 kg compared to previous aircrafts [64].

8.2.1 Avionics System Structure

In IMA the functionality of the avionics application is provided by multiple
integrated cabinets which are interconnected by the global data bus. (cf. Fig-
ure 8.3). The functionality provided by one integrated cabinet is typically
larger than the functionality of a single federated LRU, but smaller than the
sum of all LRUs the cabinet replaces [27].

For example the Airplane Information Management System (AIMS) for the
Boeing 777, which is one of the first systems that implements IMA concepts,
replaces the conventional LRUs by two integrated cabinets [14]. The global
data bus in the AIMS is realized by the ARINC 629 multi-transmitter com-
munication bus [ARINC 1991b]. However, systems designed according to IMA
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Figure 8.3: IMA Avionics Architecture

are not restricted to particular communication networks. In the Airbus A380,
e.g., Avionics Full-Duplex Switched Ethernet (AFDX), an ARINC 664 standard
network [5], is deployed for the interconnection of the integrated modules [11].

A cabinet is internally further structured into multiple Line Replaceable
Modules (LRMs), which provide the necessary computational resources for
performing the required application functionality. LRMs in an IMA platform
can be classified into three categories [19] (cf. Figure 8.3 IMA Avionics Archi-
tecture):

Core module: Core modules are responsible for the execution of the applica-
tions. Typically, a single core module hosts multiple applications, which
reside in dedicated encapsulated partitions ensuring that the individual
applications do not interfere with each other.

I/0 module: System components that are not part of the cabinet or not
connected to the global data bus are usually connected by point-to-point
communication protocols like ARINC 429 [4] to the I/O modules of the
cabinet. These I/O modules provide the functionality to perform in-
put/output operations with system components.

Gateway module: The gateway module is a specific LRM that handles the
communication between the individual cabinets over the global data bus.

Considering the example presented above: for providing the functionality of
Boeing 777’s AIMS (e.g., flight management, display control, communication
management, etc) each cabinet of the AIMS comprises 10 active LRMs and
three spare LRMs for future functionality [52].

The interconnection of the LRMs within a single cabinet is established by
a backplane bus - a fault-tolerant bus using a Time Division Multiple Access
(TDMA) scheme for bus arbitration. The backplane bus is specified in the
ARINC standard 659 [2]. A commercial implementation of this standard is
Honeywell’s SAFEbus [27], which is deployed, e.g., in the AIMS of the Boeing
777. The SAFEbus backplane bus is accessed by an LRM via a so-called
Bus Interface Unit (BIU). All transmission or reception operations of the BIU
are a priori scheduled and stored in a memory table within the LRM that is
inaccessible by the functions of the cabinet. This way, a faulty function is
prevented to effect the timing behavior of the backplane bus by changing the
LRM’s configuration [27].
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Figure 8.4: APEX Avionics Software Structure

8.2.2 Avionics Software Execution Environment

The Avionics Application Software Standard Interface specified in the AR-
INC 653 standard [6] defines the services of the avionics software environment,
which serve as the basis for avionics function integration. This standard in-
terface, which is known as APEX, provides services for partition management,
process management, memory management, time management, inter-partition
communication, intra-partition communication, and diagnosis:

Partition Management: For the integration of multiple avionic functions
on a single LRM, partition management establishes spatial and temporal
partitioning [67] for the individual functions. Therefore, each function
is executed in a single partition. For temporal partitioning, the parti-
tion management performs a cyclic scheduling with fixed priorities. Each
partition has assigned two constant parameters - period and duration -
that specify the amount of time at which the partition has exclusive ac-
cess to the LRM’s resources (e.g., processing resources) [9]. In order to
protect the memory of partitions and to avoid interference in the tempo-
ral domain (e.g., through a task overrunning its deadline or blocking a
shared resource), APEX demands sufficient processing, I/O and memory
resources from the used processor. Furthermore, APEX requires time
resources, atomic operations, and mechanisms for transferring control to
the operating system, if a partition attempts to perform an invalid oper-
ation.

Memory Management: For spatial partitioning, each partition has assigned
a constant (defined at design time) memory area that can be exploited
by its hosted function. Any memory access violating these boundaries is
prohibited by a Memory Management Unit (MMU).



8.2. INTEGRATED MODULAR AVIONICS (IMA) 159

Process Management: Each partition comprises one or more processes that
implement its avionic function. All processes share the resources of a
single partition. With respect to other partitions, the processes are ex-
ecuted concurrently. Based on the attributes of a process (e.g., a given
period for a periodic process, the process’s deadline, and the priority of
the process [9]), the process management is responsible for scheduling
the processes within a partition. Tasks within partitions can employ also
intra-partition communication mechanisms to avoid the runtime over-
head of the inter-partition communication. Intra-partition communica~
tion mechanisms include buffers, blackboards, semaphores, and events.

Time Management: Time management in APEX provides system calls for
the activation (release) of periodic and aperiodic processes. Aperiodic
processes are characterized by the fact, that the future instants of activa-
tion are not known a priori (e.g., aperiodic processes could be triggered
after the occurrence of a specific event like the reception of a message).
For example, LynxOS-178 [50], a real-time operating system that estab-
lishes the APEX interface to its applications, provides the system calls
TIMED_WAIT and PERIODIC_WAIT for time management.

Communication: APEX supports inter-partition and intra-partition commu-
nication services. Interpartition communication is realized via message
passing over physical channels and logical ports. Logical ports represent
the communication endpoints within the partition. Multiple ports can
be mapped onto a single physical channel. For inter-partition communi-
cation, two variants of message passing are defined in APEX: Using sam-
pling ports, the arrival of a new message overwrites the previous contents
of the port, i.e., the port is realized by a single message buffer. Queuing
ports, on the other hand, provide a message queue where incoming mes-
sages are stored in First-In/First-Out (FIFO) order. In APEX back pres-
sure flow control is used to handle full message queues. For intra-partition
communication, standard inter-process communication mechanisms like
shared memory and semaphores can be exploited.

Diagnosis: For the support of diagnosis, the ARINC standard 653 defines the
concept of a health monitor, which is responsible for monitoring faults
and failures of the hardware, the operating system, and the application.
The purpose of the health monitor is to help on isolating faults and
preventing the propagation of failures. The response to a fault, i.e., the
measures triggered by the health monitor after fault detection, can range
from logging of the occurrence of faults, over responses at partition level
like the restart of a partition, to a response on the LRM level like reset
or shutdown of an entire LRM [61].

In order to provide the above services for the application software, APEX
employs the core software within an LRM. The core software consists of the O/S
kernel and system-specific functions, while the application software comprises
application partitions and system partitions:

e Application partitions execute software implementing application func-
tionality. For error containment reasons, application partitions may only
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use ARINC 653 calls to interface the hardware and communication sys-
tem.

e System partitions require interfaces outside of APEX services. System
partitions are specific to the core software implementation.

e The O/S kernel provides the services defined by the APEX specification.

e System-specific functions implement device drivers, diagnostic, and main-
tenance functions.

As depicted in Figure 8.4, the APEX is located between application software
and operating system. The operating system itself interfaces the underlying
hardware via a standardized interface called COre EXecutive (COEX). To-
gether with the hardware interface system (cf. Figure 8.4), it is the purpose
of the COEX to provide a uniform interface for accessing different implemen-
tations of the LRM to the operating system. This facilitates the portability of
the operating system. Operating systems that establish the APEX interface
are, e.g., LynxOS 178 [50] or VxWorks 653 Edition [61].

8.2.3 Realization of IMA on top of a GENESYS Chip

We elaborate in this section how the structure of a typical avionic system based
on IMA as depicted in Figure 8.5 can be mapped onto a system based on the
GENESYS architecture. An outline of the realization of an IMA system on
top of a GENESYS chip is shown in Figure 8.5.

The depicted mapping addresses all three integration levels of GENESYS:
the chip level, device level, and the system level. At the chip level, each chip
consists of a set of IP cores that are interconnected by a deterministic on-chip
network. Similarly to the roles of LRMs within cabinets in IMA, we distinguish
three different roles for IP cores within a chip: IP cores providing services that
correspond to avionic functions executed in a single partition in the IMA system
structure, IP cores establishing access to I/O modules via local interfaces, and
IP cores realizing gateway functionality for connecting a chip to chip external
networks, i.e., the backplane bus or the global data bus.

At the device level, several chips are integrated via a backplane bus (e.g.,
SAFEbus or TTP) to form a device. For this purpose, each chip requires a
gateway IP core to the chip external network. The role of a single device in
this system model can be compared to the role of a cabinet in IMA. Each of
these devices provides a gateway to a device external network such as AFDX.
This gateway is provided either as an IP core within one of the integrated
chips (as depicted in Figure 8.5 or as a dedicated chip that serves solely for the
exchange of data between the backplane bus and the global data bus.

Establishment of Partitions

One of the central services of every operating system that is deployed in avionic
systems based on IMA is the provision and management of partitions that allow
for the non-interfering execution of multiple avionic functions within a single
LRM. Due to the inherent criticality of this service, thorough certification of
partition management is required.
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Figure 8.5: Mapping of IMA to GENESYS

When realizing IMA on top of GENESYS, the stringent requirement of a
partition management support for the deployed operating systems is removed:
The integration of avionic functions is not realized within a single shared CPU
but on the basis of IP cores within a chip. Thus, each avionic function is
assigned a dedicated IP core providing the resources required for the execution
of the avionic function (e.g., computational resources such as soft-core CPU
and on-chip memory). Similar to the structure of cabinets in IMA, the access
to I/O modules is controlled by dedicated IP cores with local interfaces to the
chip’s environment.

The only way an avionic function hosted within an IP core can interact
with other IP cores is via the exchange of messages over the deterministic
NoC. This way, an avionic function can interfere with other avionic functions
only by the dissemination of faulty messages. However, GENESYS provides
hardware mechanisms to ensure spatial and temporal partitioning between IP
cores. That is, even in the case of faulty software within an IP core, the
integrity of information exchanged between any other two IP cores and the
guaranteed availability of communication and computational resources (e.g.,
time of availability, duration or jitter of availability) to other IP cores cannot
be affected. Thus, in GENESYS an IP core represents a Fault Containment
Region (FCR) (due to the physical proximity of IP cores on a chip, the fault
containment coverage with respect to hardware faults will be lower than the
fault containment coverage with respect to design faults).

Since an IP core forms an FCR, errors can propagate to the outside of an
IP core only by erroneous messages. Error propagation can be avoided, if erro-
neous messages are detected at the boundaries of an IP core by an independent

FCR.
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Realization of APEX Services

Besides partition management, APEX provides further services to enable the
development and integration of multiple avionic functions within a single LRM.
In order facilitate the transition from classical IMA-based systems to systems
having a GENESYS Multiprocessor System-on-a-Chip (MPSoC) as platform,
the APEX interface for application development needs to be provided as an
optional service within each IP core (cf. Figure 8.5). This middleware layer is
in charge of providing memory management, process management, time man-
agement, communication services , and diagnosis services. The realization of
many of those functionalities benefits from the architectural services provided
by the GENESYS MPSoC:

Memory Management: Each IP core provides a certain amount of memory
to its hosted avionic function. The protection of this memory from illegal
access from other avionic functions is guaranteed by design: Avionic func-
tions are solely empowered to interact via the exchange of messages via
their LIFs. There are no software or hardware means to directly access
the memory of other IP cores. Technological or economical reasons limit
the amount of memory within an IP core. If the memory consumption
of an avionic function exceeds the amount of memory provided by the
hosting IP core, chip-external memory can be provided. The access to
this memory region is controlled by a dedicated IP core, similar to the
access to chip external I/O devices. This dedicated memory management
IP core has to take care of access violations of memory regions allocated
to an IP core.

Process Management: One of the major design drivers of GENESYS at
the chip level is to support the integration of independently developed 1P
cores on the basis of their LIF specifications. To simplify this composition
from the point of view of the system integrator, the LIF specification
abstracts from the internals of IP cores. Hence, the core services of
GENESYS do not directly provide mechanisms process management and
inter-process communication. This functionality has to be provided by
the APEX middleware within the IP core.

Time Management: With this service, APEX enables the timed activation
(and release) of processes within partitions. The common time service of
the GENESYS MPSoC provides a foundation for the implementation of
this functionality within the APEX middleware: The common time ser-
vice provides to each IP core a counter value that is globally synchronized
(internally and externally). With this counter value, the temporal coordi-
nation of processes within a single avionic function but also the temporal
coordination of avionic functions within and across chip boundaries is
supported.

Communication: Using the GENESYS architecture as underlying platform
for the realization of IMA, inter-partition communication is mapped to
inter IP core communication using the deterministic NoC. APEX defines
two types of inter-partition communication, both are natively supported
by the communication modes of the NoC: The periodic message transport
service is optimized for the transport of state information from one sender
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port of an IP core to a set of receiver ports at destination IP cores. At
each receiver port, the previous content of the message is replaced upon
the reception of a new message. This communication paradigm corre-
sponds to the use of sampling ports in APEX. The realization of APEX
queuing ports is supported by the sporadic message transport service
of GENESYS. Using this service, the sender places the message in an
outgoing message queue. Under consideration of temporal constraints
specified for the given communication channel (e.g., bandwidth, maxi-
mum latency) the message is transported to the receiving IP cores and
placed in incoming message queues. As explained for process manage-
ment, to define services for the internals of an IP core are not the focus
of the GENESYS architecture; thus, the GENESYS architecture does
not provide mechanisms that correspond to the intra-partition commu-
nication of APEX. This functionality has to be provided by an APEX
middleware.

Diagnosis: The GENESYS supports a dedicated core service that supports

the implementation of a health monitor service as specified in the ARINC
standard 653. The network management and diagnosis service provides a
coherent global view of the operational state of all IP cores. It provides a
membership vector as feedback to the APEX middleware or the avionic
functions, which performs a binary classification (correct or faulty) of the
IP cores on the chip. In combination with the reconfiguration core service,
the information about the operational state of IP cores can be exploited
to trigger the restart of IP cores in order to recover from transient faults.

Connection to Chip-External Avionic Networks

A typical avionic system is connected to several networks: the backplane bus
within cabinets, the global data bus between cabinets and peripheral buses
to perform I/O operations. An attempt to establish a standardized gateway
for data exchange among the different networks is the ARINC 655 [3] stan-

dard

of the Remote Data Concentrator (RDC). Besides the standardization

of physical properties and electrical signals (at least ARINC 629 and ARINC
429 interfaces, digital and analog inputs/outputs), an RDC shall support the
following functionalities in order to support interoperability among different
aircraft suppliers:

partitioning among application / data of different criticality
universality (not designed with respect to a dedicated application)

reconfigurable (e.g. calibration of data inputs), monitoring of higher
protocols

protocol conversion
inspection of correct software loaded on RDC

built-in test

Among the most important characteristics of an RDC is the support for
partitioning among applications, i.e. to protect disseminated data or memory
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regions of diverse application, in particular if they belong to different criticality
levels. The component-oriented design of the GENESYS architectural style in
combination with the message-based communication infrastructure facilitates
the fulfillment of this requirement for avionic gateways: Firstly, different ap-
plications are hosted on different IP cores. As explained before, partitioning
among applications is established per se. Secondly, communication is realized
in GENESYS by passing a unidirectional message from one sender port to one
or more receiver ports at the components. By ensuring at the gateway that
each message receive port has assigned its distinct memory region (either a dis-
tinct queue for the reception of event messages or a buffer with update-in-place
semantics for state messages), the data integrity can be preserved.

As listed above, an RDC shall be implemented independent of any avionics
function and shall provide the means for being adapted to particular usage
scenarios. For example an RDC shall transform a well-defined set of informa-
tion chunks transmitted over the backplane bus (e.g., SAFEbus messages) to
message for the global data bus (e.g., ARINC 629 message). This requires the
selective reception of messages and property transformation. The concept of
gateways in the GENESYS architecture fit very well to those requirements of
an RDC: The gateway component is (at the chip level) an IP core that provides
an interface to the on-chip network as well as an interface to an off-chip network
(e.g., SAFEbus, AFDX, etc). The configurable communication infrastructure
of GENESYS enables the selective reception of multicast messages at the gate-
way without the need to modify the sending component. Since, a gateway is
a dedicated IP core and not add-on functionality of a particular application,
once implemented gateway functionality can be reused on different chips and
shared by multiple applications.

In order to guarantee the correctness of an RDC the ARINC standard 655
demands mechanisms to inspect the software loaded on the RDC as well as
built-in test routines to check physical interfaces and memory regions. The
reference architecture template of GENESYS describes optional services that
help in the development of such mechanisms. Among the security services
of GENESYS is the Secure Boot service, which verifies the integrity of an
application that should be executed on an IP core. In addition, the robustness
services of GENESYS include optional services for detection and correction of
memory bit errors.

8.3 Automotive Open System Architecture
(AUTOSAR)

AUTOSAR [25] is an attempt to exploit the benefits of integrated system archi-
tectures in the automotive domain. It is a joint initiative of several automotive,
semiconductor, and software companies. AUTOSAR was founded in 2003 and
is currently in its final phase of defining a consolidated set of specifications [24].
According to [25], the motivations behind this standardization initiative in the
automotive domain are:

e Management of E/E complexity associated with growth in functional
scope

e Flexibility for product modification, upgrade and update



8.3. AUTOMOTIVE OPEN SYSTEM ARCHITECTURE (AUTOSAR) 165

sw-c sw-c AUTOSAR Sw-Cc
Software
% % %
AUTOSAR Runtime Environment |

B2 ~ B2
System Services o
< _ Complex || £
ECU Abstraction Drivers | (%
4
o

Microcontroller Abstraction
S S

ECU Hardware Platform

Figure 8.6: AUTOSAR Software Layers

e Scalability of solutions within and across product lines

e Improved quality and reliability of E/E systems in order to provide a
higher level of abstraction

The main objective of AUTOSAR is to facilitate the reuse of AUTOSAR Soft-
ware Components (SWCs)-an AUTOSAR SW-C encapsulates an application
which runs on the AUTOSAR infrastructure-between different vehicle plat-
forms, Original Equipment Manufacturers (OEMs), and suppliers [69].

Furthermore, it is envisioned to improve software updates and upgrades
over the entire vehicle lifetime [25]. For these purposes, AUTOSAR defines a
standardized software architecture for each Electronic Control Unit (ECU) in
an automotive system that provides a technology independent, i.e., independent
from the ECU hardware and the underlying micro controller, infrastructure
for SW-Cs. On one hand, this enables the decoupling between application
development and development of the hardware platform of automotive systems.
On the other hand, this will support the decoupling between the life-cycles of
hardware and software [69].

8.3.1 AUTOSAR ECU Software Architecture

The structure of the AUTOSAR ECU architecture is schematically depicted
in Figure 8.6. The software architecture of an ECU in AUTOSAR is vertically
structured into Basic Software, the AUTOSAR Run Time Environment (RTE),
and AUTOSAR software.

The Basic Software is a standardized software layer in each ECU that pro-
vides services to the SW-Cs, which are necessary to realize the actual func-
tionality. Examples for those services are memory access, access to the com-
munication system, operating system functionalities, etc. Basic Software itself
does not provide any application specific services. It contains standardized,
i.e., ECU-independent components, like System Services and Microcontroller
Abstraction, as well as, ECU specific components like ECU Abstraction, and
Complex Drivers [25].

Microcontroller Abstraction: The Microcontroller Abstraction decouples
higher layers of the Basic Software from microcontroller internals. This
layer contains microcontroller specific drivers like Input/Output (I/0O)
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drivers, memory drivers, and Analog Digital Converter (ADC) drivers.
It represents the lowest layer of the AUTOSAR Basic Software.

ECU Abstraction: The purpose of the ECU Abstraction layer is to hide the
upper layers from the layout of the ECU, i.e., to provide an Application
Programming Interface (API) to access the ECU’s peripherals, regardless
whether they are micro controller internal or external devices. Since it
is built on top of the Microcontroller Abstraction, the implementation of
the ECU Abstraction is microcontroller independent.

System Services: The System Services represent the highest layer of Basic
Software and are used from the layers above the Basic Software to ab-
stract from ECU and micro controller hardware. The System Services
include operating system services, vehicle network communication ser-
vices, memory management services, diagnostic services, and ECU state
management. In addition, the System Services include basic library func-
tions that are can be exploited from ECU Abstraction, Microcontroller
Abstraction, and Complex Drivers to implement their functionality (e.g.,
watchdog library).

Complex Drivers: The concept of Complex Drivers is introduced to handle
complex sensors and actuators with strong real-time requirements or elec-
tromechanical hardware requirements, which cannot be directly mapped
to a single layer of the AUTOSAR Basic Software. The implementation
of a Complex Driver is highly dependent on the micro controller and the
ECU hardware. However, to an upper layer-the AUTOSAR Run Time
Environment (RTE)-Complex Drivers provide a standardized AUTOSAR

interface.

Between the Basic Software and the application software resides the AUTOSAR
RTE. The purpose of the RTE is to provide a uniform environment to all SWCs,
i.e., to abstract from any implementation details of the Basic Software and from
hardware aspects [24]. The RTE can be seen as the runtime representation of
the Virtual Function Bus (VEB) on a specific ECU.

The VFB provides standardized communication services to the application
software, which are defined independently whether the communication mani-
fests after the integration of the system in inter-ECU or intra-ECU information
exchange [25]. This way, the VFB decouples the application from the system
infrastructure [69].

An application in AUTOSAR consists of interconnected AUTOSAR SW-
Cs. SW-Cs are located in the ECU’s application layer in the AUTOSAR stack.
By introducing the VFB and standardized interfaces, the implementation of
such a SW-C is independent from the ECU and the underlying micro controller.
In addition, the VFB realizes location independence for the implementation of
SW-C, i.e., the implementation of a SW-C has not to be aware of its physical
location and the physical location of other SW-Cs.

An AUTOSAR SW-C is an atomic component, which means that each
instantiation of a SW-C is allocated to exactly one ECU and cannot be dis-
tributed over several ECUs. In general, the implementation of an AUTOSAR
SW-C is independent from the infrastructure in terms of the type of the micro
controller and the ECU the SW-C is located on (due to the Microcontroller
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Abstraction layer and the ECU Abstraction layer of the Basic Software). In
addition, it is in general also independent from the physical location of the
SW-C, because of the abstraction provided by the VFB. However, in typical
automotive applications there exist SW-Cs which are designed for a specific
sensor or actuator (e.g., a car velocity sensor). By the use of a specialized class
of SW-Cs-the Sensor/Actuator Software Components-such dependencies can
be expressed within the AUTOSAR standard.

8.3.2 Compatibility of AUTOSAR Virtual Function Bus
(VFB) and GENESYS

When designing an automotive application according to AUTOSAR, the VFB
provides the means for interconnecting the individual components (software
components) and enable their interaction-among each other and with the envi-
ronment (i.e., via sensors and actuators). The VFB is a logical construct that
defines the concepts for application modelling and design and abstracts from
the implementation on the underlying hardware platform (e.g., the concrete
distribution of SW-Cs on ECUs). In the following, we examine the compati-
bility of the concepts comprised in the VFB with the GENESYS architectural
style.

Component-Orientation

The central concept in AUTOSAR applications is the software component (SW-
C). The entire system is decomposed into smaller (reusable) units that provide
a part of the required systems application functionality (application software
component), some standardized ECU- or platform-related service (service com-
ponent, ECU abstraction component, complex device driver component), or
that interact with the environment (sensor-actuator component).

Similar to all types of components in AUTOSAR is their interaction via
ports. AUTOSAR discriminates to types of ports: PPorts and RPort. PPorts
are outgoing ports via which information is provided. RPorts are incoming
ports that enable a component to receive information. The data elements
exchanged via ports are defined in the specification of the port interface. AU-
TOSAR supports three types of interfaces: with client-server interfaces one or
more clients are enabled to invoke operations provided by one server, sender-
receiver interfaces are used to specify data exchange from one sender to multi-
ple receivers, and calibration interfaces allow a component the access of static
calibration parameters.

Those concepts fit very well to the GENESYS architectural style, which
also follows a strict component orientation. However, in GENESYS the term
component is defined as a self-contained hardware/software subsystem that
can be independently developed and used as a building block in the design of a
larger system. Thus, in contrast to AUTOSAR, a component in GENESYS is
not a software component but always seen in relation to the concrete hardware
platform that provides the foundation for component execution and interaction
(e.g., the communication infrastructure).

Similar to AUTOSAR, components interact via ports in GENESYS. Those
ports are specified via interface specifications. The Linking Interface (LIF)
specification captures all information relevant for the integration of the com-
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ponent with other components (e.g., syntax and timing of the exchanged infor-
mation); thus, it specifies the local application service of a component visible
at its boundaries. The LIF matches the concept of sender-receiver and client-
server interfaces of AUTSOAR, since it captures the services provided by a
component and the data exchanged via a component’s port. The concept of
calibration interfaces is realized by the technology independent interface of a
GENESYS component. This interface is used to used to configure a compo-
nent, e.g. assign the proper names to a component and its input output ports,
to reset, start and restart a component and to monitor and control the resource
requirements (e.g., power) of a component during run time.

Data Exchange and Communication Semantics

The AUTOSAR specification defines two types of communication semantics for
the data exchange between components via ports of sender-receiver interfaces:

Queued Communication: At the receiver side, the data element is put into
an incoming data queue. At the sender side, each produced data element
is stored in an outgoing data queue. For this communication paradigm
1:n and n:1 multiplicity is supported. 1:n means that the data element
produced by one sender is put into the incoming data queues of multiple
receivers. The n:1 multiplicity describes a topology where the data ele-
ments from multiple senders are placed into a single queue of one receiver.

Last-is-best Communication: At the receiver side the reception of a data
element associated with a port with last-is-best semantics replaces the
data element previously received via the respective port. Optionally, an
instant of invalidation of the data element can be specified for this type
of communication. The supported multiplicity for last-is-best communi-
cation is 1:n, which means one sender and multiple receivers.

In order to efficiently support the above listed communication topologies, mul-
ticasting needs to be supported by the communication infrastructure. Further-
more, the communication infrastructure is responsible for the correct distribu-
tion of the data elements, i.e. the correct interconnection of sender and receiver
ports. The sender of data elements in AUTOSAR is unaware of the number
and name of the receivers of its data. Likewise, the receiver is unaware of the
name (and in case of n:1 queued communication of the number) of the sender
of its received data elements.

The GENESYS architecture natively supports both types of communication
semantics - the sporadic communication paradigm provided perfectly matches
the queue communication. The periodic message transport service uses update-
in-place of received messages and implements last-is-best communication. In
addition, it is an architectural principle of GENESYS that multicasting has
to be supported by the communication infrastructure. Thus, an efficient im-
plementation of the communication topologies defined in AUTOSAR seems
reasonable - except for the n:1 communication topology for queued commu-
nication: Receiving data from different components at a single shared port
opens up a source for error propagation in some rare scenarios. For instance
a component exhibiting a babbling idiot failure would violate its bandwidth
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specifications and would be empowered to flood the incoming queue of the re-
ceiving component. Thus, messages of other (still correct) components could
be delayed or even lost, leading violations of the service of the components in
temporal and/or value domain.

For client-server communication, AUTOSAR specifies a n:1 multiplicity.
That is multiple clients are empowered to invoke the service of a single server.
For this purpose, a client provides a data value for each of the outgoing argu-
ments (as specified in the port interface). As response, either the result of the
operation or an error message is returned to the client.

Such client-server communication is not supported by GENESYS at the core
service level. However, in order to account for the importance of client-server
interaction as stated by several application domains, client-server interaction
has been included as domain-independent optional service in the GENESYS
reference architecture template. As the name implies, such an optional service
is implemented on top of the core services as middleware within a component
and can be included in a particular instantiation of the architecture if required.

Hardware Abstraction

The functionality of the VFB is realized by the RTE and the AUTOSAR Ba-
sic Software, which provide a standardized interface to AUTOSAR SW-Cs.
This way, the RTE and Basic Software abstract from the concrete hardware of
the underlying ECU enabling the reuse and relocation of (many) AUTOSAR
SW-Cs to different ECUs. Of course, particular software components that are
tightly coupled with sensors or actuators can only be deployed on ECU with
the respective hardware available. To achieve this abstraction, a layered soft-
ware model is followed for the AUTOSAR Basic Software, which consists of a
microcontroller abstraction layer, ECU abstraction layer, and a system services
layer (cf. Section 8.3.3.1).

Of particular importance is the abstraction from ECU boundaries for soft-
ware components. In order to enable the reuse of SW-Cs, a developer of a SW-C
must not be required to be aware of the concrete location of the interacting
SW-Cs. That is, from point of view of a SW-C, it should make no difference
whether a SW-C is located on the same ECU or on a different ECU. For this
purpose, the AUTOSAR COM module of the Basic Software provides mecha-
nisms to route signals over ECU boundaries that are hidden to the sending as
well as the receiving software component.

Abstraction from the underlying platform technology is also a primary de-
sign driver for the GENESYS architectural style in order to enable a seamless
upgrade of the platform to upcoming technologies. This abstraction is realized
in the GENESYS architecture by a Uniform Network Interface (UNI), which
provides the functionality of the core service to the domain-independent and
domain-specific middleware services as well as to the application services in a
uniform way. Location transparency of SW-C as provided by the AUTOSAR
RTE is also supported by GENESYS: Source and sink of all communication
activities are ports. Sending components place their data elements in the com-
ponent’s outgoing ports, receiving components read data elements from the
component’s incoming port. The components themselves are not aware of
the actual communication topology that interconnects the individual compo-
nents. It is in the responsibility of the system integrator to configure the
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communication infrastructure accordingly to establish the required communi-
cation channels. In addition, by using dedicated gateway system components in
GENESYS, the transparent (transparent to the application running in the IP
cores of the MPSoC) data exchange across ECU boundaries (e.g. chip bound-
aries) can be achieved. An exemplary system configuration is visualizing this
idea is shown in Section 8.3.3.3.

Basic Reconfiguration

AUTOSAR provides the applications (SW-Cs) and other Basic Software mod-
ules a mode management service, which enables to change the execution state
of an ECU (e.g., to put an ECU into sleep state), supervise and take influence
on the execution of application services (e.g., a watchdog that restarts an appli-
cation missing the dissemination of a life sign), and change the configuration of
the (physical) communication channels between ECUs. For this purpose, AU-
TOSAR needs to support the definition of modes, communication mechanisms
that allow dissemination of mode changes as well as scheduling mechanisms for
different modes.

As elaborated in Section 5.1.1, the GENESYS reference architecture tem-
plate includes basic reconfiguration core services, which enable the implemen-
tation of the above mentioned mode management services of AUTOSAR. For
instance the creation and modification of communication channels during run-
time as well as mechanisms to control the execution state of cores is a function-
ality that has to be provided by every instance of the GENESYS architecture
as core service. A watchdog service is not part of the GENESYS core services.
However, the global time service in combination with the ability to restart cores
simplifies the implementation of a watchdog as optional service on top of the
core services.

8.3.3 Instantiation of AUTOSAR on top of GENESYS

Of course, the AUTOSAR Basic Software offers a plethora of services that are
not covered by GENESYS core services or that are also not covered by op-
tional services at that moment. For instance functions that are provided by
AUTOSAR Basic Software are: access to non-volatile RAM, communication
and diagnostic services, or ECU state and watchdog manager. The intention
of GENESYS is to provide a platform that can be used across different do-
mains and is further customized for the respective application domain - like
the automotive domain in this case.

It is the purpose of this section to elaborate on a hypothetical customization
of GENESYS for the automotive domain by outlining a possible instantiation
of AUTOSAR on top of the GENESYS MPSoC platform.

Figure 8.7 depicts a theoretical mapping of an AUTOSAR-based ECU to
GENESYS components. Two types of components are distinguished: applica-
tion cores and system components. Application cores implement the required
automotive functionality. As shown in this Figure a radical one-to-one mapping
of SW-Cs to application cores is proposed. The advantages of this approach
are the reduced requirements on operating system functionality within a single
application core as well as the inherent encapsulation of SW-Cs. A drawback
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is the increased overhead for SW-C to SW-C communication, since it always
requires communication activities via the on-chip network.

In order to provide an appropriate execution environment for SW-Cs, each
application core requires a middleware layer that implements (at least parts
of) the AUTOSAR RTE. This seems to be a reasonable level of abstraction,
since it is the purpose of the RTE to decouple the SW-Cs from the underlying
platform and from the mapping to a specific ECU by providing an interface
to the SW-Cs that is completely independent from the ECU. According to
[AUTOSAR Layered Software Architecture] SW-Cs are allowed to access via
the RTE the following AUTOSAR services: system services, memory services
(nvram manager), communication services (e.g., LIN, CAN, FlexRay), complex
drivers, and I/O hardware abstraction.

The second type of components is system components. System compo-
nents in GENESYS are components that implement application-independent
optional services - either as software within a CPU or as dedicated hardware
block. In the outline presented in Figure 8.7, the system components are de-
ployed to implement parts of the AUTOSAR Basic Software.

Memory Manager: The functionality of non-volatile RAM management is
sourced to a dedicated system component, which is connected for in-
stance to a chip-external memory component (e.g. Flash memory) on
the ECU. Compared to the layered software architecture of AUTOSAR,
this component corresponds to the following parts of the Basic Software:
It implements memory drivers from the microcontroller abstraction layer
(e.g., driver for external Flash memory) in order to enable the low level
access to the memory hardware. Furthermore, this system component
needs to provide the functionality of the memory hardware abstraction
of the ECU abstraction layer, which provides an abstraction from the
type and location of the respective memory element. For instance Flash
or EEPROM memory shall be accessible via the same interface. In addi-
tion, the system component has to provide the functionality of the system
services layer. Since the system services layer in the presented setup does
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not directly interact with the RTE, but uses the UNI and the determin-
istic on-chip-network instead, the task of this layer changes with respect
to the AUTOSAR specification. Instead of providing a standardized AU-
TOSAR interface, all tasks for non-volatile data management like saving,
loading, checksum protection, etc. have to be built on the message-based
UNTI of the GENESYS architecture. This means, SW-Cs request data
load/storage via AUTOSAR conformant operations to their local RTE
middleware. The purpose of the RTE is than to translate these requests
to operations on the message-based UNI, which are then forwarded to
the memory manager system component.

Communication Manager (LIN, CAN, FlexRay): AUTOSAR provides

the SW-Cs a uniform interface for vehicle network communication, which
is independent from the actual targeted vehicle network (e.g., CAN, LIN,
FlexRay). For this purpose, the AUTOSAR Basic Software provides com-
munication drivers to different communication controller types, which are
located in the microcontroller abstraction layer. On top of this, a com-
munication hardware abstraction is built in the ECU abstraction layer.
This layer is responsible for abstraction from the number, type and lo-
cation of the various communication controllers on a given ECU. This
also establishes uniform access mechanisms to communication hardware,
regardless whether it is on-chip or on-board. These mechanisms are ex-
ploited by communication managers in the system services layer of the
AUTOSAR Basic Software to provide a uniform interface to vehicle net-
works (e.g., hide protocol and message properties from the application,
uniform interface for network management).

As depicted in Figure 8.7, we propose to realize the functionality of a com-
munication manager in distinct system components for each supported
communication protocol instead of having a communication middleware
replicated in each core of MPSoC. This would relax the resource require-
ments for the application cores, since most of the computational resources
of the core are available for execution of the application software and not
occupied by the execution of middleware services. In addition, the sys-
tem components would be highly reusable in different ECUs based on the
GENESYS MPSoC.

I/O Hardware Abstraction: A further functionality provided by the Basic

Software that is proposed to be realized as a dedicated system compo-
nent instead of a middleware layer is the uniform access to I/O devices.
AUTOSAR has a two-layered model to provide a uniform access to I/O
devices: At the microcontroller abstraction level, basic drivers for ana-
log and digital I/O (e.g., ADC, PWM) and for peripherals like watchdog
timers, general purpose timers etc. are provided. This first abstraction is
exploited at the ECU abstraction layer to provide a signal-based interface
that corresponds to the AUTOSAR interface standard.

As explained before, we argue for using a dedicated system component
for this I/O hardware abstraction service, when instantiating AUTOSAR
on top of the GENESYS MPSoC. The reason therefore is twofold again:
simpler application IP cores, since they are tailored to the needs of the
actual application only, and the potential of reuse for such system com-
ponents in different designs.
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Complex ADC Driver: The purpose of complex drivers in AUTOSAR is
to interface complex sensors and actuators, which usually have strin-
gent requirements on timing. Having a complex driver (e.g., for a fast
ADC) as a system component has the advantage of a highly optimized
implementation of the driver functionality. For instance even a hardware
implementation is possible enabling an efficient interaction with the com-
plex ECU peripheral. Furthermore, when implementing such complex
drivers in middleware as part of larger software within a single general
purpose CPU, stringent requirements on the deployed operating system
arise. Thus, by outsourcing this functionality of the Basic Software to a
dedicated (parallel) component, also the requirements for an operating
system within an application IP core are relaxed.

Diagnostic Services: AUTOSAR provides a couple of diagnostic services
that are capable of detection of errors, dissemination and logging of er-
rors, as well as of initiating fault treatment actions. These services could
also be provided by a system component instead of middleware within
application IP cores. Since all interaction between SW-Cs within one
ECU as well as across ECU boundaries are performed via the NoC, they
are potentially observable by a diagnostic system component to detect
anomalies in the SW-C’s behavior. In addition, basic functionality to
(re)start and stop IP cores is part of the core services of the GENESYS
MPSoC. Thus, such a diagnostic system component is empowered to
change the execution state of individual SW-Cs (.i.e, IP cores) via the
core services.

8.3.4 Résumé

As elaborated in the previous sections, the core services of the GENESYS
architecture as well as the system structuring at the chip level provide many
means that facilitate the instantiation of AUTOSAR on top of GENESYS.
The most important part for enabling the reuse of existing AUTOSAR ap-
plications and the implementation of new AUTOSAR-conformant applications
on top of the GENESYS architecture would be the provision of a domain-
specific optional service realizing the AUTSAR RTE in each application core.
In conventional AUTOSAR systems, the RTE provides the SW-Cs of a single
ECU the access to the services of the Basic Software. In the approach pre-
sented in Figure 8.7 only a few services (e.g. timed or event-based activation of
SW-Cs) are directly implemented within the RTE middleware in a core. The
majority of services are provided by system components. Thus, instead of di-
rectly providing access to services that are running on the same processor, the
RTE has to map service requests from SW-Cs to messages disseminated via
the deterministic NoC. This presented approach of instantiating AUTOSAR on
top of the GENESYS MPSoC and establishing a one-to-one mapping of SW-Cs
to IP cores is kind of radical. However, it entails some interesting advantages:

Reduced complexity of operating systems within IP cores: Complex
operating systems are not required in IP cores. There is no need for error-
containment functionality, since only one SW-C is hosted in one IP core. Also
temporal advantages can be achieved. For instance, AUTOSAR supports the
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event-based activation of SW-Cs. The response time, in particular the jitter
of the response time of the activated SW-C depends on many preconditions
in a traditional AUTOSAR system (e.g., utilization of the processor by other
SW-Cs, used scheduling strategy). In the presented approach, a guaranteed
response time can be achieved, since only a single SW-C is controlled by a less
complex operating system.

Highly reusable system components: The proposed system components
for realizing AUTOSAR services of the Basic Software have a high potential for
reuse in different systems. In order to be GENESYS compatible the service of
those system components needs to be captured by a precise LIF specification
at the abstraction level of the UNI. This interface specification facilitates the
reuse in different systems without the need to be aware of the internals of the
system component.

Introduction of new ”basic services” for automotive applications:
Even reuse of non-AUTOSAR system components (e.g., for optimized mem-
ory controller or TTE controller) becomes possible in automotive applications.
The important interface for component reuse is the UNI not the AUTOSAR in-
terface. The RTE middleware is responsible for mapping AUTOSAR requests
of SW-Cs to message of the UNI. Thus, would enable an introduction of new
communication protocols even transparent to the RTE.

Efficient implementation of drivers: For I/O hardware, sensors, actua-
tors and in particular for realizing complex drivers an efficient implementation
with system components would be possible. For instance, for dedicated periph-
erals that have stringent time constraints even a hardware implementation of a
device driver would be possible. The choice whether a driver would be imple-
mented in hardware or software is transparent to the RTE and the AUTOSAR
applications.



Glossary

Application Service

The application service is the intended sequence of messages that is produced
by a job via output ports at the LIF and the controlled object interface in
response to the progression of time, inputs (via input ports at the LIF and the
controlled object interface), and state.

Architectural Style

The architectural style consists of rules and guidelines for the partitioning of
a system into subsystems and for the design of the interactions among sub-
systems. The subsystems must comply with the architectural style to avoid a
property mismatch at the interfaces between subsystems.

Architecture Model

A set of descriptions that define an architecture or a configuration or a combi-
nation of an architecture and a compatible configuration (that obeys the rules
defined by the architecture).

Architecture

A technical system architecture (or architecture for short) is a framework for
the construction of a system for a chosen application domain. It provides
generic platform services and imposes an architectural style for constraining
an implementation in such a way that the ensuing system is understandable,
maintainable, and extensible and can be built cost-effectively (see also federated
architecture, integrated architecture).

Behavior
The behavior of a subsystem is the sequence of messages (i.e., intended and
unintended) that is produced by the subsystem at its LIF.

Behavioral Model

A model that describes the dynamic internal evolution (operation) of the ob-
ject of reference (system, subsystem, component) and its response to external
stimuli.

Channel
A channel serves for the exchange of messages between ports. A channel is
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associated with a communication topology, a data-direction (e.g., unidirectional
or bidirectional), temporal properties and dependability properties.

Closed World System

In a closed-world system the number of clients is limited and known a priori.
The clients can cooperate with each other or with a central scheduler in order
to establish a coordinated schedule, such that the server is in the position to
meet the requests of all clients within specified temporal bounds. Temporal
guarantees can only be given in a closed world system (see also Open World
System).

Cluster

A cluster is a physically distributed computer system that consists of a set of
nodes interconnected by a physical network. If the cluster supports a single
DAS only, we speak of a federated cluster. In this case, the DAS is physically
separated from the clusters of other DASs. Since the jobs belong to the same
DAS, they possess a common level of criticality. An integrated cluster, on the
other hand, supports more than one DAS. Each of these DASs receives a share
of the communication and component resources of the integrated cluster.

Component

A component is regarded as a self-contained subsystem that can be used as a
building block in the design of a larger system. The component can have a
complex internal structure that is neither visible, nor of concern, to the user
of the component. A component is a self-contained composite hardware/soft-
ware subsystem that can be used as a building block in the design of a larger
system. In the context of embedded real-time systems, it is essential that the
component behavior can be specified in the domains of value and time. Thus, a
component is considered to be a self-contained computational element with its
own hardware (processor, memory, communication interface, and interface to
the controlled object) and software (application programs, operating system),
which interacts with its environment by exchanging messages across LIFs.

Composability

Composability is a concept that relates to the ease of building systems out of
subsystems. A system, i.e., a composition of subsystems, is considered com-
posable with respect to a certain property (functional or non-functional) if this
property, given that it has been established at the subsystem level, is not in-
validated by the integration. Examples of such properties are timeliness or
certification.

For example, some embedded systems closely interact with their environment
and they have to produce intended results at intended points of time. Temporal
composability is a prerequisite for the feasible construction of such temporally
predictable systems of high complexity. In architectural styles that support
temporal composability, determining the emergent temporal behavior of the
resulting system is eased by the fact that the individual subsystems retain
their temporal properties after integration.
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Constrained Access

The access of the platform services through the application is temporally con-
strained in order to ensure consistency in read /write operations without explicit
synchronization (e.g., semaphore). Constrained access depends on clock syn-
chronization between application and platform for the temporal coordination
of access operations. For example, the application temporally aligns the read
operations to a memory that is written by the platform.

Controlled Object
The controlled object is the industrial plant, the process, or the device that is
to be controlled by the computer system.

Core Platform Service

Core platform services (or core services for short) are mandatory in every in-
stantiation of the reference architecture template. The core platform services
provide the foundation for higher-level, optional platform services. For in-
stance, a message transport service is a core service. At any given integration
level, the core services form a waist that can be realized using a multitude of
implementation choices. Also, they form the starting point for the domain-
customization using optional services. Exemplary categories of core services
are networking services, robustness services, and composability services.

Cross-Domain Architectural Style

The cross-domain architectural style consists of views, concepts, and design
principles that have been consolidated from the different application domains.
This includes the description of fundamental architectural principles, the iden-
tification of commonalities between application domains and the identification
of different integration levels (e.g., ranging from the level of Electronic Control
Units (ECUs) to car-to-car communication in the automotive domain) required
in each application domain.

Examples for possible design principles are the ensuring of error containment or
the partitioning of the system along precisely specified interfaces. In addition,
the cross-domain architectural style provides an appropriate naming scheme
that defines and interrelates the namespaces at the different integration levels.

Cross-Domain Development Methodology

The cross-domain methodology framework consists of a set of methods, tech-
niques and tools for diverse development processes that are applicable across
multiple application domains.

Declared State
The declared state is the state of a subsystem, which is considered as relevant
by the system designer for future behavior of the subsystem (forward view).

Determinism

A model behaves deterministically if and only if, given a full set of initial
conditions (the initial state) at time t0, and a sequence of future timed inputs,
the outputs at any future instant t are entailed.
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Distributed Application Subsystem

A Distributed Application Subsystem (DAS) is a nearly independent distributed
subsystem of a large distributed real-time system that provides a well-specified
application service.

Examples of DASs in a present day automotive application are body electron-
ics, the power-train system, and the multimedia system. Examples of DASs
in a present day avionic application are the cabin pressurization system, the
fly-by-wire system, and the in-flight entertainment system. DASs are often
developed by different organizational entities (e.g., by different vendors) and
maintained by different specialists.

Since DASs may be of different criticality (e.g., vehicle dynamics control vs.
multimedia system), the probability of error propagation across DAS bound-
aries must be sufficiently low to meet the dependability requirements. A DAS
is further decomposed into smaller units called jobs.

Error
An error is that part of the system state which is liable to lead to a subsequent
failure. A failure occurs when the error reaches the service interface.

Error Containment

Although a fault containment region can demarcate the immediate impact of
a fault, fault effects manifested as erroneous data can propagate across the
boundaries of fault containment regions. For this reason the system must
also provide error containment for avoiding error propagation by the flow of
erroneous messages (see Error Containment Region).

Error Containment Region

The set of FCRs that performs error containment is denoted as an error con-
tainment region (ECR). An error containment region must consist of at least
two independent FCRs. The error-detection mechanisms must be part of a
different FCR than the message sender, otherwise the error detection service
can be affected by the same fault that caused the message failure.

Event Message

An event message is a message that contains event observations. An event
observation contains the difference between the ”old state” (the last observed
state) and the "new state”. The time of the event observation denotes the point
in time of the state change. In order to maintain state synchronization, the
handling of event messages requires exactly-once semantics. The arrival of an
event message usually gives rise to a control signal, which triggers subsequent
computational and communication activities.

Fail-operational System
A fail-operational system is able to tolerate one or several faults. Fail-operational
systems send correct messages despite the failure of their sub-systems.

Fail-safe System
In a fail-safe system all failures are, to an acceptable extent, only minor ones.
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Fail-silent System

A fail-silent system is able to fail cleanly by just stopping to send messages.
Such a property is called Halt on Failure. Fail-silent systems send only correct
messages. A system built out of t+1 fail-silent sub-systems executing the same
task can tolerate ¢ active faults.

Fail-stop (fail-halt) System

A fail-stop (fail-halt) system should satisfy the following properties: Halt on
Failure - the system fails cleanly by just stopping to send messages.

Failure Status - the system failure is detectable from exterior.

Stable Storage - the state of the system is partitioned into stable storage and
volatile storage. The contents of stable storage are unaffected by any failure
and can always be read by any processor. The contents of volatile storage are
not accessible to other systems and are lost as a result of a failure.

The last two properties are required for implementing systems whose correct-
ness criteria involve generating outputs in a timely manner. A system made
out of t+1 fail-stop sub-systems executing the same task can mask t active
faults.

Fail-uncontrolled System

A system that does not possess any local error detection mechanisms and can
thus produce quite random or even malicious behavior. t active faults can be
masked by using 2t+1 fail-uncontrolled systems.

Failure
A failure occurs when the delivered service deviates from fulfilling its specifi-
cation.

Fault

A fault is the adjudged or hypothesized cause of an error. Faults can be internal
or external of a system.

Examples of types: An external fault (e.g. a malicious attack) causes an error,
and possible a subsequent failure. An internal fault (i.e. vulnerability) allows
an external fault to harm the system and has to pre-exist in the system.

Fault-Containment Region
A Fault Containment Region (FCR) is a collection of components that operates
correctly regardless of any arbitrary logical or electrical fault outside the region.

Fault Hypothesis

The fault hypothesis is the specification of the faults that must be tolerated
without any impact on the essential system services. The fault hypothesis
states the assumptions about units of failure (see Fault Containment Region),
failure modes, failure frequencies, failure detection, and state recovery.

Fault-Tolerant Unit

A fault-tolerant unit (FTU) is a unit consisting of a number of replica de-
terminate components that provides the specified service even if some of its
components fail.
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Federated Architecture

In a federated architecture, each DAS is implemented on a dedicated dis-
tributed computer system, consisting of nodes dedicated to jobs (in the au-
tomotive industry called Electronic Control Units - ECUs) and a physical net-
work (e.g., a CAN network) among the nodes. In a federated architecture, each
DAS is physically separated from other DASs, which leads to clear boundaries
for responsibility and error propagation.

Host
The host is the unit used to execute jobs.

Integrated Architecture

An integrated architecture is characterized by the integration of multiple DASs
within a single distributed computer system. An integrated architecture pos-
sesses a single physical network that is shared among the DASs.

Integrated Resource Management

Integrated resource management is the simultaneous management of multiple
resources (e.g., bandwidth, power, energy, memory) in order to globally opti-
mize different resources.

Integration Level

The integration level denotes the layer in a system-of-systems at which it is
composed out of its components. Different integration levels can be distin-
guished in embedded systems on between two extreme levels: the chip level and
the open collaboration level. At the chip level IP (Intellectual Property) cores
are integrated by a network-on-chip. This is a closed integration where a man-
ufacturer provides a top down design of a chip. The open collaboration level,
on the other hand, exhibits a bottom up ad-hoc integration of independently
developed, autonomous components/services (e.g., ambient intelligence).

Interface State

The interface state contains the history of the component that is relevant for
the future behavior of the component as seen from this interface. Interface state
is defined between the intervals of activity on the sparse time base. Interface
state is a subset of the state of the component and should be accessible from
the interface.

Job

A job is a constituting element of a DAS and forms the basic unit of work. It
interacts with other jobs through the exchange of messages in order to work
towards a common goal and provide the application services.

Linking Interface

A job provides its real-time services, and accesses the real-time services of other
jobs by the exchange of messages across its Linking Interface (LIF). These
messages have to be fully specified in a LIF specification which consists of an
operational specification and a LIF service model specification.
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Linking Interface Specification

The linking interface specification is the mediating middle between a service
supplier and the service user. On the one hand, the LIF service specification
should be complete in the sense that it contains all information required to
understand and use the services of the component that are offered at the par-
ticular LIF. On the other hand, the LIF service specification should be minimal
in the sense that it contains only information that is required by the user of
the services.

The LIF service specification comprises a syntactic specification, a temporal
specification, and a LIF service model specification. We subsume under the
term operational specification of an interface the syntactic specification and
the temporal specification. The syntactic specification forms out of the se-
quence of bits in a message larger (information) chunks (such as a number, a
string, or a method call, a structure consisting of a combination thereof, or a
complex data object, such as a picture) and assigns a name to each chunk.
The temporal specification of the messages defines their send and receive in-
stants, e.g., at what instants the messages are sent and arrive, how the messages
are ordered, and the rate of message arrival. This information can be formal-
ized if an appropriate model of real-time is available. In non-safety critical
applications the temporal specification can be expressed in probabilistic terms.
The LIF service model specification provides a conceptual interface model that
relates the names of the chunks to the user’s conceptual world and thus as-
signs a deeper meaning to the chunks generated by the syntactic specification.
It follows that the LIF service model must be expressed in concepts that are
familiar to the user of the interface services.

Message

A message is any data structure that is formed for the purpose of inter-job
communication. This definition is very open. We also view a data exchange
via common memory as a means of (state) message passing.

In order that errors in a message may be detected, an output guard and an
input guard can be associated with a message. Such a guard is a predicate on
values of the message, and relevant state variables that defines an application-
specific acceptance criterion. Using such assertions, it is possible to classify
messages as follows:
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Attribute | Explanation Antonym
valid A message is valid if its checksum invalid
and contents are in agreement.
checked A message is checked at source not checked

(or, in short, checked) if it passes
the output assertion.

permitted A message is permitted with re- not permitted
spect to a receiver if it passes the
input assertion of that receiver.
The input assertion should ver-
ify, at least, that the message is
valid.

timely A message is timely if it is untimely
in agreement with the temporal
specification.

value-correct | A message is value-correct if it is | not value-correct
in agreement with the value spec-

ification.

correct, A message is correct if it is both incorrect
timely and value-correct.

insidious A message is insidious if it is per- not insidious

mitted but incorrect.

Meta Model

A meta-model defines the rules and constructs according to which a model is
created in a predefined class of problems. A meta-model can be viewed from
three perspectives; as a set of building blocks and rules used to build models,
as a model of a domain of interest, and as an instance of another model

Ontology

Ontology is a shared knowledge standard or a knowledge model defining prim-
itive concepts, relations, rules and their instances, which comprise the relevant
knowledge of a topic. A formal ontology is a controlled vocabulary expressed in
an ontology representation language. This language has a grammar for using
vocabulary terms to express something meaningful within a specified domain
of interest.

Open World System

We define an open-world system as a system where an (unknown) number
of uncoordinated clients compete for the services of a server. The critical
instant in an open world system occurs, when all clients request the services
of the server simultaneously. Guaranteed real-time performance cannot be
achieved in an open-world system. An example of an open-world system is the
Internet. Another example of an open world system is standard Ethernet. It is
thus impossible to establish temporal guarantees in standard Ethernet without
restricting the access pattern that is characteristic for open world systems.

Optional Platform Services
The optional platform services which are built upon the core platform ser-
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vices can be generic in the sense that they can be used in multiple application
domains or specific for a focused domain. These services are optional in the
sense that they are not required in every instantiation of the architecture. If
needed, developers can pick them out of the GENESYS reference architecture
template, which includes a set of existing, validated component libraries for
the different levels of integration. For instance an encryption service could be
a generic optional service.

Platform

A platform is the hardware/software foundation for the execution of applica-
tions. The platform comprises generic services for the development of applica-
tions, which are denoted as platform services (see Core Platform Services and
Optional Platform Services).

Platform Services

Platform services facilitate the development of distributed applications and
separate the application functionality from the underlying platform technol-
ogy to reduce design complexity and to enable design reuse. We differentiate
between two different types of platform services: Core Platform Services and
Optional Platform Services.

Platform-Independent Model
A Platform Independent Model (PIM) is a model of a system that is indepen-
dent of the specific technological platform used to implement it.

Platform-Specific Model
A Platform Specific Model (PSM) is a model of a system that is linked to a
specific technological platform used in implementation.

Reference Architecture Template

The reference architecture template is a template for building concrete ar-
chitectures. The reference architecture template provides specifications for a
comprehensive set of platform services, including domain-independent services
that can be used across application domains. In any specific application, a
subset of these platform services can be selected and implemented. The selec-
tion and implementation of the platform services is part of the instantiation of
the template used to arrive at a concrete architecture (e.g., a particular chip,
a network platform running a distributed application).

Reliability
Reliability is the ability of a system or component to perform its required
functions under stated conditions for a specified period of time.

Replica Determinism

Replica determinism is a desired property between replicated subsystems. A
set of replicated subsystems is replica determinate if all subsystems in this
set produce exactly the same output messages that are at most an interval
of d time units apart, as seen by an omniscient outside observer. In a time-
triggered system, the subsystems are considered to be replica-deterministic, if
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they produce the same output messages at the same global ticks of their local
clock.

Robustness

Robustness is the capability of a system to deliver an acceptable level of ser-
vice despite the occurrence of transient and permanent hardware faults, design
faults, imprecise specifications, and accidental operational faults. A system
must be resilient with respect to unanticipated behavior from the environment
of the system or of subsystems. In case such unanticipated behavior occurs,
the system should still exhibit some sensible behavior, and not be completely
unpredictable.

Service

The service delivered by a system (in its role as a provider) is its intended be-
havior as it is perceived by its users. The behavior is the sequence of observable
outputs of a system.

In GENESYS, a service delivered by a job is part of the job’s behavior as seen
by the platform and the other jobs. Such a service is called an application
service.

In GENESYS, a service delivered by the platform is part of the platform’s be-
havior as seen by the platform and the other jobs. Such a service is called an
architectural service.

Sparse Time Base

If the time base of the global time in a distributed system is dense (i.e., the
events are allowed to occur at any instant of the timeline), then it is in general
not possible to generate a consistent temporal order of events on the basis of
the time-stamps. Due to the impossibility of synchronizing clocks perfectly
and the denseness property of real time, there is always the possibility that a
single event is timestamped by two clocks with a difference of one tick.

By introducing the concept of a sparse time base this problem can be solved.
In the sparse time model the continuum of time is partitioned into an infinite
sequence of alternating durations of activity and silence. Thereby, the occur-
rence of significant events is restricted to the activity intervals of a globally
synchronized action lattice. In this time model, the costly execution of agree-
ment protocols can be avoided, since every action is delayed until the next
lattice point of the action lattice.

State

The state enables the determination of a future output solely on the basis of
the future input and the state the system is in. In other word, the state enables
a "decoupling” of the past from the present and future. The state embodies all
past history of the given system. Apparently, for this role to be meaningful,
the notion of the past and future must be relevant for the system considered
(see also Declared State and Interface state).

State Message
A state message is a periodic message that contains state observations. An
observation is a state observation, if the value of the observation contains the
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state of a real-time entity. The time of a state observation denotes the point in
time when the real-time entity was sampled. The handling of state messages
occurs through an update in place and non-consuming read.

State Recovery
State recovery is the action of (re-)establishing a valid state in a subsystem
after a failure of that subsystem.

Subsystem
A subsystem is a part of a system that represents a closure with respect to a
given property.

Unconstrained Access

Unconstrained access does not restrict the points in time of access operations
performed by the application. In order to support consistency, asynchronous
handshake protocols are employed that do not require clock synchronization
between application and platform (e.g., handshake protocol for the producer/-
consumer problem based on read/write positions).
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