
www.hardrealtimecorba.org

IST-2001-37652

Hard Real-time CORBA

 Title Engineering Handbook
For CORBA-based Control Systems

 Authors Ricardo Sanz (UPM)
Miguel Segarra (SCILabs)
Thomas Losert (TUW)
Julita Bermejo (UPM)
Karl-Erik Årzén (LTH)

 Reference IST37652/072

 Date 2003-10-23

 Release 1.0

 Status Final

 Clearance Public

 Partners Universidad Politécnica de Madrid
Lunds Tekniska Högskola
Technische Universität Wien
SCILabs Ingenieros

 Sheet: 2 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Summary Sheet

IST Project 2001-37652
HRTC
Hard Real-time CORBA

Engineering Handbook
For CORBA-based Control Systems

Abstract:

The present document contains guidelines and reference information for
the construction of software-intensive complex control systems based on
CORBA technology.

Copyright

This is an unpublished document produced by the HRTC Consortium.
The copyright of this work rests in the companies and bodies listed below.
All rights reserved. The information contained herein is the property of
the identified companies and bodies, and is supplied without liability for
errors or omissions. No part may be reproduced, used or transmitted to
third parties in any form or by any means except as authorised by contract
or other written permission. The copyright and the foregoing restriction
on reproduction, use and transmission extend to all media in which this
information may be embodied.

HRTC Partners:

Universidad Politécnica de Madrid
Lunds Tekniska Högskola
Technische Universität Wien
SCILabs Ingenieros.

 Sheet: 3 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Release Sheet (1)

Release: 0.1 Draft
Date: 2003/08/09
Scope Initial version
Sheets All

Release: 0.2 Draft
Date: 2003/08/17
Scope New structure
Sheets All

Release: 0.3 Draft
Date: 2003/09/24
Scope New content in methodology and CORBA products
Sheets All

Release: 0.4 Draft
Date: 2003/09/29
Scope Content added in OMG Specifications
Sheets All

Release: 0.5 Draft
Date: 2003/10/14
Scope Reorganisation of chapters. New content
Sheets All

Release: 0.6 Draft
Date: 2003/10/19
Scope New content on real-time issues
Sheets All

Release: 0.7 Draft
Date: 2003/10/20
Scope First Complete Draft
Sheets All

Release: 0.8 Draft
Date: 2003/10/22
Scope New real-time chapter
Sheets All

 Sheet: 4 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Release Sheet (2)

Release: 0.9 Draft
Date: 2003/10/22
Scope New fault-tolerant chapter. Various corrections and

inclusions.
Sheets All

Release: 1.0 Final
Date: 2003/10/23
Scope Revision, corrections, indexes.
Sheets All

 Sheet: 5 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Table of Contents

Part 1 Overview and introductory material ___________ 9
1 Introduction ___11

1.1 Purpose of the document __________________________________ 11
1.2 Structure of the document _________________________________ 11
1.3 Sources of Information ___________________________________ 12
1.4 How to use the document _________________________________ 13

2 CORBA for Control Systems Rationale_______________________14
2.1 Introduction __ 14
2.2 CORBA for Control Systems ______________________________ 16
2.3 CORBA for EAI __ 18

3 Glossary __20
3.1 Introduction __ 20
3.2 Sources employed in this compilation________________________ 20
3.3 A special note on acronyms________________________________ 20
3.4 The glossary itself _______________________________________ 21

Part 2 OMG Technology__________________________ 47
4 The Object Management Group _____________________________49

4.1 Overview and Objectives _________________________________ 49
4.2 Structure and Activity ____________________________________ 50
4.3 Overview of Specifications ________________________________ 50

5 Overview of OMG Specifications ____________________________53
5.1 The Object Management Architecture (OMA) _________________ 53
5.2 Modelling ___ 55
5.3 CORBA/IIOP Specifications_______________________________ 57
5.4 IDL / Language Mapping Specifications _____________________ 60
5.5 Specialized CORBA Specifications _________________________ 60
5.6 CORBA Embedded Intelligence Specifications ________________ 61
5.7 CORBAservices Specifications_____________________________ 62
5.8 CORBAfacilities Specifications ____________________________ 62
5.9 OMG Domain Specifications ______________________________ 63
5.10 CORBA Security Specifications ____________________________ 64

6 Core CORBA technology __________________________________65
6.1 The Common Object Request Broker (CORBA) _______________ 65
6.2 Overview of Architectural Components ______________________ 66
6.3 CORBA IDL ___ 69
6.4 OMA Middleware _______________________________________ 70
6.5 CORBA for Real-time Control _____________________________ 71

 Sheet: 6 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

6.6 Bridging Domains _______________________________________ 72
7 RT-CORBA __73

7.1 Fixed-priority Real-Time CORBA __________________________ 74
7.2 Dynamic-Scheduling Real-Time CORBA ____________________ 82

8 Extensible Transports Framework___________________________88
9 Fault-tolerant CORBA _____________________________________90

9.1 Introduction __ 90
9.2 Grouping Abstractions ___________________________________ 91
9.3 Architectural Overview ___________________________________ 92

10 UML__95
11 CCM__98
12 Data-Distribution Service _________________________________100
13 Other Domain Specifications ______________________________102

13.1 Enhanced Views of Time ________________________________ 102
13.2 Smart Transducers______________________________________ 103

Part 3 Software and Hardware ___________________ 105
14 ORBs__107

14.1 Implementations of CORBA ORBs ________________________ 107
14.2 Qualitative Feature Comparison ___________________________ 116

15 Design Tools ___118
15.1 UML __ 118
15.2 IBM Rational__ 122
15.3 I-Logix Rhapsody ______________________________________ 123
15.4 Artisan Software Real-Time Studio ________________________ 125
15.5 PrismTech OpenFusion CORBA Explorer ___________________ 125
15.6 No Magic MagicDraw UML______________________________ 127
15.7 Microsoft Visio __ 127
15.8 Design Tools Comparison Chart ___________________________ 128

16 Platforms __129
16.1 Embedded industrial PC Boards ___________________________ 129
16.2 Networked Device Servers _______________________________ 129
16.3 Control Units __ 130
16.4 Time-Triggered Hardware________________________________ 131
16.5 Telecom Equipment ____________________________________ 132

Part 4 Core Methodology________________________ 133
17 A Methodological Approach_______________________________135

17.1 Methodology rationale __________________________________ 135
17.2 A Methodology for Complex Process Controllers _____________ 137

 Sheet: 7 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

17.3 Key Concepts for a Methodology __________________________ 138
17.4 Divide and Conquer_____________________________________ 139

18 Basic processes __141
18.1 Introduction ___ 141
18.2 Early requirements _____________________________________ 142
18.3 Late requirements ______________________________________ 143
18.4 Analysis __ 144
18.5 Architectural design ____________________________________ 145
18.6 Detailed design __ 146
18.7 Implementation __ 146

19 Engineering Objects for Real-time__________________________148
19.1 Schedulability Analysis__________________________________ 148
19.2 Engineering of real-time control applications _________________ 151

Part 5 Case Studies ____________________________ 155
20 Strategic Plant Control ___________________________________157

20.1 Introduction ___ 157
20.2 Strategic Process Control ________________________________ 158
20.3 Operational objectives for the Contes plant __________________ 160
20.4 The PIKMAC decision support system______________________ 162
20.5 Global Application Structure______________________________ 162
20.6 Lessons learnt ___ 169

21 Strategic Emergency Management _________________________171
22 The HRTC Process Control Testbed ________________________174

22.1 Introduction ___ 174
22.2 Process description _____________________________________ 174
22.3 Computing Components _________________________________ 175
22.4 Functionality __ 178
22.5 Hardware Setup __ 179
22.6 Software Setup __ 180

23 The Integrated Control Architecture ________________________183

Part 6 Additional Materials ______________________ 185
24 Common pitfalls___187

24.1 Don’t start from the beginning ____________________________ 187
24.2 Overselling of CORBA solutions __________________________ 187
24.3 Being religious or dogmatic about CORBA __________________ 188
24.4 Don’t know why we want CORBA_________________________ 188
24.5 Being generic for one-of-a-a-kind problems __________________ 188
24.6 Belief in silver bullets ___________________________________ 189
24.7 Forget that the focus is developing software controllers_________ 189
24.8 Forget about true physical concurrency _____________________ 189

 Sheet: 8 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

24.9 NIH Architectural Syndrome _____________________________ 190
24.10 Insufficient Intelligence in CORBA Agents __________________ 190
24.11 Excessive Intelligence in CORBA Agents ___________________ 190
24.12 Seeing Objects/Agents Everywhere ________________________ 191
24.13 Monolithic Agencies ____________________________________ 191
24.14 All time working in the infrastructure_______________________ 191
24.15 Insufficient Freedom for Agents ___________________________ 191
24.16 Excessive Freedom for Agents ____________________________ 192

Part 7 Appendices _____________________________ 193
25 References ___195
26 OMG Specification Catalog________________________________202
27 Final Comments___209

27.1 Some final thoughts_____________________________________ 209
27.2 A lot of work to be done _________________________________ 210

 Sheet: 9 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Part 1
Overview and introductory

material

 Sheet: 10 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

This page has been intentionally left blank.

 Sheet: 11 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

1 Introduction
1.1 Purpose of the document

This is the HRTC CCS Engineering Handbook. It contains several types of
resources for the construction of CORBA-based controllers, from available
specifications from the OMG to methodologies and RT-CORBA ORB
implementations and tools.

This document can serve as base material to establish a organisation-
specific methodology and background knowledge in the field.

The intended audience of this document is people involved in the
specification, selection, design, implementation and/or deployment of
complex distributed control systems.

It is the purpose of the authors of this document to make it available to a
wide audience of control and CORBA people, making it evolve from its
present, embryonic status, to a fully operative handbook status.

1.2 Structure of the document

This document is roughly structured in six main parts and some
appendices. These parts are composed by several chapters each
addressing specific issues.

Part 1: Overview and introductory material

This part sets the stage for what comes after. It establishes the rationale for
the use of CORBA in control systems.

Part 2: OMG Specifications

This part describes available OMG specifications that are of relevance for
the construction of CORBA-based control systems.

 Sheet: 12 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Part 3: CORBA Products

This part describes available products and tools that are of relevance for
the construction of CORBA-based control systems.

Part 4: Core Methodology

This part describes a basic methodology to be used in the construction of
CORBA-based controllers.

Part 5: Case Studies

Some case studies on the use of CORBA technology for the
implementation of distributed control systems of varying complexity.

Part 6: Additional Materials

This part gathers useful heterogeneous material that cannot be cleanly
placed in the other parts.

Part 7: Appendices

References and some final thoughts.

1.3 Sources of Information
The information in this document is based on many sources but a core
reference is the summary of all OMG specifications – either published or
about to be published – that are available at the OMG web site1.

Especially for a beginner regarding OMG technologies there are good
introductions and tutorials available on the web2 that allow a quick
overview on this topic. Newsgroups3 are also a valuable resource for
beginners as well as advanced CORBA-programmers.

Further there are good books about CORBA (e.g., [Siegel 96]) that explain
the various parts of the CORBA specification (the CORBA 3 specification

1 http://www.omg.org/technology/documents/spec_catalog.htm
2 http://www.omg.org/gettingstarted/index.htm or http://www.corba.org/
3 e.g., comp.object.corba

 Sheet: 13 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

has more than 1000 pages) and provide an overview about related
specifications.

Last but not least, especially in the scientific community, there are plenty
of published papers and PhD theses about particular aspects related to
CORBA.

1.4 How to use the document
This handbook can be used in several ways depending on the purpose and
the background of the user regarding CORBA technology.

Type of Reader Roadmap

Decision maker Parts 1, 5 and 6

Designer/architect Parts 1, 2, 4, 5 and 6

Programmer Parts 1, 2, 3 and 6

Control engineer Everything

Control customer Parts 1 and 5

 Sheet: 14 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

2 CORBA for Control Systems
Rationale

2.1 Introduction
Nowadays, most control systems are heterogeneous distributed systems.

They are also complex systems as a great number of different hardware
and software elements are combined together to provide global functions.
The reason for heterogeneity is that specialised equipment performs better
some functions of a system; sensor-reading and actuator control, process
management and enterprise management are placed at different levels of
the distributed control system and perform different tasks.

Field Management

Process Management

Business Management

Continuous Process Plant

Fieldbus

Control Network

Enterprise Network

Process Control

MIS

Data Storage

Process Operation

Field Configuration

Sensing and Acting

Safety

Figure 1: Heterogeneity and distribution in a process plant. Complexity is handled by
means of subsystems organisation into layers: field, process, bussiness.

 Sheet: 15 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

The main reason for distribution is that computing must be close to the
process in order to ensure prompt reaction to process changes (e.g. lower-
level control loops). Figure 1 shows this situation in a complex process
plant. But there are many other reasons for doing this:

� availability of suitable embeddable processors,

� timing requirements that forbid communication due to latencies,

� need of increased levels of performance that is achieved through
parallelism,

� simplification of construction and maintenance tasks through
modularity,

� reduction of cost and time-to-market by means of component-based
reuse,

� integration of legacy systems

� availability of specific software platforms (for example for for AI)

The example of the process plant can be easily translated to other domains
where distribution and heterogeneity are key factors. The reader may
think of modern warfare systems where information flows from many
different sources (radar, satellite, targeting, engine control data, etc.), and
is drained by a similar amount of sinks (troops, avionics, combat systems,
positioning systems, etc). Another example is in the automotive industry
where modern ABS systems have a dedicated computer in each wheel
exchanges braking information with the rest. Additionally the suspension,
power management, and engine control systems work together with the
ABS to keep the automobile under control. While these are common
systems these days, ¿what are the common aspects among all of them?

They are difficult to build. While hardware costs keep decreasing over the
years the software that runs on it becomes more and more complex and
the effort and money to build it keeps rising. The problem has several
facets two of which are distribution and heterogeneity, that we try to
address in this work.

The best way to get rid of those problems is to make them disappear at the
system development level. A common abstraction for a wide variety of
systems is needed. Making the abstraction common means that it is
platform-independent so perceived heterogeneity can be actually
removed. To avoid the complication emerging from distribution we
should develop the system as if it were a monolithic system. These are

 Sheet: 16 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

precisely the ideas behind the Object Management Architecture (OMA),
provide abstraction above low-level detailed platform-problems and
provide distribution-transparency to systems in an object-oriented way.
This is achieved by providing concrete object models based on the OMA;
namely CORBA. Concrete implementations of the CORBA specification
hand to system builders an homogeneous platform-independent
infrastructure for system development.

But whereas the homogeneous CORBA abstraction has proven useful
regarding some domains, the concrete object model of the CORBA
architecture can be not good enough in some situations. CORBA was
designed with the objectives of flexibility, interoperability and reduction
of complexity without incurring in a significant loss of performance.
Unfortunately, there are other control system demands and requirements
as those related to real-time, embedded, and fault tolerant systems that
cannot be overlooked and a careful analysis must be done.

2.2 CORBA for Control Systems
Distributed objects are a useful technology for control systems
construction because control systems are software systems that
continuously interact with the reality (i.e. with real, physical objects) so
the software paradigm that best fits this domain is the object-oriented
paradigm.

The CORBA community has been aware for a long time of the lack of
suitability of the general CORBA specification for certain types of
technical systems. They have also kept in mind the tremendous benefits
that CORBA has brought to distributed system development. This change
in the way systems are built has led engineers to think that the same
concepts of abstraction and homogeneity could be applied to systems with
more stringent operating conditions. These are basically systems that need
to deal with the progression of time, dependability or scarce resources.

The efforts of the OMG community regarding the Distributed, Real-Time
and Embedded (DRE) systems have been materialised in three different
specifications which now form part of the CORBA specification:

� Minimum CORBA specification. This is a profile of CORBA for
low-resource systems. Basically, it removes from the CORBA
specification those parts which are of little use to systems where
most things are known at design-time.

 Sheet: 17 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

� Real-Time CORBA specification. This specification builds on top
of CORBA to provide the control of resources necessary to achieve
end-to-end predictability in real-time systems. The specification
reuses concepts and some parts of other specifications as the
Quality of Service framework from the Messaging specification or
the Enhanced Time specification.

� Fault-Tolerant CORBA specification. There are many applications
that have a need for fault-tolerance. This specification deals with
the CORBA infrastructure services that an application might
request to achieve fault tolerance. The specification supports a
range of fault tolerant strategies such as request retry, redirection to
an alternative server, and passive and active replication.

The increasing interest of the scientific/technical developer community in
CORBA for technical systems have fostered a rising industry of ORB
manufacturers for industrial applications. Most implementations are Real-
Time CORBA ORBs built on top of the Minimum CORBA specification so
as to take advantage of real-time features with a moderate use of
resources.

There are some issues that have not still been fully addressed as some
requirements mix-up in critical systems. These systems have requirements
regarding real-time, fault-tolerance and embedded characteristics that
pose a difficult problem still unsolved unless treated ad-hoc by traditional
systems engineering. The OMG specifications regarding real-time,
embedded, and fault tolerant systems have been done individually and
whereas most real-time ORBs provide minimum CORBA implementations
they do not provide reliability characteristics regarding fault-tolerance.
This means that DRE applications can be fully built and deployed by the
use of commercially available ORBs but the task of building the system
becomes more problematic when requirements for predictability and
dependability begin to be tangled together. This is also the situation in the
case there is a decision to build the system in an ad-hoc way, so in benefit
of CORBA the developer can always take the advantage of having a
common abstraction for the development of DRE systems no matter the
platform used. Other questions as the lack of awareness of the progression
of time in the CORBA abstraction (IDL language) are beginning to be dealt
with so in a future, all types of systems with hard real-time constraints
may come into operation using CORBA technology.

Although, as reviewed, some problems still remain unsolved, the
technology has established the quality of its value in a great extent of

 Sheet: 18 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

industrial applications ranging from onboard ship command and control
or research facilities to software defined radio, tactical radio systems,
telecom applications or avionics. CORBA has clear advantages regarding
transparency (object location), independency (from platforms and
languages), scalability, flexibility, cost, etc. when compared to traditional
system development procedures that can be fully applied to systems with
tightly-binding requirements.

2.3 CORBA for EAI
What should be also stressed is the fact that CORBA systems effectively
can bridge the gap between plant and business systems giving a
convergence path toward real Enterprise Application Integration.

ITtoolbox has defined Enterprise Application Integration, or EAI, as “the
combination of processes, software, standards, and hardware resulting in the
seamless integration of two or more enterprise systems allowing them to operate
as one.”

EAI is not only applied to integration of systems within a business entity,
EAI may also refer to the integration of enterprise systems of disparate
corporate entities (B2Bi) when the goal is to permit a single business
transaction to occur across multiple systems.

 Sheet: 19 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

But in the case of control systems, what is important is the integration that
CORBA enables between different business units that traditionally have
been islands of IT (see Figure 2).

 Sheet: 20 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

3 Glossary
3.1 Introduction

When elaborating complex control systems analysis and design
documents we have the necessity of using highly specialized terms that
sometimes do have several interpretations. This glossary includes
definitions for words and expressions and acronyms with the accompanying
HRTC interpretation. Entries tagged [TBD] are "to be defined" in further
versions of the document.

3.2 Sources employed in this compilation
This glossary has been compiled using several well-established sources or,
in some cases, defining concepts specific or strongly related to HRTC that
the authors thought were necessary to include. The main contributions
came from the Object Management Group (OMG) CORBA and UML
Specifications, International Standards Organization (ISO) RM-ODP, IEEE
Portable Applications Standards Committee (PASC) POSIX Specifications
and draft specifications and FIPA Methodology Draft Glossary.

3.3 A special note on acronyms
Acronyms are not separated from the main entries because in the HRTC
context (computer, control and communications) they tend to become full
rank words. Nobody hesitates in using “POSIX” as a proper term instead
of “Portable Operating System Interface X”.

In this glossary acronyms are treated in two ways:

� In well known cases acronyms are expanded without further
comment (e.g. LAN).

� In other cases, referent/referred entries are indicated with the
special indication “See �” (e.g. ADT).

 Sheet: 21 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

3.4 The glossary itself

Action A fundamental unit of behaviour specification that represents some

activity which an agent may perform. A special class of actions is
the communicative acts.

4GL An acronym meaning Fourth Generation Language. A 4GL is

typically non-procedural and designed so that end users can specify
what they want without having to know how computer processing
is to be accomplished. Typically used to describe/configure control
systems at a high, organizational level.

Abstract Class A specialized class used solely for subtyping. It defines a common

set of behaviours to be inherited by its subtypes. It has no instances.
(Synonymous with Virtual Class in C++)

Abstract Data Type A data type defined to model the data characteristics of real-world

objects. An ADT provides a public interface via its permitted
operations, but the internal representation and implementation of
this interface are private.

Abstraction The act of concentrating the essential or general qualities of an

object or objects. The resulting concept embodies the "essence" of
the objects under consideration.

Accessibility The ability or permission to invoke a service provided by a

particular object. Object-oriented programming languages
implement both public and private methods of accessibility.
(Synonymous with Visibility)

Accessor A method or member function that provides a public interface to

allow the "setting" or "getting" of an object's private instance
variables or data members.

Acknowledged Data
Transfer

The transmission of data from a source endpoint to one endpoint, or
, in the case of multicast, more than one endpoint; and the
subsequent response indicating the status of the data transmission.

Activation Copying the persistent form of methods and stored data into an

executable address space to allow execution of the methods on the
stored data.

Active Agent An object with a self-owned thread of control.

Actor An external agent that interacts with an application or system. This

is also a model for concurrent programming. In some context this is
a synonym of � Agent.

Address Field, or Fields, in a message identifying both the source and / or

destination of the message.

ADL � Architecture Description Language.

� Agent Description Language.

ADT � Abstract Data Type

 Sheet: 22 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Agent Description
Language

A language to provide specification mechanisms for agent
implementation. � Interface Definition Language

Agent Interaction Protocol A common pattern of conversations used to perform some generally

useful task. The protocol is often used to facilitate a simplification of
the computational machinery needed to support a given dialogue
task between two agents. Throughout this document, we reserve
protocol to refer to dialogue patterns between agents, and
networking protocol to refer to underlying transport mechanisms
such as TCP/IP.

Agent Oriented
Programming

Information systems development based on the division of the
systems in a collection of interacting, semi-autonomous entities.

Agent An entity that performs operations by his own, on behalf of itself,

other systems or agents.

AIP � Agent Interaction Protocol
Analysis The process of developing a specification of what a system does and

how it interacts with its environment.

AOP � Agent Oriented Programming.

API � Application Program Interface

Application Facilities Common facilities that are useful within a specific application

domain.

Application Layer The top layer, Layer 7, in the ISO Reference Model.

Application Objects Applications and their components that are managed within an

object-oriented system.

Application Program
Interface

The programming interface used to access and control a library or
program.

Application A program or a set of programs that provides functionality to the

end user. Also refers to specific Algorithm(s) implemented in an
IED.

Architectural Domain A � Domain for architectures, i.e. an area of knowledge defined by

a family of related architectures. � Architectural Style.

Architectural Style A common core design shared by a collection of software

architectures.

Architecture Description
Language (ADL)

Graphic and textual languages, standards, and conventions used to
represent a software architecture. ADLs are usually related to �
DSSAs. ADLs are intended to be used for building models during
the development of new systems based on existing architectures or
architectures in an � Architectural Domain.

Architecture A high-level description of the organization of functional

responsibilities within a system. Many different levels of
architectures are involved in developing software systems, from
physical hardware architecture through the logical architecture of

 Sheet: 23 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

an application framework.

Archive A Data Base used to retain and maintain Data records.

Assertion An expression that evaluates to either true or false. Generally used

to protect the integrity of a system or component.

Assignment The activity of copying the values of one object into another object.

The details of such an assignment vary according to the
implementation language used.

Association 1. An Association is established when a client-server “link-up” is

made and is manifested in the Communication path established
between a client and a server for the exchange of messages. The
Association is closed when the client-server link is Concluded or
Aborted. Object association.
2. Meaningful links between objects. A person associated with a
company creates the concept of employment.

Asynchronous Event Event that occurs independently of the execution of an application.

Asynchronous Interaction An interaction between schedulable units (processes and/or

threads) in which, after a schedulable unit invokes an operation to
take part in the interaction, control is allowed to return to the
schedulable unit before the completion of the interaction.

Asynchronous Message
Communication

Asynchronous message communication provides the capability for
objects to send messages, even without the existence of the
receiving object at the instant the message is sent. The receiving
object can retrieve messages at its convenience. There is no blocking
or synchronization required between objects. Asynchronous
message communication is a foundation for constructing true
concurrent computing environments.

Asynchronous Request A request in which the client object does not pause or wait for

delivery of the request to the recipient; nor does it wait for the
results.

Atomic Broadcast The transfer of a broadcast message that is either guaranteed to be

received by all possible receivers or it is not received by any.

Atomicity The property that ensures an operation either changes the state

associated with all participating objects consistent with the request,
or changes none at all. If a set of operations is atomic, then multiple
requests for those operations are serializable.

Attribute An identifiable association between an object and a value. An

attribute A is made visible to clients as a pair of operations: get A
and set A. Read only attributes only generate a get operation. A
characteristic or property of an object. Usually implemented as a
simple data member or as an association with another object or
group of objects.

Audience The kind of consumer (caller) of an interface. An interface might be

intended for use by the ultimate user of the service (functional
interface), by a system management function within the system
(system management interface) or by other participating services in

 Sheet: 24 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

order to construct the service from disparate objects (construction
interface).

Autonomous agent An agent which has the autonomy property (see Autonomy).
Autonomy The autonomy of an agent can be expressed as following: 1) An

agent has its own life, independently of the existence of other
agents, 2) An agent is able to survive in dynamic environments
without an external control, 3) An agent takes internal decisions
about its behaviour only considering the perceptions, knowledge
and representations it possesses.

Bearer The kind of object that presents an interface. An object might be

fundamentally characterized by the fact that it has a given interface
(a specific object bears an interface), or an object can have an
interface that is ancillary to its primary purpose in order to provide
certain other capabilities (a generic object bears the interface).

Behaviour Consistency Ensures that the behaviour of an object maintains its state

consistency.

Behaviour A behaviour is the observable effects of an operation or an event,

including its results. It specifies the computation that generates the
effects of the behavioural feature. � also Task

Belief A belief depicts a mental state that an agent can have about the

environment, other agents and about itself

Bi-directional transaction A transaction in which a request and possibly data are conveyed

from a Client to a Server and in which a response and possibly data
are returned to the Client from the Server.

Binding The selection of the method to perform a requested service and of

the data to be accessed by that method. (� also Dynamic Binding
and Static Binding)

Block A class primarily consisting of a compound statement made up of a

series of operations and control structures. Block objects are used in
control structures, usually as arguments for repeated or conditional
execution. In-stances of this class essentially allow language
constructs and operations to be bundled into an object.

Broadcast A message placed onto a Communication Network intended to be

read and acted on, as appropriate, by any device connected to the
network. A Broadcast message will typically contain the sender’s
address and a Global recipient address. Example Time
Synchronising.

Class Browser A software facility used to view and modify classes, attributes and

methods.

Built-In Type An abstract data type that is provided as a part of the language.

Also provided are the operators used to manipulate instances of
built-in types.

CASE � Computer Aided Software Engineering

CCS � CORBA Control Systems

� Complex Control Systems

 Sheet: 25 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Class Attribute A characteristic or property that is the same for all instances of a

class. This information is usually stored in the class type definition.

Class Hierarchy Embodies the inheritance relationships between classes.

Class Inheritance The construction of a class by incremental modification of other

classes.

Class Member A method or an attribute of a class.

Class Method A class method defines the behaviour of the class. Such a method

performs tasks that cannot or should not be done at the instance
level, such as providing access to class attributes or tracking class
usage metrics.

Class Object An object that serves as a class. A class object serves as a factory. (�

Factory)

Class A pattern that can be instantiated to create multiple objects with the

same behaviour. An object is an instance of a class. Types classify
objects according to a common interface; classes classify objects
according to a common implementation.

Classification The act of determining which class or type applies to a specific

object.

Client An object that requests a service from a server object in a

client/server relationship. The code or process that invokes an
operation on an object.

Client/server A relationship between a client that requests services and servers

that provide services. This relationship is paralleled in an O-O
environment by message senders and receivers.

CM � Configuration Management

Cognition The act or process of knowing; perception. O-O technology is

intricately tied to how people think, act and interact while
accomplishing work.

Collaboration 1. Two or more objects that participate in a client/server

relationship in order to provide a service.
2. Collaboration is concerned with the interactions between agents
in a multiagent system when the whole system is also considered as
an agent with certain structure of system's global state. Particularly,
it is concerned with the relationships between individual agents'
mental structures and internal states and the system's collective
mental structure and state. For example, a collaborative model of
multiagent systems may contain a model of system's global
intention and individual agent's intention, and we can talk about
congruence (that is the consistency between an agent's behaviour
and the whole system's global goal or intention) and coherence (that
is the consistency between an agent's internal state, such as
intention, and the system's goal or intention).

COM � Common Object Model

 Sheet: 26 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Common Facilities Facilities useful in many application domains and which are made

available through Object Management Architectures (OMA)-
compliant class interfaces. (� Application Facilities)

Common Object Model COM. Microsoft standard for object management

Common Object Request
Broker Architecture

CORBA. A specification for objects to locate and activate one
another through an object request broker. CORBA 2 extends the
specification to facilitate object request brokers from different
vendors to interoperate.

Communication Controller A Communication Controller is a virtual device within an IED that

provides communication services related to client-server
associations.

Communications Stack Hierarchy of communications software. For example the 7 Layer

stack of the ISO Reference Model where each layer performs a
specific functional role in Open Systems Interconnection
communication.

Component A conceptual implementation notion. A component is an object that

is considered to be part of some containing object. Classes, systems
or subsystems that can be designed as reusable pieces. These pieces
can then be assembled to create various new applications.
Sometimes used to refer to software modules with plug and play
behaviour.

ComponentWare
Consortium

A cooperative of companies concentrating their efforts in object
based distributed systems.

Composition The creation of an object that is an aggregation of one or more

objects.

Compound Object A conceptual notion. A compound object is an object that is viewed

as standing for a set of related objects.

Computed Characteristic An attribute derived from the values of other attributes.

Computer Aided Software
Engineering

A collection of software tools that support and automate the process
of analyzing, designing and coding software systems.

Concrete Class A class or type that can have instances. (Contrast with Abstract

Class).

Configuration
Management

The discipline of identifying a system and its component parts at
discrete points in time. Monitoring throughout versions and
revisions enables CM to systematically control changes to maintain
integrity and traceability of the system throughout a product's
lifecycle. This includes hardware, environment, code, documents
and objects.

Conformance Test This test verifies that an object communication interface(s) complies

with the specified requirements.

Conformance A relation defined over types such that type x conforms to type y if

any value that satisfies type x also satisfies type y.

 Sheet: 27 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Connection An association established between Functional units for conveying

information.

Connectionless The transport of a single datagram or packet of information from

one network node to a destination node, or multiple destination
nodes, without the establishment of a network connection.

Connector A n-ary relation defined over components. Usually employed in

relation with software architecture modelling and � ADLs.

Constraint A relational or behavioural restriction or limit. Usually regarded as

a property that must always hold true.

Constructor A method that is called when a new instance is created. Constructor

methods are used to initialize the new instance.

Container Class A class designed to hold and manipulate a collection of objects.

Context-Independent
Operation

An operation in which all requests that identify the operation have
the same behaviour. (In contrast, the effect of a context-dependent
operation might depend upon the identity or location of the client
object issuing the request.)

Contract Defines the services provided by a server, along with the pre-

conditions and post-conditions that apply to the use of those
services.

CORBA � Common Object Request Broker Architecture

Coupling A dependency between two or more classes, usually resulting from

collaboration between the classes to provide a service. Loose
coupling is based on generic behaviour and allows many different
classes to be coupled in the same way. Tight coupling is based on
more specific implementation details of the participating classes
and is not as flexible as loose coupling.

CRC Cyclic Redundancy Check. A CRC is performed for each frame and

the value is included in that frame when it is transmitted. The CRC
check calculation may be simple or complex depending on the
protocol being used. The CRC value is used by the recipient
communication interface to check and if possible correct errors
incurred during transmission of that frame.

CSMA/CD Carrier Sense Multiple Access/Collision Detection

CWC � ComponentWare Consortium

Data Item A single piece of information to be communicated.

Data Link layer Layer 2 of the ISO Reference Model, responsible for the

transmission of data over a Physical medium. After establishing the
Link, layer 2 performs data rate control, error detection, contention
/ collision detection and recovery.

Data Model A collection of entities, operators and consistency rules.

 Sheet: 28 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Data Type A categorization of values, operations and arguments, typically
covering both behaviour and representation (e.g., the traditional
non-OO programming language notion of type).

Datagram A datagram contains within the message all the information for

transmission without the requirement for establishing a network
connection.

DCE � Distributed Computing Environment

DCOM Distributed Component Object Model � Component Object Model

Declassification The act of removing an object from a specific set of objects of a given

type.

Deferred Synchronous
Request

A request where the client does not wait for completion of the
request, but does intend to accept results later. Contrast with
synchronous request and one-way request.

Delegation The ability of a method to issue a request in such a way that self-

reference in the method performing the request returns the same
object(s) as self-reference in the method issuing the request. (�
Self-Reference)

The ability of an object to issue a request to another object in
response to a request. The first object therefore delegates the
responsibility to the second object.

Deliberative agent A deliberative agent is a specific kind of agent that takes into

account its beliefs, desires, intentions, the environment and beliefs it
has on other agents to weigh its actions. A synonym could be a BDI
agent.

Derivation The act of subclassing an existing class to define a new subclass. (�

Inheritance)

Derived Class The class created through inheritance. A derived class inherits the

methods and attributes of its superclass(es) and usually adds its
own to distinguish its capabilities or services.

Design Pattern A pattern that specifies the way to construct something to satisfy

some requirements (equilibrating forces) in some context.

Design A process that uses the products of analysis to produce a

specification for implementing a system. Also the result of this
process. � Design Pattern � Pattern

Destructor A method involved whenever an object is ready to be destroyed. It

is usually implemented to revise the actions that were performed
during initialization, such as recovery of allocated resources.

Device A mechanism or piece of equipment designed to serve a purpose or

perform a function.

Distributed Computing
Environment (DCE)

OSF software specification and implementation to support
development of distributed applications. (� Open Software
Foundation, � Remote Procedure Call)

 Sheet: 29 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Distributed Object
Computing (DOC)

A computing paradigm that distributes cooperating objects across a
---possibly heterogeneous--- network and allows the objects to
interoperate as a unified whole.

Distributed Objects
Everywhere (DOE)

Codename of the OMA implementation project by SunSoft Inc.
Commercialized as Sunsoft NEO.

DLL � Dynamic Link Library.

DOC � Distributed Object Computing.

DOE � Distributed Objects Everywhere.

Domain A formal boundary that defines a particular subject or area of

interest. The HRCT domain is the domain of software intensive,
distributed, complex process control.

Domain Expert A person who has special skill or knowledge of a particular domain.

Domain Model A model (terminology and semantics) that characterize the

elements, processes, and relationships within a family of related
systems.

Domain-specific software
architecture (DSSA)

An architecture that captures architectural commonality of multiple,
related systems, i.e., systems within the same domain.

DSOM Distributed System Object Model. � System Object Model.

DSSA � Domain-specific software architecture.

DTI Data Template Identifier.

Dynamic Binding Binding that is performed after a request is issued. (� Binding)

Dynamic Classification Classification of an object at runtime. This implies that an object's

classification can change over time.

Dynamic Invocation Constructing and issuing a request whose signature is not known

until runtime.

Dynamic Link Library A dynamically loaded run-time library.

Dynamic Object-Based
Application

The end-user functionality provided by one or more programs
consisting of interoperating objects.

EC Event Control

Electra An implementation of CORBA on top of the Isis and Horus reliable

communications toolkits.

Embedding Creating an object out of a non-object entity by wrapping it in an

appropriate shell. (� Wrapper)

Encapsulation The technique used to hide the implementation details of an object.

The services provided by an object are defined and accessible as
stated in the object contract. (Often used interchangeably with

 Sheet: 30 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Information Hiding)

Enterprise Modeling A technique for modelling an entire business enterprise from the

business manager's point of view. An enterprise model is composed
of the objects, events and business rules that describe the enterprise.
Separate but related business systems can be built from this model
to enhance the efficiency and consistency of the operation of the
enterprise.

Environment The totality of circumstances surrounding an agent or group of

agents, especially we can consider the physical and social
environment. Physical Environment: The combination of external
physical conditions that affect and influence the growth,
development, actions and survival of agents. Social Environment:
The complex of social and cultural conditions affecting the nature of
an agent or a community.

Event A significant change in the environment or the state of an object that

is of interest to another object or system.

Exchange Format The form of a description used to import and export objects.

Expandability The expandability of a CCS is the criteria for the fast and efficient

extension (both hardware and software).

Expectation Management The process of guiding the user's expectations regarding the

functionality and characteristics of any proposed system or
technology.

Expert System A rule-based program that implements the domain knowledge of a

human domain expert. It is usually able to "reason" through new
problems by applying its rules.

Export To transmit the description of an object to an external entity.

Extension of a Type The sets of values that satisfy the type.

Externalized Object
Reference

An object reference expressed as an ORB-specific string. Suitable for
storage in files or other external media.

Factoring The process of extracting the common properties or behaviour from

a group of objects so that the common elements can be propagated
to a common subclass. Factoring eliminates duplication.

Factory Acceptance Test
(FAT)

Includes customer agreed functional tests of the specifically
manufactured CCS, or its parts, using the parameter set for the
planned application; performed in the Manufacturer’s factory using
Process simulation test equipment.

Factory A concept that provides a service for creating new objects.

Fault-Tolerance The characteristic of a system that allows it to handle the loss of a

particular component without interrupting normal operations.

Field Bus A communications network shared by multiple, communicating,

physical nodes.

 Sheet: 31 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Flexibility The Flexibility is the criteria for the fast and efficient
implementation of functional changes, including hardware
adaptation, in an CCS.

FMS Fieldbus Messaging Specification.

Formal Parameter A named local object used as an argument to an operation. The

value of the object (actual parameter) is assigned by the client who
runs the method.

Frame Format A template for the actual message to be transmitted. It typically

defines the Header, Start of frame, Destination address, Source
address, length/type of contained data, the actual data, padding
bytes if required and some form of CRC data, then end of frame
marker.

Framework A set of collaborating abstract and concrete classes that may be used

as a template to solve a specific domain problem.

Function Functions are tasks that are performed in the application by the

components of the CCS.

Functional Decomposition The process of refining a problem solution by repeatedly

decomposing a problem into smaller and smaller steps. The
resulting steps are then programmed as separate modules.

Functional Interface Interfaces that define the operations invoked by users of an object

service. The audience for these interfaces is the service consumer,
the user of the service. These interfaces present the functionality
(the useful operations) of the service. An Object Service Definition.

Fusion A second generation object-oriented development method that

provides a systematic approach to O-O software development. It
integrates and extends other methods. OMT/ Rumbaugh, Booch,
CRC and Formal Methods.

Garbage Collection The recovery of memory occupied by unreferenced objects, usually

implemented by the language or environment.

Gateway A network interconnection device which supports the full Stack of

the relevant Protocol and can convert to a non 7 Layer Protocol for
asynchronous transmission over Wide Area Networks.

Generalization The inverse of the specialization relation.

Generic Object An object (relative to some given Object Service) whose primary

purpose for existence is unrelated to the Object Service whose
interface it carries. The notion is that the Object Service is provided
by having (in principle) any type of object inherit that object service
interface and provide an implementation of that interface. An
Object Service Domain.

Generic Operation The concept that an operation is generic if it can be bound to more

than one method.

Graphical User Interface Any interface that communicates with the user, primarily through

graphical icons.

 Sheet: 32 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

GUI � Graphical User Interface.

Handle A value that identifies an object.

Heuristic A rule of thumb or guideline used in situations where no hard and

fast rules apply. An empirical rule, or educated guess based upon
past experiences.

HMI Human Machine Interface.

Hub A Hub is a Communications Network component providing

multiple ports, each interfacing to a separate media link in a star
topology.

Idiom Low level � pattern. usually related to a specific programming

language.

IDL � Interface Definition Language.

IED � Intelligent Electronic Device

Implementation Definition
Language

A notation for describing implementations. The implementation
definition language is currently beyond the scope of the ORB
standard. It may contain vendor-specific and adapter-specific
notations.

Implementation
Inheritance

The construction of an implementation by incremental modification
of other implementations. The ORB does not provide
implementation inheritance. Implementation inheritance may be
provided by higher level tools.

Implementation Object An object that serves as an implementation definition.

Implementation objects reside in an implementation repository.

Implementation
Repository

A storage place for object implementation information.

Implementation 1. The development phase in which the hardware and software of a

system become operational.
2. A definition that provides the information needed to create an
object and allow the object to participate in providing an
appropriate set of services. An implementation typically includes a
description of the data structure used to represent the core state
associated with an object, as well as definitions of the methods that
access that data structure. It will also typically include information
about the intended interface of the object.

Implicit Invocation A mechanism of invocation in which the invoker does not know

anything about the invokee. Usually implemented through a
callback registration mechanism in the invoker or a broadcast of an
event to all possible invokees.

Import Creating an object based on a description of an object transmitted

from an external entity.

Incomplete Partition A partition composed of some, but not all, of its partitioned

 Sheet: 33 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

subtypes. Information Hiding (� Encapsulation)

Inheritance The construction of a definition by incremental modification of

other definitions. (� Implementation Inheritance)

Initialization Setting the initial attribute values of a new object.

In-Line Method A mechanism that allows the compiler to replace calls to the

method with an expansion of the method code.

Instance Name An identifier associated with and designating an instance.

Instance Variable A variable that contains a value specific to an object instance.

Instance An object created by instantiating a class. An object is an instance of

a class. A functional unit comprising an individual named entity
having the attributes of a defined class and providing defined
services.

Instantiation Object creation. The creation of an instance of a specified class.

Integrability The capability of a system of being used as part of another, bigger

CCS system.

Integrated Project Support
Environment

An environment that specifies the processes for systematically
managing development projects to minimize costs, increase
productivity, and build quality software products.

Interface Definition
Language

When used in conjunction with an ORB, IDL statements describe
the properties and operations of an object. IDL is used to specify the
public interface of a CORBA object.

Intelligent Electronic
Device

An IED is any device incorporating one or more processors, with
the capability to receive, process or send, data / control from, or to,
an external source.

Interface Inheritance The construction of an interface by incremental modification of

other interfaces. The IDL provides interface inheritance.

Interface Type A type that is satisfied by any object (literally, by any value that

identifies an object) that satisfies a particular interface. (� Object
Type)

Interface 1. A shared boundary between two functional units, defined by

functional characteristics e.g.- common physical interconnection
characteristics, signal characteristics or other characteristics as
appropriate, and the provision of a declared collection of services.
2. A description of a set of possible uses of an object. Specifically, an
interface describes a set of potential requests in which an object can
meaningfully participate. (� also Object Interface, Principal
Interface and Type Interface)

Interoperability 1. The ability of two systems to exchange services.

2. The ability for two or more ORBs to cooperate to deliver requests
to the proper object. Interoperating ORBs appear to a client to be a
single ORB.

 Sheet: 34 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Invariant Relation A relation that cannot be changed so long as it has instances.

IP Internet Protocol -The TCP/IP standard protocol. IP defines the

datagram that provides the basis of connectionless packet delivery.
It includes control and error message protocol providing the
equivalent functions to Network services, Layer 3, of the OSI
Reference Model.

IPSE � Integrated Project Support Environment

ISO 9000 Standards The International Organization for Standardization (ISO) issues the

ISO-9000 guidelines for the selection and use of the series of
standards on quality systems.

ISO International Organization for Standardization

LAN Local Area Network

Language Binding or
Mapping

The means and conventions by which a programmer writing in a
specific programming language accesses ORB capabilities.

Legacy System A previously existing system or application.

Leveling The process of grouping information or concepts at various levels of

increasing detail. The top-most level is general in nature and each
successive level adds more detail until all aspects of the given
subject matter have been explained in detail.

Life-Cycle Service The Object Life-Cycle Service provides operations for managing

object creation, deletion, copying and equivalence. An Object
Service Definition.

Link layer Layer 2 of the standard ISO Communications machine.

Link 1. Connection between two processing entities.

2. Relation between two objects (a concept).

Literal A value that identifies an entity that is not an object. (� Object

Name)

LLC Logical Link Control

Local Area Network A communications network which typically covers the area within a

building or small industrial complex.

Log A record, a journal, of chronologically ordered data e.g. Events +

Time Tags + Annotations.

LSDU Link layer Service Data Unit

MAC Media Access Control

Managed Object Clients of System Management services, including the installation

and activation service and the operational control service (dynamic
behavior). These clients may be application objects, common
facilities objects, or other object services. The term is used for

 Sheet: 35 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

compatibility with system management standards (the X/Open
GDMO specification and ISO/IEC 10164 System Management
Function, Parts 1 to 4). An Object Service Definition.

Mapping 1. A set of values having defined correspondence with the

quantities, or values, of another set.
2. A rule or process, the O-O equivalent of a mathematical function.
Given an object of one set, a mapping applies its associative rules to
return another set of objects. Member Function (� Method)

MDI Multiple display Interface

Message The mechanism by which objects communicate. A message is sent

by a client object to request the service provided by the server
object.

Meta-Model A model that defines other models.

Meta-Object An object that represents a type, operation, class, method or object

model entity that describes objects.

Meta-Type A type whose instances are also types.

Method 1. In systems development, a cohesive set of rules, methods and

principles used to guide the modelling and development of
software systems.
2. Code that can be executed to perform a requested service.
Methods associated with an object are structured into one or more
programs.

Method Resolution The selection of the method to perform a requested operation.

MIDL Microsoft Interface Definition Language. IDL used by Microsoft

Windows applications (� Interface Definition Language)

MMS Manufacturing Message Specification - [ISO 9506]

Multi-Agent System A Multi-Agent System is a system composed of a great number of

autonomous entities, named agents, having a collective behaviour
that allows to obtain the desired function/service.

Multi-cast A message placed onto the communication network intended for a

limited set of recipients. A Multi-cast message will typically contain
the sender’s address and an address field defining a limited set of
recipient’s addresses.

Multiple Classification Ability of an object to belong to more than one type.

Multiple Inheritance The construction of a definition by incremental modification of

more than one other definition.

NCA � Network Computing Architecture

NEO It is thought that it stands for Network Objects, but its developers

say it is not an acronym. OMA implementation by SunSoft Inc. for
the Solaris operating systems. (� Object Management
Architecture)

 Sheet: 36 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Network Computing
Architecture

One of the first specifications of a software architecture to build
distributed applications. Initially developed by Hewlett-Packard,
formed the core of DCE (� Distributed Computing Environment)

NIDL Network Interface Definition Language. IDL used by NCA(�

Interface Definition Language, � Network Computing
Architecture)

OBAI � Object-Based Architecture for Integration

Object A combination of a state and a set of methods that explicitly

embodies an abstraction characterized by the behaviour or relevant
requests. An object is an instance of a class. An object models a real
world entity and is implemented as a computational entity that
encapsulates state and operations (internally implemented as data
and methods) and responds to requests for services. An object is a
self-contained software package consisting of its own private
information (data), its own private procedures (private methods),
which manipulate the object's private data, and a public interface
(public methods) for communicating with other objects.

Object Adapter The ORB component that provides object reference, activation and

state-related services to an object implementation. There may be
different adapters provided for different implementations.

Object Attribute A Field, or, a category or value of data that, together with other

attributes, specify the services or data values related to the function
and performance of an Object.

Object Broker � Object Request Broker

Object Creation An event that causes an object to exist that is distinct from any other

object.

Object Data Base
Management System

These systems provide for long-term, reliable storage, retrieval and
management of objects. Object Destruction An event that causes an
object to cease to exist and its associated resources to become
available for reuse. Object Identity (� Handle)

Object Interface A description of a set of possible uses of an object. Specifically, an

interface describes a set of potential requests in which an object can
meaningfully participate as a parameter. It is the union of the
object's type interfaces.

Object Library/Repository A central repository established expressly to support the

identification and reuse of software components, especially classes
and other software components.

Object Management
Architecture

The generic architectural design proposed by the OMG. The
CORBA specification is the first standard of technology for OMA

Object Management Group A non-profit industry group dedicated to promoting object-oriented

technology and the standardization of that technology.

Object Modeling Technique An object-oriented systems development life cycle developed by

General Electric. Now being integrated by its developer Rumbaugh

 Sheet: 37 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

into a new method named Unified Modeling Language.

Object Reference A value that precisely identifies an object. Object references are

never reused to identify another object.

Object Request Broker Provides the means by which objects make and receive requests and

responses. The middleware of distributed object computing that
provides a means for objects to locate and activate other objects on a
network, regardless of the processor or programming language
used to develop and implement those objects.

Object Services The basic functions provided for object lifecycle management and

storage such as creation, deletion, activation, passivation,
identification and location.

Object State The current information about an object that determines its

behaviour.

Object Type A type the extension of which is a set of objects (literally, a set of

values that identify objects). In other words, an object type is
satisfied only by (values that identify) objects. (� Interface Type)

Object Wrapper The result of encapsulating a set of services provided by a non O-O

application or program interface in order to treat the encapsulated
application or interface as an object.

Object-Based Architecture
for Integration

An architecture developed to facilitate legacy application migration
to open systems, client/server and object-based computing. The
primary function of OBAI is to allow new systems to be developed
without having to abandon existing information systems and to
allow the new systems to take advantage of the knowledge,
information and data contained in the old systems.

Object-Based A programming language or tool that supports the object concept of

encapsulation, but not inheritance or polymorphism.

ObjectBroker OMA’s CORBA implementation by Digital Equipment Corporation

for several operating systems, mainly Digital UNIX, OpenVMS and
Windows NT. (� Object Management Architecture). Sold to BEA
Systems to form part of their BEA M3 product.

Object-Oriented Analysis The process of specifying what a system does by identifying

domain objects and defining the behaviour and relationships of
those objects.

Object-Oriented Business
Engineering

A framework and discipline used to effectively model business
processes. It involves identifying business objects, processes,
structures, rules, policies, organizational structure and authority,
location and logistics, technology and applications. Its goal is to
produce precise descriptive models of business objects that can be
converted into reusable and easily modifiable software components.

Object-Oriented Design The process of developing an implementation specification that

incorporates the use of classes and objects. It encourages modelling
the real world environment in terms of its entities and their
interactions.

 Sheet: 38 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Object-Oriented Any language, tool or method that focuses on modeling real world
systems using the three pillars of objects encapsulation, inheritance
and polymorphism.

ODBMS � Object Data Base Management System

ODP � Open Distributed Processing

OMA � Object Management Architecture

OMT � Object Modelling Technique

Oneway Request A request in which the client does not wait for completion of the

request, nor does it intend to accept results. Contrast with deferred
synchronous request and synchronous request.

Ontology An ontology is an explicit specification of the structure of a certain

domain (e.g. e-commerce, sport, ...). In practical terms this includes
a vocabulary (i.e. a list of logical constants and predicate symbols)
for referring to the subject area, and a set of logical statements
expressing the constraints existing in the domain and restricting the
interpretation of the vocabulary. Ontologies therefore provide a
vocabulary for representing and communicating knowledge.

OOBE � Object-Oriented Business Engineering

OOPL � Object-Oriented Programming Language

Open Distributed
Processing

An standard from ISO in the area of open distributed systems. Used
as acronym: ODP.

Open Software Foundation Non-profit standardization organization dedicated to promote open

software standards, i.e. OSF/Motif, OSF/DCE and OSF/1.

Operation A service that can be requested. An operation has an associated

signature, which may restrict which actual parameters are possible
in a meaningful request.

Operation Name A name used in a request to identify an operation.

ORB � Object Request Broker

ORB Core The ORB component that moves a request from a client to the

appropriate adapter for the target object.

Orbix Iona Technologies implementation of CORBA.

OS Operating System

OSF � Open Software Foundation

OSF/1 UNIX-like operating system based on a microkernel architecture.

(� Open Software Foundation)

Overloaded Operation Multiple methods of the same name, each having a unique

signature. This allows the methods of the same name to be invoked
with various argument types.

 Sheet: 39 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Paradigm A broad framework for thinking about and perceiving reality. A

theoretical, philosophical model composed of identifiable theories,
laws and generalizations used in defining and solving problems.

Parallel Processing The simultaneous execution or computation of two or more

programs or operations.

Parameter Passing Mode Describes the direction of information flow for an operation

parameter. The parameter passing modes are IN, OUT and INOUT.

Parameters Parameters are data that define the behaviour of functions.

Parameterized Class A class that allows users to declare member functions and data

members of "Some Type," which can be used as a template for
declaring specialized subclasses that supply the "Missing" types.

Participate An object participates in a request when one or more actual

parameters of the request identifies the object.

Partition Decomposing a type into its disjoint subtypes.

Pattern A pattern describes a problem, a solution to a problem, and when to

apply the solution. Patterns may be categorized in several ways; by
example as design patterns, business process patterns and analysis
patterns. � Design Pattern

Persistent Object An object that can survive the process or thread that created it. A

persistent object exists until it is explicitly deleted.

Physical layer Layer 1 of the ISO Reference Model.

Plug and Play A type of component that needs little modification to be integrated

into a system.

Pluggable Transport A CORBA transport layer that can be added or eliminated in run-

time.

Point to Point A dedicated communication link between two nodes only.

Pointer A variable that can hold a memory address of an object.

Polymorphic Operation The same operation implemented differently by two or more types.

Polymorphism The concept that two or more types of objects can respond to the

same request in different ways.

Portable Object Adapter
(POA)

An object adapter is the primary means for an object
implementation to access ORB services such as object reference
generation. An object adapter exports a public interface to the object
implementation, and a private interface to the skeleton. It is built on
a private ORB-dependent interface. The Portable Object Adapter
offers functionality enough to build portable servers.

Post-Condition A constraint that must hold true after the completion of an

operation.

 Sheet: 40 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Pre-Condition A constraint that must hold true before an operation is requested.

Presentation Layer Layer 6 of the ISO Reference Model.

Principal Interface The interface that describes all requests in which an object is

meaningful.

Private A scoping mechanism used to restrict access to class members so

that other objects cannot them.

Property An attribute, the value of which can be changed.

Protected A scoping mechanism used to restrict access to class members.

Protection The ability to restrict the clients for which a requested service will

be performed.

Protocol A set of rules governing the information transfer within a

communications network. Protocols perform Data Link Control by
defining frame format(s), timing, error correction and Handshaking.

Public A scoping mechanism used to make member access available to

other objects.

Query An activity that involves selecting objects from implicitly or

explicitly identified collections based on a specific predicate.

Rapid Prototyping The iterative process of quickly developing a prototype of an

application, usually with the aid of specific GUI-building tools. This
process is used to help uncover unknown details of the system
under consideration, and to build the system in small increments.

Redundancy Refers to spare or duplicate functionality that allows a System to

continue to operate without degradation of performance in the
event of single failure. e.g. a blown fuse.

Reference Architecture An architectural description for a family of applications that

describes functional components, connections, protocols, and
control. A reference architecture generally consists of a partially-
specified system composed of generic or abstract � Components,
that are replaced by real components when the architecture is
instantiated for an actual system.

Referential Integrity The property that ensures that a handle which exists in the state

associated with another object reliably identifies a single object.

Relation An object type that associates two or more object types. A relation is

how associations are formed between two or more objects.

Repository Usually a central location used to store and organize software

components and related definitions, rules, etc. (� Object
Library/Repository)

Request An event consisting of an operation and zero or more actual

parameters. A client issues a request to cause a service to be
performed. Also associated with a request are the results that can be
returned to the client. A message can be used to implement (carry) a

 Sheet: 41 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

request and/ or a result.

Requirements A document describing what a software system does from a user's

point of view. This document is input into the object-oriented
analysis process, where it will be transformed into a much more
precise description.

Responsibility A service or group of services provided by an object; a

responsibility embodies one or more of the purposes of an object.

Result The information returned to the client, which can include values as

well as status information, indicating that exceptional conditions
were raised in attempting to perform the requested service.

Reuse Reuse is the process of locating, understanding and incorporating

existing knowledge, design and components into a new system.
Reuse should occur at all levels of system development analysis,
design, implementation, testing, documentation and user training.

Role A sequence of activities performed by an agent. A portion of the

social behaviour of an agent that is characterized by some
specificity such as a goal, a set of attributes (for example
responsibilities, permissions, activities, and protocols) or providing
a functionality/service.

RTOS Real-time Operating System

RTU Remote Terminal Unit- typically a station in a SCADA system, an

RTU acts as an interface between the communication network and
the plant equipment.

Scalability The ability of a system to grow without sacrificing performance.

The Scalability is the criteria for a universal and cost effective CCS,
taking into account the varying functionality, plant sizes and
magnitude ranges.

Schema A formal presentation with a defined set of symbols and rules that

govern the formation of a representation using the symbols. There
are many different kinds of schema, including object, event and
activity schemas.

Security Domain A subset of computational resources used to define a security

policy.

SEI � Software Engineering Institute

Self-Reference The ability for a method to identify the target object for which it was

invoked. This notion is referred to by the key words "self " in
Smalltalk and "this" in C++.

Semantics The meaning -- the essence -- of the definition.

Server The entity that provides a service that can be requested.

Server Class A Server Class comprises of the external visible behaviour of an

Application process.

 Sheet: 42 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Server Object An object providing response to a request for a service. A given
object might be a client for some requests and a server for other
requests. (� Client Object)

Service A functional capability of a resource which can be modified by a

sequence of service primitives.

Service Cycle The complete process -and the time elapsed on it- from the issue of

a request till the response to it.

Service Primitive Abstract, implementation independent, representation of an

interaction between the service user and the service provider.

Service A computation that can be performed in response to a request.

Session Layer 5 of the ISO Reference Model; provides the protocol that

manages the construction of the logical message into the actual
messages for transmission.

Signature Defines the parameters of a given operation including their number

order, data types and passing mode; the results, if any; and the
possible outcomes (normal vs. exceptional) that might occur.

Single Inheritance The construction of a definition by incremental modification of one

definition. (� Multiple Inheritance)

Skeleton The object-interface-specific ORB component that assists an object

adapter in passing requests to particular methods.

Software Engineering
Institute

The SEI is located at Carnegie Mellon University. Originally a U.S.
Air Force project, the SEI objective was to provide guidance to the
military services when selecting capable software contractors. The
resulting method for evaluating the strengths and weaknesses of
contractors proved valuable for assessing other software
organizations. Since the late 1980s, SEI has been addressing the
maturity of software within commercially developed applications.

SOM � System Object Model

Specialization A class x is a specialization of a class y if x is defined to directly or

indirectly inherit from y.

State Consistency Ensures that the state associated with an object conforms to the data

model.

State The information about the history of previous requests needed to

determine the behaviour of future requests.

State Integrity Requires that the state associated with an object is not corrupted by

external events.

State Machine A formal description of the functionality, responses, actions and re-

actions, as a series of discrete, linked states, together with the
criteria governing the transition from one state to another specific
state.

State-Modifying Request A request that by performing the service alters the results of future

 Sheet: 43 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

requests.

Static Binding Binding that is performed prior to the actual issuing of a request.

(� Binding)

Static Invocation Constructing a request at compile time.

Static Member Function In C++, a function declared part of a class declaration. These

functions can be invoked independent of any instances of the class.

Strong Typing A language characteristic that requires an explicit type declaration

for every value or expression. Strong typing makes static binding
feasible.

Stub A local procedure corresponding to a single operation that invokes

that operation when called. Subclass (� Subtype)

Sub–functions Sub–functions are sub parts of a main function. A sub–function may

be shared by more than one main function.

Subscribed data Data that a Client has requested to be supplied on a regular basis, or

when trigger condition(s) are satisfied.

Subtype A specialized or specific object type.

Superclass A class that provides its methods and attributes to another class

derived from it via inheritance.

Switch An active Communications Network device that facilitates the

exchange of data between two devices, on different LAN segments,
by dynamically connecting the two LAN segments together only as
and when data transfer is required. Effectively multiplies the
available bandwidth, allowing LAN segments to run in parallel.

Synchronous Request A request in which the client object pauses to wait for completion of

the request.

System Object Model/
Distributed System Object
Model

SOM is a class library, and DSOM is an ORB. Both provided by
IBM.

System Within this document, “System” refers to CORBA Control Systems,

other types of system will be identified by their prefix name.

Target Object An object that receives a request. (Synonymous with Server Object)

Task Often used as synonymous of Behaviour (see Behaviour) but with

the significance of atomic part of the overall agent behaviour.

TCP/IP Transmission Control Protocol/Internet Protocol A suite of

protocols which together provide the functionality up to layer 4, of
the ISO OSI Reference Model, without exact layer for layer
correspondence. NB- Another protocol is required to sit above
TCP/IP to provide the required functionality for layers 5, 6 & 7.

TAO The ACE ORB. CORBA implementation of Washington University.

 Sheet: 44 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Test Equipment Includes all tools and instruments used to simulate and verify the
inputs/outputs of the operating environment of the CCS.

Transient Object An object whose existence is limited by the lifetime of the process or

thread that created it.

Transport Layer Layer 4 of the ISO OSI Reference Model, acts as an intermediary

between the Network and the User application.

Trigger Rule A cause-and-effect relationship. When a certain event type occurs, a

specific operation will be performed.

Type A predicate (Boolean function) defined over values that can be used

in a signature to restrict a possible parameter or characterize a
possible result. Types classify objects according to a common
interface; classes classify objects according to a common
implementation.

Type Interface Defines the requests in which instances of this type can

meaningfully participate as a parameter. Example: If given
document type and product type in which the interface to
document type comprises "edit" and "print," and the interface to
product type comprises "set price" and "check inventory," then the
object interface of a particular document that is also a product
comprises all four requests.

UCA 2.0 Utility Communications Architecture version 2.0 describes the

concepts of standardised models for Power System Objects.

UML � Unified Modelling Language.

Unified Modelling
Language (UML)

Standardised constructs and semantics for diagrams, including state
machines, which are used to describe / specify the functionality of
an IED, Object Model or a Process.

Unsolicited Data or
Unsolicited Message

A Message or Data which is supplied to a Client, or Clients, from a
Server without the Client(s) subscribing to that data or message, e.g.
“Reset”, “Abort”, “Time”. Does not require a Connection to be
established.

Use Case/Scenario A description of systems functionality. A description of the

sequence of actions that occurs when a user participates in a
dialogue with a system. It describes the behaviour that is invoked
by a system function.

Value-Dependent
Operation

An operation in which the behaviour of the corresponding request
depends upon which names are used to identify object parameters
(if an object can have multiple names). Virtual Class (� Abstract
Class)

Virtual Member Function A member function that can be overridden by derived classes in

order to implement a general behaviour in a specific manner.
Dynamic binding is used at run time to determine which of these
functions to actually invoke.

Visibility � Accessibility

 Sheet: 45 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

VM Virtual Machine.

WAN Wide Area Network - a communication network which typically

covers a geographical area i.e. The network linking a Central
Control Room to a number of Substations.

Weak Typing A language characteristic that does not require an explicit type

declaration for each value or expression. Weak typing makes
dynamic binding feasible.

Workflow The structured flow of information through the well-defined steps

of a business process where tasks are performed on elements of the
information. Typical workflows have both sequential and
concurrent tasks

Wrapper � Object wrapper

 Sheet: 46 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

This page has been intentionally left blank.

 Sheet: 47 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Part 2
OMG Technology

 Sheet: 48 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

This page has been intentionally left blank.

 Sheet: 49 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

4 The Object Management
Group

4.1 Overview and Objectives
The Object Management Group (OMG) is a not-for-profit organization
established in 1989 with the goal of developing vendor independent
specifications to foster object technology by means of the creation of a
software marketplace for object technology. It aims to reduce the
complexity, lower the costs, and hasten the introduction of new software
applications. By using OMG's object technology any organization can
leverage previous efforts in building control systems.

The OMG is a standardization organization with an open, vendor-neutral,
international, widely recognized and rapid standardization process based
on demonstrated technology. Nowadays software vendors, developers
and users working in various different fields belong to the about 800
members as well as universities and governmental institutions. Further it
maintains a strong liaison with other organizations like ISO, ITU-T, W3C,
TINA-C, and Meta Data Coalition.

OMG's object technology is the object technology of reference: CORBA,
IDL, UML, MOF, XMI, MDA4, etc. Their standards allow interoperability
and portability of distributed object oriented applications of different
vendors. They do not produce software or implementation guidelines;
only specifications which are put together using ideas of OMG members
who respond to Requests For Information (RFI) and Requests For
Proposals (RFP). The strength of this approach comes from the fact that
most of the major software companies interested in distributed object
oriented development are among OMG members.

4 Common Object Request Broker Architecture, Interface Definition Language, Unified
Modeling Language, MetaObject Facility, XML-Based Metadata Interchange, Model
Driven Architecture.

 Sheet: 50 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

4.2 Structure and Activity
The OMG technical activity is organized around three major bodies:

� The Platform Technology Committee (PTC) is responsible for CORBA

core technology.
� The Domain Technology Committee (DTC) is responsible for

specifications in vertical domains.
� The Architecture Board (AB) is responsible for the OMA and the

verification that new specifications are compliant with it as well as
making sure that something similar is not subject of standardization in
another subgroup.

The work is performed by a collection of working groups in the different
areas; from core technology like the interoperability protocols to domain
specific activities like data acquisition or financial security.

The OMG specification process is based on the submission of
specifications from private organizations in accordance with the Request
For Proposal (RFP) issued by the PTC or the DTC of the OMG. In some
cases it makes sense to issue an Request For Information (RFI) and get
some feedback about the special issues of a particular topic in order to be
able to draft an RFP.

This means that the specification elaboration process is not done by a
standardization committee (ISO C++ took more than eight years) but by
an – usually – small group of OMG members based on their own criteria and
previous developments. If a company possesses a technology that fits an
RFP, the company can send the specification of that technology as a
proposal to the OMG and it has a good chance of getting it approved as an
OMG specification. This has been the case, e.g., for UML proposed by
Rational or the Fault-Tolerance specification proposed by Sun.

If there are several proposals, the different submitters try to find a
consensus and deliver a single, consolidated version, supported by all of
them. This is usually called a Joint Revised Submission.

4.3 Overview of Specifications
The following list include the main areas of specifications issued by the
OMG (the remainder of this document will emphasize especially on
specifications relevant for control systems):

 Sheet: 51 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

� The Common Object Request Broker Architecture (CORBA)
specification allows application interoperability independent of
platform, operating system, programming language as well as network
and protocol. It includes a number of specifications: OMG Interface
Definition Language (OMG IDL), the network protocols GIOP and
IIOP, an infrastructure for server-side scalability termed the POA (for
Portable Object Adapter), and the CORBA Component Model (CCM).

� The Object Management Architecture (OMA) defines a set of interfaces
in a standardized way (by using OMG IDL) for standard objects that
support CORBA applications. It includes the base-level
CORBAservices, the CORBAfacilities, and a large and growing set of
DomainFacilities.

� The Unified Modelling Language (UML) standardizes representation
of object oriented analysis and design. It is a graphical language
including Use Case and Activity diagrams for requirements gathering,
Class and Object diagrams for design, and Package and Subsystem
diagrams for deployment and lets architects and analysts visualize,
specify, construct, and document applications in a standard way.

� The MetaObject Facility (MOF) standardizes a metamodel for object
oriented analysis and design, and a repository. Because they are based
on the MOF metamodel, UML models can be freely passed from tool to
tool using XMI – without the commonality of definition provided by
the MOF, this would not be practical.

� The Common Warehouse Metamodel (CWM) standardizes a basis for
data modelling commonality within an enterprise, across databases
and data stores.

� XML Metadata Interchange (XMI) allows MOF-compliant metamodels
(and therefore models, since a model is just a special case of a
metamodel) to be exchanged as XML datasets. Both, application
models (in UML) and data models (in CWM), may be exchanged using
XMI. In addition to allowing model exchange, XMI serves as a
mapping from UML and CWM to XML.

� The Model Driven Architecture (MDA) unifies the Modelling and
Middleware spaces and thus supports applications over their entire
lifecycle from Analysis and Design, through implementation and
deployment, to maintenance and evolution.

For modelling complex control systems especially the UML, the MOF, the
CWM, and the XML specifications are relevant while for developing
control system applications the main focus must be on the CORBA
specification. The MDA specification allows an integration of model and
application.

 Sheet: 52 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

 Sheet: 53 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

5 Overview of OMG
Specifications
OMG specifications go beyond purely CORBA specifications but most of
them are relevant and/or tightly coupled with the CORBA specification or
the OMG Object Model as expressed in the Object Management
Architecture (OMA).

Some of these specifications are contained in the main CORBA document:
Common Object Request Broker Architecture and Specification [OMG 98b].

The OMG provides extensions and profiles over the base specifications as
separate documents that specify the points of departure from the main
specification. Of special importance for control systems engineering are
the MinimumCORBA specification; the Real-Time CORBA specification
and the Fault-Tolerant CORBA specification.

These specifications are grouped into the following collections:

� Modelling
� CORBA/IIOP
� Interface Definition Language and Mapping
� Specialized CORBA Specifications
� CORBA Embedded Intelligence Specifications
� CORBA Services
� CORBA Facilities
� Domain Specifications
� CORBA Security

5.1 The Object Management Architecture (OMA)
The Object Management Architecture (OMA) belongs to the main
contributions of the OMG to the OO world. This is a specification for the
construction of open distributed object systems based on brokering and a
collection of predefined services [OMG 97].

 Sheet: 54 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

It is a high-level vision of a complete distributed environment and consists
of four components that can be roughly divided into two parts: system
oriented components (Object Request Brokers and Object Services), and
application oriented components (Application Objects and Common
Facilities).

Figure 3 shows a basic overview of the main building-blocks (and an
incomplete list of some examples) of the OMA:

� Object Request Broker (ORB): the central building block of the OMA

that allows is the run-time integration vehicle for forwarding requests
and responses between CORBA objects

� Common Object Services (now called CORBAservices): provide
fundamental services that are nearly at systemlevel (e.g., Naming
Service and Notification Service)

� horizontal CORBAfacilities: services that do not fit into a particular
vertical market but are still at too high a level to be called a
CORBAservice (the Printing Facility, the Secure Time Facility, the
Internationalization Facility, and the Mobile Agent Facility)

Trader

Naming Persistence Transaction EventQuery

Concurrency Security Time

Business

Manufacturing

E-Commerce

MedicalRepositories

InternationalizationMOF

Input Method

Common Object Services

Horizontal Facilities Vertical (domain) facilities

Application Specific Objects

Object Request BrokerObject Request Broker

Figure 3: OMA Overview (main parts and an incomplete list of services)

 Sheet: 55 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

� vertical CORBAfacilities (or Domain CORBAfacilities): provide
standardized services for a particular field of application (e.g.,
Healthcare and Transportation)

� Application Objects: provide a particular service for a specific
customer.

The Object Request Broker is the one of these parts which constitutes the
foundation of the OMA and manages all communication between its
components. It allows objects to interact in a heterogeneous, distributed
environment, independent of the platforms on which these objects reside
and techniques used to implement them. In performing its task it relies on
Object Services which are responsible for general object management such
as creating objects, access control, keeping track of relocated objects, etc.
Common Facilities and Application Objects are the components closest to
the end user, and in their functions they invoke services of the system
components.

5.2 Modelling

5.2.1 Common Warehouse Metamodel (CWM™)
The main purpose of CWM is to enable easy interchange of warehouse
and business intelligence metadata between warehouse tools, warehouse
platforms and warehouse metadata repositories in distributed
heterogeneous environments. CWM is based on three key industry
standards:
• UML - Unified Modelling Language, an OMG modelling standard
• MOF - Meta Object Facility, an OMG metamodelling and metadata
repository standard
• XMI - XML Metadata Interchange, an OMG metadata interchange
standard.

These three standards form the core of the OMG metadata repository
architecture. Al this is relevant to control engineering in the particular case
of using databases. This is typical of large scale and continuous process
control.

5.2.2 Meta-Object Facility (MOF™)
MOF is an extensible model driven integration framework for defining,
manipulating and integrating metadata and data in a platform
independent manner. MOF-based standards are in use for integrating
tools, applications and data.

 Sheet: 56 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

5.2.3 Software Process Engineering Metamodel (SPEM)
This specification presents the Software Process Engineering Metamodel
(SPEM). This metamodel is used to describe a concrete software
development process or a family of related software development
processes. Process enactment is outside the scope of SPEM, although some
examples of enactment are included for explanatory purposes.

5.2.4 Unified Modelling Language (UML)
A specification that defines a graphical language for visualizing,
specifying, constructing, and documenting the artefacts of distributed
object systems.

5.2.5 UML 1.4 with Action Semantics
Adds to UML the syntax and semantics of executable actions and
procedures, including their run-time semantics. These semantics are
contained within one Package, labelled Actions, which defines the various
kinds of actions that may compose a procedure.

Using action semantics labelling it is possible to write UML models that
can be used to generate 100% of final code in some execution contexts.
This possibility is very interesting for model-based embedded control
systems engineering.

5.2.6 UML Profile for CORBA
Provides a standard means for expressing the semantics of CORBA IDL
using UML notation and support for expressing these semantics with
UML tools.

5.2.7 UML Profile for Enterprise Application Integration
Provides a metadata interchange standard for information about accessing
application interfaces. The goal is to simplify application integration by
standardizing application metadata for invoking and translating
application information.

5.2.8 UML Profile for Enterprise Distributed Object Computing
The vision of the EDOC Profile is to simplify the development of
component based EDOC systems by means of a modeling framework,
based on UML 1.4 and conforming to the OMG Model Driven
Architecture.

 Sheet: 57 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

5.2.9 UML Profile for Schedulability, Performance and Time
Specifies a UML profile that defines standard paradigms of use for
modeling of time-, schedulability-, and performance-related aspects of real-time
systems" that (1.) enable the construction of models that can be used to
make quantitative predictions regarding these characteristics; (2.) facilitate
communication of design intent between developers in a standard way;
and (3.) enable interoperability between various analysis and design tools.

5.2.10 XML Metadata Interchange (XMI®)
XMI is a model driven XML Integration framework for defining,
interchanging, manipulating and integrating XML data and objects. XMI-
based standards are in use for integrating tools, repositories, applications
and data warehouses.

5.2.11 XMI® Production of XML Schema
An XML schema provides a means by which an XML processor can
validate the syntax and some of the semantics of an XML document. This
specification provides rules by which a schema can be generated for any
valid XMI-transmissible MOF-based metamodel.

5.3 CORBA/IIOP Specifications

5.3.1 Common Object Request Broker Architecture
(CORBA/IIOP)

A specification of an architecture for middleware technology called Object
Request Broker that provides interoperability among clients and servers
distributed over a heterogeneous environment.

This is the common core of the CORBA specification. Optional parts of
CORBA, such as mappings to particular programming languages, Real-
time CORBA extensions, and the minimum CORBA profile for embedded
systems are documented in other specifications that together comprise the
complete CORBA specification.

5.3.2 Common Secure Interoperability (CSIv2)
Addresses the requirements of CORBA security for interoperable
authentication, delegation, and privileges.

5.3.3 CORBA Component Model (CCM)
Specification of: a Component Implementation Definition Language
(CIDL); the semantics of the CORBA Components Model (CCM); a
Component Implementation Framework (CIF), which defines the

 Sheet: 58 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

programming model for constructing component implementations; a
container programming model describing how an Enterprise JavaBeans
(EJB) component can be used by CORBA clients, including CORBA
components; an architecture of the component container as seen by the
container provider; how Component implementations may be packaged
and deployed; and definitions of the XML DTDs used by the CORBA
Components.

5.3.4 Fault Tolerance
Provides robust support for applications that require a high level of
reliability, including applications that require more reliability than can be
provided by a single backup server. The standard requires that there shall
be no single point of failure.

5.3.5 Online Upgrades
Online Upgrades facilitates the safe and orderly upgrading of objects in a
manner that is portable across systems and that is interoperable between
systems. It is a first step towards a more general online upgrade
capability. The specification aims to provide the ability to:

� Upgrade individual objects, where such upgrades change the
implementation of the object but do not change the external
interfaces of the object

� Pause an object, so that it can be upgraded, while allowing the object
the opportunity to reach a safe and quiescent state

� Transfer state from an instance of the old implementation of the
object to an instance of the new implementation of the object, with
provision for such state transfers where the representations of the
old state and the new state are different

� Resume service using an instance of the new implementation of the
object without risk that messages will be lost, misordered or
processed twice

� Allow client objects to continue to use a server object while
remaining unaware that the server has been upgraded, and allow
server objects to continue to serve a middle-tier client object that
also acts as a server while remaining unaware that the client has
been upgraded

� Address objects in such a way that a client can continue to use its
existing object reference to access a server after it has been upgraded

 Sheet: 59 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

� Rollback an upgrade, prior to the instance of the new
implementation becoming operational, if some part of the upgrade
fails

� Revert from an instance of the new implementation to an instance of
the old implementation, if operation with the instance of the new
implementation proves to be unsatisfactory

 Sheet: 60 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

� Perform upgrades on small collections of objects by means of
allowing the application to commit and rollback the upgrades
explicitly.

5.4 IDL / Language Mapping Specifications
The language mappings provide the ability to access and implement
CORBA objects in programs written in any of the mapped programming
languages. Each one is aligned with a specific release of CORBA.

Supported (official) languages are:

� Ada
� C
� C++
� COBOL
� CORBA Scripting Language
� IDL to Java
� Java to IDL
� Lisp
� PL/1
� Python
� Smalltalk
� XML

The Java to IDL specification supports the inverse mapping of Java
programming language constructs to OMG IDL constructs. It is aligned
with CORBA 2.4. This is the only inverse specification due to the
extremely concurrent models of CORBA and Distributed Java.

5.5 Specialized CORBA Specifications

5.5.1 Data Parallel Processing
Useful for high performance computing, this specification defines the
architecture for data parallel programming in CORBA. The specification
address data parallelism as opposed to other types of parallel processing
that are already possible with distributed systems, namely pipeline
parallelism and functional parallelism.

 Sheet: 61 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

5.5.2 Dynamic Scheduling
Dynamic scheduling is widely employed in real-time and distributed real-
time computing systems. This specification extends Real-time CORBA 1.0
to encompass these dynamic systems as well as static systems.

5.5.3 Lightweight Logging Service
This specification is primarily intended as an efficient, central facility
inside an embedded or real-time environment to accept and manage
logging records. These records are emitted from applications residing in
the same environment and stored in a memory-only storage area owned
and managed by the Lightweight Logging Service. The service was
designed to be a mostly compatible subset of the Telecom Log Service,
however, it differs in the way logging records are written to the log; or
looked up and retrieved from the log. This service has a much wider
application than just the software-defined radio domain. It will find its
way into all areas of embedded systems, like machine control, onboard
vehicle systems, etc., but also into ubiquitous computing devices like
pocket computer and electronic organizers.

5.5.4 Minimum CORBA
A subset of CORBA designed for systems with limited resources.

5.5.5 Real-Time CORBA
Standard interfaces that meet Real-Time requirements by facilitating the
end-to-end predictability of activities in the system and by providing
support for the management of resources.

5.5.6 Unreliable Multicast
The purpose of MIOP (Unreliable Multicast Inter-ORB Protocol) is to
provide a common mechanism to deliver GIOP request and fragment
messages via multicast. The default transport specified for MIOP is IP
Multicast 1 through UDP/IP 2 which will provide the ability to perform
connectionless multicast. This requires that IDL operations will have one-
way semantics.

This is useful for unreliable data dissemination (for example in most cases
of monitoring).

5.6 CORBA Embedded Intelligence Specifications
This is a new subset of specifications that contains only one instance of
major relevance for us.

 Sheet: 62 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

5.6.1 Smart Transducers
Specifies a set of smart transducer interfaces that supports the following
properties: (1.) the provision of a standardized set of functions, or services
to a user in order to operate, configure and diagnose a generic transducer
device; (2.) an encapsulation of the internal complexity of the generic
smart-transducer hardware and software and the internal transducer
failure modes to reduce the complexity at the system level; and (3.) a
description of a canonical form of a communication service, or protocol.

5.7 CORBAservices Specifications
Services provide pre-built functionality for the construction of
applications from CORBA building blocks. Most of them are useful in the
context of controllers (in particular complex ones):

� Collection Service
� Concurrency Service
� Enhanced View of Time
� Event Service
� Externalization Service
� Licensing Service
� Life Cycle Service
� Naming Service
� Notification Service
� Persistent State Service
� Property Service
� Query Service
� Relationship Service
� Security Service
� Telecoms Log Service
� Time Service
� Trading Object Service
� Transaction Service

5.8 CORBAfacilities Specifications
Similar to services (but coarser):

� Internationalization and Time
� Mobile Agent Facility

 Sheet: 63 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

5.9 OMG Domain Specifications
There are also many specifications in different domains that are more-or-
less relevant to control systems engineering in that particular domain:

� Air Traffic Control
� Audio / Visual Streams
� Bibliographic Query Service
� Biomolecular Sequence Analysis (BSA)
� Clinical Image Access Service (CIAS)
� Clinical Observations Access Service (COAS)
� Computer Aided Design (CAD) Services
� CORBA-FTAM/FTP Interworking
� CORBA / TC Interworking and SCCP-Inter ORB Protocol
� Currency
� Data Acquisition from Industrial Systems (DAIS)
� Distributed Simulation Systems
� General Ledger
� Gene Expression
� Genomic Maps
� Interworking between CORBA and TMN Systems
� Laboratory Equipment Control Interface Specification (LECIS)
� Lexicon Query Service
� Macromolecular Structure
� Management of Event Domains
� Negotiation Facility
� Organizational Structure (OSF)
� Party Management Facility
� Person Identification Service (PIDS)
� Product Data Management (PDM) Enablers
� Public Key Infrastructure (PKI)
� Resource Access Decision (RAD)
� Surveillance Manager
� Task and Session
� Telecoms Log Service
� Telecom Service & Access Subscription (TSAS)
� Utility Management Systems (UMS) Data Access Facility
� Workflow Management Facility

Of particular importance are the specs in the manufacturing domain
(DAIS, HDAIS).

 Sheet: 64 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

5.10 CORBA Security Specifications
Another subset of specifications of relative importance (although growing
due to interest in open distributed web-based control) is the security
subset:

� Authorization Token Layer Acquisition Service (ATLAS)
� Common Secure Interoperability (CSIv2)
� Security Service
� Resource Access Decision Facility
� Security Domain Membership Management (SDMM)

 Sheet: 65 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

6 Core CORBA technology
This chapter aims to give a short, practical introduction to the Object
Management Group's Common Object Request Broker Architecture
(CORBA). Although it is impossible to summarize a 1000+ pages
specification to a few pages it should provide a good understanding of the
basic mechanics of the architecture, give a rough overview of its
components and provide the reader with some vocabulary used in the
OMG document repository which is the most reliable resource of
information about CORBA. At the end it also contains references to
systems similar to CORBA, and some of the research connected with it.

For more information on CORBA take a look at the OMG specifications
site5. The newsgroup comp.object.corba provides a good discussion
forum.

6.1 The Common Object Request Broker (CORBA)
CORBA specifies a system which provides interoperability between
objects in a heterogeneous, distributed environment and in a way
transparent to the programmer. Its design is based on OMG Object Model.

6.1.1 The OMG Object Model
The OMG Object Model defines common object semantics for specifying
the externally visible characteristics of objects in a standard and
implementation-independent way. In this model clients request services
from objects (which will also be called servers) through a well-defined
interface. This interface is specified in OMG IDL (Interface Definition
Language). A client accesses an object by issuing a request to the object. The
request is an event, and it carries information including an operation, the
object reference of the service provider, and actual parameters (if any). The
object reference is an object name that defines an object reliably.

5 http://www.omg.org/library/specindx.htm

 Sheet: 66 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

6.1.2 The Basic Mechanics of issuing a request
Figure 4 shows the main components of the ORB architecture and their
interconnections:

The central component of CORBA is the Object Request Broker (ORB). It
encompasses all of the communication infrastructure necessary to identify
and locate objects, handle connection management and deliver data. In
general, the ORB is not required to be a single component; it is simply
defined by its interfaces. The ORB Core is the most crucial part of the
Object Request Broker; it is responsible for communication of requests.

The basic functionality provided by the ORB consists of passing the
requests from clients to the object implementations on which they are
invoked. In order to make a request the client can communicate with the
ORB Core through the IDL stub or through the Dynamic Invocation Interface
(DII). The stub represents the mapping between the language of
implementation of the client and the ORB core. Thus the client can be
written in any language as long as the implementation of the ORB
supports this mapping. The ORB Core then transfers the request to the
object implementation which receives the request as an up-call through
either an IDL skeleton, or a dynamic skeleton.

6.2 Overview of Architectural Components
The communication between the object implementation and the ORB core
is effected by the Object Adapter (OA). It handles services such as
generation and interpretation of object references, method invocation,
security of interactions, object and implementation activation and
deactivation, mapping references corresponding to object
implementations and registration of implementations. It is expected that
there will be many different special-purpose object adapters to fulfill the
needs of specific systems (for example databases).

OMG specifies four policies in which the OA may handle object
implementation activation: Shared Server Policy, in which multiple objects
may be implemented in the same program, Unshared Server Policy, Server-
per-Method Policy, in which a new server is started each time a request is
received, and Persistent Server Policy. Only in the Persistent Server Policy is
the object's implementation supposed to be constantly active (if it is not, a
system exception results). If a request is invoked under any other policy
the object will be activated by the OA in the policy specific way. In order
to be able to do that, the OA needs to have access to information about the
object's location and operating environment. The database containing this

 Sheet: 67 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

information is called Implementation Repository and is a standard
component of the CORBA architecture. The information is obtained from
there by the OA at object activation. The Implementation Repository may
also contain other information pertaining to the implementation of
servers, such as debugging, version and administrative information.

The interfaces to objects can be specified in two ways: either in OMG IDL,
or they can be added to Interface Repository, another component of the
architecture. The Dynamic Invocation Interface allows the client to specify
requests to objects whose definition and interface are unknown at the
client's compile time. In order to use DII, the client has to compose a
request (in a way common to all ORBs) including the object reference, the
operation and a list of parameters. These specifications – of objects and
services they provide – are retrieved from the Interface Repository, a
database which provides persistent storage of object interface definitions.
The Interface Repository also contains information about types of
parameters, certain debugging information, etc.

A server side analogue to DII is the Dynamic Skeleton Interface (DSI); with
the use of this interface the operation is no longer accessed through an
operation-specific skeleton, generated from an IDL interface specification,
instead it is reached through an interface that provides access to the
operation name and parameters (as in DII above the information can be
retrieved from the Interface Repository). Thus DSI is a way to deliver
requests from the ORB to an object implementation that does not have
compile-time knowledge of the object it is implementing. Although it
seems at the first glance that this situation doesn't happen very often, in
reality DSI is an answer to interactive software development tools based
on interpreters and debuggers. It can also be used to provide inter-ORB
interoperability which will be discussed in the next section.

6.2.1 Interoperability

There are many different ORB products currently available; this diversity
is very wholesome since it allows the vendors to gear their products
towards the specific needs of their operational environment. It also creates
the need for different ORBs to interoperate. Furthermore, there are
distributed and/or client/server systems which are not CORBA-
compliant and there is a growing need for providing interoperability
between those systems and CORBA. In order to answer those needs OMG
has formulated the ORB interoperability architecture.

 Sheet: 68 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Implementational differences are not the only barrier that separates
objects; other reasons might include strict enforcement of security, or
providing a protected testing environment for a product under
development. In order to provide a fully interoperable environment all
those differences have to be taken into account. This is why CORBA 2.0
introduces the higher-level concept of a domain, which roughly denotes a
set of objects which for some reason, be it implementational or
administrative, are separated from some all other objects. Thus, objects
from different domains need some bridging mechanism (mapping between
domains) in order to interact. Furthermore, this bridging mechanism
should be flexible enough to accommodate both the scenarios where very
little or no translation is needed (as in crossing different administrative
domains within the same ORB), but efficiency is an issue, and scenarios
which can be less efficient, but need to provide general access to ORB. This
is critical in some control applications where isolation while keeping
interoperability is necessary to achieve the necessary levels of
predictability, safety and security.

The interoperability approaches can be most generally divided into
immediate and mediated bridging. With mediated bridging interacting
elements of one domain are transformed at the boundary of each domain
between the internal form specific to this domain and some other form
mutually agreed on by the domains. This common form could be either
standard (specified by OMG, for example IIOP), or a private agreement
between the two parties. With immediate bridging elements of interaction
are transformed directly between the internal form of one domain and the
other. The second solution has potential to be much faster, but is the less
general one; it should be therefore possible to use both. Furthermore, if the
mediation is internal to one execution environment (for example TCP/IP)
it is known as a "full bridge", otherwise if the execution environment of
one ORB is different from the common protocol we say that each ORB is a
"half bridge".

Bridges can be implemented both internally to an ORB (say just crossing
administrative boundaries), or in the layers above it. If they are
implemented within an ORB they are called in-line bridges, otherwise they
are called request-level bridges. The in-line bridges can be implemented
through either requiring that the ORB provide certain additional services
or through introducing additional stub and skeleton code. Interacting
through the request-level bridges goes roughly like that: the client ORB
"pretends" that the bridge and the server ORB are parts of the object
implementation and issues a request to this object through the DSI

 Sheet: 69 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

(remember, DSI needn't know the specification of its object at compile
time). The DSI, in cooperation with the bridge, translates the request to a
form which will be understood by the server ORB and invokes it through
DII of the server ORB; the results (if any) are passed back via a similar
route. Naturally, in order to perform its function the bridge has to know
something about the object; thus if either needs to have access to the
Interface Repository, or be only an interface specific bridge, with the
applicable interface specifications "hardwired" into it.

In order to make bridges possible it is necessary to specify some kind of
standard transfer syntax. This function is fulfilled by General Inter-ORB
Protocol (GIOP) defined by the OMG; it has been specifically defined to
meet the needs of ORB-to-ORB interaction and is designed to work over
any transport protocol that meets a minimal set of assumptions. Of course,
versions of GIOP implemented using different transports will not
necessarily be directly compatible; however their interaction will be made
much more efficient.

Apart from defining the general transfer syntax, OMG also specified how
it is going to be implemented using the TCP/IP transport and thus
defined the Internet Inter-ORB Protocol (IIOP). In order to illustrate the
relationship between GIOP and IIOP, OMG points out that it is the same
as between IDL and its concrete mapping, for example C++ mapping.
IIOP is designed to provide "out of the box" interoperability with other
compatible ORBs (TCP/IP being the most popular vendor-independent
transport layer). Further, IIOP can also be used as an intermediate layer
between half-bridges and in addition to its interoperability functions,
vendors can use it for internal ORB messaging (although this is not
required, and is only a side-effect of its definition). The specification also
makes provision for a set of environment-Specific Inter-ORB Protocols
(ESIOPs). These protocols should be used for "out of the box"
interoperability wherever implementations using their transport are
popular.

6.3 CORBA IDL
OMG IDL (Interface Definition Language) is an implementation
independent language used to specify CORBA object interfaces. It is now
an ISO standard and has several interesting characteristics: it supports
multiple-inheritance (not so common in OO technology); it is – obviously
– strongly typed; it is independent of any particular language and/or
compiler and can be mapped to many programming languages (some
mappings are specified by the OMG and others are contributed

 Sheet: 70 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

specifications); it enables interoperability because it isolates interface from
implementation.

6.4 OMA Middleware
The basic components in a running CORBA system are shown in Figure 4.

Object interfaces are specified in IDL which is language neutral and
independent from operating system and hardware platform. The IDL
compiler generates target code used to implement client stubs and server
skeletons. CORBA defines how object invocations are mapped to a wire
protocol, including argument encoding using a Common Data
Representation (CDR) more effective that classical XDR. CORBA
interoperability defines a generic protocol for interoperability (GIOP)
between ORBs and a TCP/IP implementation of it, IIOP, that is the
cornerstone of CORBA technology for interoperability.

ORB-independent ORB-dependentType-dependent

ORB Core

Dynamic
Invocation
Interface

IDL
Stubs

Interface

ORB
Interface

Static
IDL

Skeleton

Dynamic
Skeleton

Object
Adaptor

Client ServerClient Server

ORB Transport

Figure 4: CORBA specifies a collection of interfaces used by clients and
servers to use/provide different types of functionality.

 Sheet: 71 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

As an example, a Java object running in a Netscape applet can invoke a
method from an object written in good, old ANSI C and running on a
remote PLC, almost transparently!6

6.5 CORBA for Real-time Control
Apart from the importance of having a platform for integration and
development of modularized controllers, there are some new issues in
CORBA that are especially relevant for distributed control systems
engineering. These issues are: predictable behaviour, fault tolerance and
embeddability.

The Real-time platform task Force is addressing all these topics because
they have focused their activities on real-time systems, and most real-time
systems are also embedded and have some fault tolerance requirements.

The Real-time PSIG goal is the recommendation of adoption of
technologies that can ensure that OMG specifications enable the
development of real-time ORBs and applications.

To achieve this goal, the Real-time PSIG gathers real-time requirements
from industry, organize workshops and other activities and involve real-
time technology manufactures to elaborate Requests For Information and
Requests For Proposals for these technologies.

The main results of this work can be organized in the three categories:

� Real-time CORBA: The Real-Time CORBA specification (in addition to

the Messaging specification) provides mechanisms for controlling
resource usage to enhance application predictability.

� Fault-tolerant CORBA: The specification provides mechanisms for
fault tolerance based on entity redundancy.

� Minimum CORBA: Addresses the construction of CORBA
applications on systems with little resources like embedded computers.
This specification eliminates most dynamical interfaces that are not
necessary in frozen applications (most embedded applications are
ROMmed applications).

RT-CORBA standardizes the mechanisms for resource control (memory,
processes, priorities, threads, protocols, bandwidth, etc.) and handling of

6 But both the webserver and the PLC object wrapper must run on the same host due to
Java applets security policies!

 Sheet: 72 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

priorities in a distributed sense (for example forwarding client priorities to
the server).

Using these mechanisms, the Real-time CORBA developer can control:
Request time-outs, resource allocation and sharing, priority control and
propagation, priority inversion, method invocation blocking, routing,
transport selection, etc.

Fault-tolerant CORBA tries to enhance application fault tolerance reducing
to a minimum the impact to the application (computing overheads and
increase of complexity). Fault tolerance is increased by means of entity
replication: cold passive replication, warm passive replication, active
replication or active replication and majority voting.

Embedded CORBA applications reduce memory footprint by means of
elimination of some features (dynamic interfaces and repositories), the use
of standardized operating system services or special transports. The
elimination of a specific service from the specification does not mean that
the application cannot use it, only that it will not be necessarily provided
by a compliant CORBA implementation.

6.6 Bridging Domains
While the Minimum CORBA specification reduces the requirements posed
to the ORB, the Real-time CORBA and Fault Tolerant CORBA specifications
can increase the size and complexity of the application.

Thanks to interoperability, it is not necessary at all to have all the
application running atop the same ORB. It is possible to have the critical
part of an application running over a Real-time ORB and the rest over a
more conventional one. It is possible to use a CORBA gateway to bridge
between two different worlds in a control application.

 Sheet: 73 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

7 RT-CORBA
RT CORBA specifies additional mechanisms that CCS builders can
employ to increase the control of resources and end-to-end predictability
of distributed object applications. ¡Error! No se encuentra el origen de la
referencia. provides an overview of the extensions compared to
traditional CORBA.

The following sections provide a description of the key entities and
features of a real-time CORBA broker as addressed in the Real-Time
CORBA specification (see [OMG 98b] and [OMG 01b]).

RTCORBA::Current

CORBA::Current

ORB + RTORBORB + RTORB

RTCORBA::PriorityMappingIIOP

RTCORBA::Priority

RTCORBA::ThreadPool

POA RTPOA

ServerClient
Scheduling Service

RTIOP

Figure 5: Real-time CORBA extensions provide strong control of
resources to both clients and servers.

 Sheet: 74 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

7.1 Fixed-priority Real-Time CORBA
The first real-time CORBA specification did not address the problem of
dynamic scheduling. It only supports fixed-priority scheduling. Regarding
end-to-end predictability the specification is defined to mean:

� Respecting thread priorities between clients and servers for the

resolution of resource contention during the processing of CORBA
invocations.

� Bounding of thread priority inversions during end-to-end processing.
� Bounding the latencies of operations invocations.

The specification relies in an extension of key CORBA entities and on the
services provided by them.

7.1.1 RT-ORB
The real-time ORB is an extension of the CORBA::ORB interface that
provides operations to create and destroy other constituents of a real-time
ORB. There is also the possibility to configure the ORB on start-up to use a
certain range of priorities during execution.

7.1.2 Real-time POA
The Portable Object Adapter for Real-time CORBA is defined in the
module RTPortableServer. The Real-Time POA is a subtype of the
CORBA PortableServer::POA. The POA for real-time has two
different characteristics from that of CORBA.

� It should understand the policies specified in the real-time extension.
� It provides an additional set of operations to support object level

priority settings. The Real-Time POA groups a set of operations
designed to override the server declared priority on a per-object
reference basis. Examples of these operations are
create_reference_with_priority or
activate_object_with_priority that allow setting an execution
priority for CORBA objects or interoperable references.

7.1.3 CORBA Priorities
Different RTOS show different native thread priority schemes. As a result
of RTOS heterogeneity different native priorities exist. Real-Time CORBA
solves this problem defining a CORBA Priority which is valid for the
entire system. As in the RTOS native priority schemes, CORBA Priority is

 Sheet: 75 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

a set of integer values that map the native priority scheme of a specific
RTOS to a uniform scheme which is accepted system-wide. Priority for
real-time is defined in the RTCORBA module.

Real-Time CORBA also defines a PriorityMapping which is defined as an
IDL native type. This is a programming language object (an instance of the
RTCORBA::PriotityMapping class in C++) instead of a CORBA object.
Consequently mappings to programming languages are also provided in
the submission for Real-Time CORBA. Figure 6 shows a mapping of
priorities between Real-time CORBA and a particular operating system.
Notice that not all the priorities have to be mapped from CORBA to the
OS. The priority mapping interface allows mapping CORBA priorities to
the native operating systems and from the operating system to CORBA.

7.1.4 Real-time Current Interface
Real-Time CORBA derives the real-time Current interface from the
CORBA::Current interface. The specific objective of Current for real-time
is to obtain the CORBA Priority of the current thread. The
RTCORBA::Current object contains a priority attribute which can be set
and consulted. As a result of setting the priority attribute, the ORB sets the
native priority of the thread to the value returned by
PriorityMapping::to_native.

0

RTCORBA::Priority
31

0

31

0

255

OS #1 native priority model

4

25

OS #2 native priority model
Figure 6: CORBA Priority mapping.

 Sheet: 76 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

7.1.5 Real-time CORBA Priority Models and Transforms
In the context of a real-time distributed system there must be resources
that allow applications to enforce eligibility of execution on remote
objects. For this purpose, Real-Time CORBA supports two types of
priority models to coordinate priorities across systems (see Table I).

Priority Model Description
Client Propagated
Priority Model

Priority is carried with the CORBA
invocation and is used to ensure that all
threads subsequently executing on the
invocation run at the appropriate priority.

Server Declared
Priority Model

In this model objects publish their CORBA
priorities in the object references. This lets
clients know the priority of invocation
execution in the servant’s code. The Real-
Time CORBA Priority of an invocation
needs not to be passed from client to server
in an invocation.

Table I: Priority Models in Real-Time CORBA

Additionally, it is possible to override a Server Declared Priority on a per-
object reference basis. The Real-Time CORBA POA interface provides four
operations for doing this. The server priority can be changed at the time of
object reference creation or at the time of object activation.

Priority Model Policies must be applied to POA objects at the time of
creation. To let clients know the policy models supported by CORBA
objects, the policies are propagated from servers to clients within IORs.
The mechanism of propagation is defined in the Quality of Service
framework of the CORBA Messaging specification. Figure 7 and Figure 8
show how the Client and Server Priority Models work.

 Sheet: 77 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Transforms are user-defined Priority Transforms that modify the CORBA
Priority associated with an invocation. The transforms take place when the
invocation is processed by a server. Priority Transforms map Real-Time
CORBA priorities to other priorities. These can be used to implement
specific priority protocols. As PriorityTransform is an IDL native,
language mappings are provided for different programming languages.
There are two types of priority transforms inbound and outbound.
Inbound transforms take place when an invocation is received by a server
but before it is processed by a servant. Outbound transforms are applied
to ongoing requests from a servant to other CORBA objects.

7.1.6 Synchronisation
Synchronisation is the satisfaction of restrictions that exist in the
interleaving of actions of different processes or threads. One of the most
difficult parts of building a concurrent application is dealing with process

Stub

Client

ORBORB ORBORB

Skeleton

POA

Servant

client running at priority 100
Invocation executed at priority 100

Client’s priority propagated
along the path to server in a

service context

Figure 7: Client Propagated Priority Model.

Stub

Client

ORBORB ORBORB

Skeleton

POA

Servant

client running at priority 100
Invocation executed at priority 3347

Client’s priority IS NOT
propagated along the path to

server in a service context

Figure 8: Server Declared Priority Model.

 Sheet: 78 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

or thread interaction. Threads and processes are not independent of each
other and system’s behaviour depends on their synchronisation and
communication. For our purposes, communication can be understood as
the passing of information between different processes or threads. This
can be achieved by means of shared variables or message passing.

Real-Time CORBA provides a mutex interface to allow threads execute in
regions protected by mutex objects. Objects of mutex type provide the
degree of synchronization needed to protect a critical section (this is
known as mutual exclusion and the MutEx word reflects that name). Real-
Time CORBA provides two operations in the RTORB interface to create
and destroy mutexes so the same mechanisms than the broker uses for
synchronisation can be used by the application on top of the ORB. This
helps to reduce priority inversion as all the mutexes will use the same
protocol (e.g. a priority ceiling protocol).

7.1.7 Handling Concurrency
In the real world things happen in parallel. The term concurrency refers to
an expression of the parallelism present in the world. In the computer,
parallelism is achieved by concurrent programming. The term
“concurrent” does not mean parallel but “potentially parallel”. This is
because concurrent programs or applications are formed by a set of
sequential processes that are (logically) executed in parallel. Parallelism
depends on how the collection of processes is executed.

• The execution is multiplexed in one processor.
• The execution is multiplexed in a multi-processor system where

memory is shared (parallel computing).
• Execution is multiplexed in several processors and no memory is

shared (distributed system).

Concurrency can be expressed either at the level of processes (programs)
or inside the program (threads). In the latter case memory is shared by the
different threads of the program. OS APIs to create threads are not always
standard and a model of thread interface (a wrapper class) is useful when
developing for several platforms.

 Sheet: 79 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Real-Time CORBA introduces the threadpool model which in a literal and
straightforward definition is understood as a pool of threads. There are
two possible styles for the threadpool: with or without lanes (Figure 9). A
lane is a subset of the threadpool in which all the threads have the same
RTCORBA::Priority value. Different lanes in the threadpool have
different priority values.

The operations for the creation of threadpools allow to configure the
stacksize and request buffering for the threadpool. Stacksize is
important because operation arguments are stored in the thread stack and
enough space must be allocated for this purpose. As with other policy
types a threadpool can be associated with several POA at creation time by
using a ThreadpoolId. Other interesting features can be set in the
threadpool creation operations.

• Static threads: If lanes are not being used, it is the number of
threads to be assigned to the threadpool. In a threadpool-with-lanes
style it designates the number of threads in each lane.

• Dynamic threads: It is the number of threads that can be created
dynamically and that are allocated either to the threadpool or to the
lane.

• Priority: Without lanes it is the CORBA priority assigned to the
static threads in the threadpool. In this case, dynamic threads can
be created at the priority required to handle the invocation they
were created for. If lanes are being used, the CORBA priority is
assigned to all the threads (statically and dynamically allocated) in
the lane.

In the styles with lanes, borrowing of threads from lower priority lanes
can also be specified.

POA A POA B

ORB
threadpool

POA A POA B

ORB

Threadpool A Threadpool B

Figure 9: Threadpools without and with lanes.

 Sheet: 80 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

7.1.8 Handling of Connections
Predictability is a main issue in a real-time system. In a conventional ORB,
binding does not occur until the first invocation on an object is made. In
CORBA this is known as implicit binding. The binding is a source of
overhead that puts a penalty on the first invocation. Real-Time CORBA
anticipates this problem by making allowance for explicit binding. Client
applications can control the time when the binding on an unbounded
object reference is made by means of the validate_connection
operation.

Real-Time CORBA also foresees the use of Priority Banded Connections. A
Priority Banded Connection is a connection with an assigned set of
PriorityBands. Priority bands assigned to a connection cannot be
reconfigured during the lifetime of the connection and no priority may be
covered more than once. As Figure 10 shows, it is also foreseen that non-
contiguous ranges can be formed and that it is not necessary to cover all
CORBA priorities.

The idea of banded connections is to allow clients communicate with
servers using multiple connections reserved for invocations made at
different CORBA priorities (Figure 10). If the priority of invocations is not
respected by the transport it will become a source of priority inversion.

ORBORB ORBORB

client
client client

client
server

0 - 1300

9786 - 21340
Figure 10: Priority Banded Connections.

 Sheet: 81 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

The connection is chosen depending on the target object priority model. In
the case of the client propagated priority model the band is chosen using
the priority specified by the client. If the ServerDeclared priority model is
being used, its priority is published in the IOR and its value is used to
select the band.

Banded connections are configured by clients and the policies are applied
to the client side only. By default, the ORB provides a multiplexed
connection for client/server connections (Figure 11). However, it is
possible to request a private transport connection (Figure 11) by means of
the PrivateConnectionPolicy.

7.1.9 Invocation Timeout
Bounding the time in which a reply from a server must be obtained is a
useful tool for development. Predictability can be improved if system
developers know the upper bound of time an invocation will be blocked
waiting for the server to answer. This functionality is achieved setting
timeouts. Real-Time CORBA uses the
Messaging::RelativeRoundTripTimeoutPolicy to set the timeout
for the receiving of a reply to an invocation.

7.1.10 Protocol Configuration
Real-Time CORBA applications may find that best-effort QoS
requirements do not meet their needs. Real-Time CORBA specifies an API
to select and configure the underlying communication protocol. In
CORBA, IOP instances contain an ORB protocol and a mapping to an
underlying transport protocol. Real-Time CORBA defines an interface that
allows applications to control protocol properties. It is possible to

ORBORB ORBORB

client

client client
client

server

Figure XXX: Multiplexed Connection

ORBORB ORBORB

client

client client
client

server

Figure 11: Private and Multiplexed Connections.

 Sheet: 82 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

configure protocol properties either at the client-side or at the server-side
of an RTORB.

Protocols are specified by means of a protocol list which can be applied to
POAs. The list indicates the protocols supported by a certain POA and the
order of the protocols in the protocol list indicates the order of preference
for the usage of protocols. The policy is client-exposed, meaning that it is
encapsulated in IORs to be consulted by clients making invocations.

On the client-side, Real-Time CORBA defines a similar interface for the
client protocol policy. The difference is that the policy is applied at the
time of binding to an object reference. In the server side it was applied at
the time of POA creation and the policy was propagated from client to
server in the IORs.

7.1.11 Real-Time Scheduling Service
The real-time scheduling service is a tool that enforces a certain scheduling
policy to be used across the whole real-time CORBA system. It is useful as
specifying the appropriate configuration parameter in all parts of the
system may be a complex task. The scheduling service provides a form of
central repository from where a uniform scheduling policy for the whole
system can be obtained by CORBA objects.

7.2 Dynamic-Scheduling Real-Time CORBA

In order to generalize the Real-time CORBA specification and meet the
requirements of a greater field in real-time computing, another
specification (dynamic scheduling see [OMG 01b]) has been created. The
Real-time CORBA 2.0 specification tries to address static and dynamic
distributed systems. Dynamic distributed systems are those in which the
processing workload of the system is not well known before-hand or no
bounds can be put to it so it is not possible to perform an off-line analysis
of the system. The specification generalizes the concepts of distributed
system scheduling and that of a distributable thread in order to allow the
application or the ORB have control on the following features.

� Any scheduling discipline may be employed
� the scheduling parameter elements associated with the chosen

discipline may be changed at any time during execution

 Sheet: 83 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

� the schedulable entity is a distributable thread7 that may span node
boundaries, carrying its scheduling context among scheduler instances
on those nodes.

In order to provide more control over the temporal behaviour of the
application interacts with the scheduler than can use one or more
scheduling disciplines such as Fixed Priority Scheduling, Earliest Deadline
First, Least Laxity First, Maximize Accrued Utility. The specification
provides IDL interfaces for all the above scheduling disciplines but it is
possible to establish any other scheduling discipline. The goal of the
scheduler is to determine how best to meet the schedule given a predicted
use of system resource by the application in a certain instant of time. The
specification provides a framework in the form of IDL interfaces that
allow the development of portable schedulers.

7.2.1 Distributable Thread
In dynamic Real-time CORBA the notion of activity from Real-time
CORBA 1.0 has been replaced by that of distributable thread. For dynamic
systems and in order to achieve end-to-end timeliness a trans-node
application behaviour must be enforced. This can be done by using the
time and resources related parameters in a consistent system-wide manner
for allocation of resources. A trans-node application behaviour abstraction
is defined (the distributable thread) for this purpose. A distributable
thread is a programming model abstraction. It is a thread that can execute
operations in objects without regard for the physical node boundaries
(Figure 12). The distributable thread is the schedulable entity in this
specification.

7 Much in the line of the DRTSJ.

 Sheet: 84 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Each distributable thread may have several execution parameters (e.g.
priority, deadlines, utility functions, etc.) to specify the end-to-end
timeliness to complete the set of sequential operations in objects that may
reside in different physical nodes. The distributable thread transports
scheduling information across the distributed system.

Distributable thread forking

Forking is the part of a concurrency model that deals with the creation of a
new execution context. The specification allows for explicit forking of a
distributable thread by the use of the spawn operation.

An example of forking is that of oneway invocations as the distributable
thread making the invocation is not blocked waiting for the servant to
process the invocation.

Scheduling Segments

A distributable thread consists of one or more scheduling segments. A
scheduling segment represents a sequence of control flow related to a set
of scheduling parameters. A scheduling segment has only one starting
point and one ending point which may span processor boundaries.

Object A Object B Object C

Control flow

Figure 12: Control flow in a distributed processing systems.

 Sheet: 85 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Figure 13 shows an illustration of a distributable thread with nested
scheduling segments. Where the segment X begins, the scheduling context
of segment W is put aside and segment’s X scheduling parameter elements
are used for the distributable thread. When segment X ends, the
scheduling parameter for segment W are used until it ends.

7.2.2 Scheduler
The scheduler is an extension to Real-time CORBA that manages the
scheduling requirements and parameters of the applications that run on
top of the broker. The scheduler decides on the order of execution of the
applications on the distributed nodes of the CORBA system. To decide on
the execution elegibility in the CORBA systems the scheduler is based on
the following characteristics.

� The scheduler responds to application requests (to define scheduler
elements) and in response to application actions (e.g. such
invocations by using the Portable Interceptor interfaces).

� The scheduler uses the information provided by the application to
decide on the eligibility of threads.

� The scheduler architecture is based upon the concept that the
distributed system can be considered as a set of distributable
threads.

Object A Object B Object C

Distributable Thread Traversing CORBA objects

Portable Interceptor
Application call

BSS- Begin Scheduling Segment
USS- Update Scheduling Segment
ESS- End Scheduling Segment

Segment Scopes

Seg. W

Seg. X

Seg. Z

BSS W

BSS X

BSS Z

ESS Z

ESS W
ESS X

Figure 13: Distributable thread with nested scheduling segments.

 Sheet: 86 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

� It is supposed that the schedulability of the system can be
addressed by managing the allocation of resources to distributable
threads.

� The distributable threads and the scheduler interact at specific
scheduling points such as in transitions to new processors where
scheduling information must be re-interpreted.

� The scheduler is a pluggable scheduler. If an ORB has a scheduler
installed, all applications that run on that ORB use that scheduler.

Scheduling points

The scheduling points are the points in time and/or in code where the
scheduler is run. This may result in a change of the current schedule. The
defined scheduling points are shown below.

� Creation of a distributable thread.
� Termination or completion of a distributable thread.
� Beginning of a scheduling segment.
� Update of a scheduling segment.
� End of a scheduling segment.
� A CORBA operation invocation, specifically the request and reply

interception points provided in the Portable Interceptor
specification.

� Creation of a resource manager.
� Blocking on a request for a resource.
� Unblocking as result of the release of a resource.

Schedule-aware Resource

The specification allows the creation of schedule-aware resource via a
Resource Manager. The resources can have scheduling information
associated with them.

7.2.3 Tip of Advice about Real-Time CORBA
Originally CORBA was not been planned for hard real-time systems.
Therefore several sources of non-determinism can be identified that could
cause the system to miss its deadline: marshalling of parameters at the
clients side, the protocol queues of the client, delays on the transport

 Sheet: 87 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

media, the protocol queues on the server, dispatching of threads and
requests, and unmarshalling of parameters at the server side.

Nevertheless there is no clear way of reducing complexity by subdividing
a system into subsystems and retaining the temporal behaviour. Thus the
implementer is left with the complexity of the whole system. Introducing
composability while preserving end-to-end predictability is still an open
issue. Especially analysis of a RT-System according to the real-time
CORBA specifications is complicated by features like borrowing threads
among threadpools.

 Sheet: 88 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

8 Extensible Transports
Framework
The GIOP-protocol can be mapped onto any connection oriented protocol
that reliably delivers a stream of bytes, provides some reasonable
notification for disorderly connection loss, and can be mapped onto the
general connection model of TCP/IP. It includes seven message formats
that provide support for opening and closing connections and transferring
data as well as migration of dynamic objects.

This specification [OMG03a] targets at a standardized interface between
the ORB and the transport layer in order to allow replacing the transport-
plugin without changing the ORB itself.

As a brief overview this specification allows to establish, use (read or
write), and close connections as well as listening for incoming connections.
The transport protocol framework is responsible for the creation of the
acceptor and connector objects which in turn provide service handlers to
carry out communication through a given network protocol. A detailed
discussion can be found in HRTC D2.2.

For control systems engineering it is necessary to define further functions
(like providing a global time) or support for periodic transmission of state
information with low jitter. On the other hand some requirements can be
relaxed (e.g., reliable transport of messages).

A pluggable protocol framework can be composed of two different levels
of components: The pluggable message protocol and the pluggable transport
protocol.

The message layer is the ORB message layer, i.e. the GIOP message layer.
It is not intended to introduce a new pluggable framework for the
message layer since interoperability with other ORBs is likely to be lost
otherwise.

 Sheet: 89 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

The pluggable transport protocol is placed under the message protocol
layer (the GIOP message layer) and this is the place where it is proposed
to introduce protocol plugins for hard real-time communications. The
transport protocol layer directly interacts with the network protocol and
provides a way to hook a transport protocol to the broker with
independency of its developer.

 Sheet: 90 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

9 Fault-tolerant CORBA
9.1 Introduction

There are various kinds of applications with a need for fault tolerance
beginning from large critical systems (such as air traffic control systems) to
smaller critical systems (such as medical systems) and embedded
applications (such as manufacturing control applications).

A standard that attempts to meet all of the requirements of this wide
spectrum of applications might satisfy many needs only poorly, or might
be too complex to implement. The Fault-tolerant CORBA specification
[OMG 02b] therefore represents a number of compromises in order to
support most of these systems.

Fault tolerance depends on entity redundancy, fault detection, and
recovery. The entity redundancy by which this specification provides fault
tolerance is the replication of objects. This strategy allows greater
flexibility in configuration management of the number of replicas, and of
their assignment to different hosts, compared to server replication.
Replicated objects can invoke the methods of other replicated objects
without regard to the physical location of those objects.

The standard supports a range of fault tolerance strategies, including
request retry, redirection to an alternative server, passive
(primary/backup) replication, and active replication which provides more
rapid recovery from faults.

Applications that require the Fault Tolerance Infrastructure in order to
control the creation of the application object replicas are supported as well
as applications that control directly the creation of their own object
replicas and applications that require the Fault Tolerance Infrastructure to
maintain Strong Replica Consistency, both under normal conditions and
under fault conditions.

 Sheet: 91 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Support for fault detection, notification, and analysis for the object replicas
is supported. Thus allowing applications that require the Fault Tolerance
Infrastructure in order to provide automatic checkpointing, logging and
recovery from faults as well as applications that handle their own fault
recovery.

The standard aims for minimal modifications to the application programs,
and for transparency to replication and to faults and it defines minimal
modifications to existing ORBs that allow non-replicated clients to derive
fault tolerance benefits when they invoke replicated server objects.

9.2 Grouping Abstractions
In Fault-Tolerant CORBA there are two types of grouping abstractions; the
object groups and the fault tolerance domains.

Object Groups

In order to achieve CORBA objects fault tolerance, several replicas of the
object are created and grouped in an Object Group. The object group can be
addressed as a whole by the use of an Interoperable Object Group Reference
(IORG) which is exported by the server to be used by CORBA clients. The
IOGR is created by the Replication Manager (see next sections). The clients
invoke their requests on the object group and are processed by the object
members of the group. Each individual replica has keeps its own IOR but
the abstraction of the object group provides two advantages from the
client point of view.

1. Replication Transparency: The client objects are not aware that the
server objects are replicated.

2. Failure Transparency: The client objects are not aware of fault in
the server replicas or of fault recovery.

Fault Tolerant Domains

FT CORBA also deals with large applications that have a need for fault
tolerance. Such applications manage thousands of objects and span several
locations so it is inappropriate to consider them as a single entity. To
address this problem fault tolerant CORBA defines the concept of fault
tolerance domains (Figure 14). A fault tolerance domain usually contains
several hosts and many object groups being possible for a single host to
support several fault tolerance domains.

 Sheet: 92 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

All the objects and groups in a fault tolerance domain are managed by a
single Replication Manager. Fault tolerance domains do not isolate objects
in one domain from those of others. Objects in a domain can invoke to and
be invoked by objects in other domains.

Figure 14 shows an example of fault tolerance domains which are filled in
light blue in the figure. Hosts are shown in orange and members of an
object group are shown in dark blue. The members of object group B are
denoted as B1, B2. The same notation is valid for groups A, D, C, E and F.

The fault tolerance domains allow applications to be arbitrary size, putting
no limit to application scale. This is achieved by letting replications
managers handle a smaller number of objects than that of the whole
system.

Fault tolerance properties can be assigned either to object groups or to
fault tolerance domains. Number of replicas or replication style (passive,
warm passive or active) and other properties can be applied to all the
object of a group, domain or to all the object groups of a specific type.

9.3 Architectural Overview

A fault tolerant CORBA system needs the infrastructure shown in Figure
15. A Replication Manager, Fault Notifier and Fault Detector object are
implemented as CORBA objects. Logically, only a single instance of this
objects exist in a fault tolerance domain but they are physically replicated
for fault protection as all the other objects of the application. In the figure,

B2 C1

D1 C2
C3 E1

E2 F1

E3 F2

A1

B1

SCILabs
Domain

Wide Area
Domain

UPM
Domain

Host 2

Host 3

Host 4

Host 5
Host 6

Host 7
Host 1

TUVienna
Location

Gate
way

ORB
without
support for
Fault Tolerance

IIOP
Message

over TCP/IP

Figure 14: Fault tolerance domains.

 Sheet: 93 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

it can be seen that the Replication Manager inherits the Property Manager,
Object Group Manager and Generic Factory interfaces.

The PropertyManager interface allows users to specify fault tolerance
properties of object groups. Replication Management is controlled by the
use of the GenericFactory and the ObjectGroupManager interfaces.
The GenericFactory interface is able to create replicated objects on
application demand. The GenericFactory is not used directly; it is the
Replication Manager who will invoke the factories on the hosts where the
replica is to be created. The ObjectGroupManager operations are
designed to add, remove or control de location of member of an object
group

The figure shows three hosts H1, H2 and H3. The client C on H1 is
invoking a replicated server with two replicas S1 on host H2 and S2 on
host H3. The Factory and Fault detector objects in each host are not
replicated as occurs with the service objects on top of the figure.

All the application objects inherit a PullMonitorable interface that a
Fault Detector invokes. It is a kind of watchdog invoking an is_alive()

is_alive()

CORBA ORB CORBA ORBCORBA ORB

Replication
Manager

Fault
Notifier

Fault
Detector

Client

C
Server

S1

Server

S2

Logging
Mechanism

Factory Fault
Detector

Recovery
Mechanism

Logging
Mechanism

Factory Fault
Detector

Recovery
Mechanism

Logging
Mechanism

set_
properties()

create_
object()

notifications

fault reports
create_
object()

H1 H2 H3

Figure 15: Architectural overview of a fault tolerant system.

 Sheet: 94 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

operation. Faults detected by in-host Fault Detectors are notified to the
Fault Notifier which passes the notifications to the Replication Manager.

In the case the passive or warm passive replication styles are used, only
one member of an object group executes the requests and sends the
replies. On a faulty condition, the Replication Manager can restart the
primary member of the object group or can promote a backup member to
primary member.

In the case of active replication all the members of an object group execute
invocations independently and in the same order so as to keep the same
state. When a fault occurs in one member the application continues with
the results of other member without waiting for fault detection and
recovery. There is a message handling mechanism that detects and
suppresses all replies except one which is sent to client.

 Sheet: 95 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

10 UML
The Unified Modelling Language (UML) is a textual and graphical
notation used to quantify and formalize the understanding of systems. It
can be used for business systems or computer systems that are an
abstraction (i.e. simplified representation) of those systems as well as
many other domains. More details than provided in this overview are
available in the more than 1000 pages of the specification (see [OMG 03d]).

The UML has its roots in a branch of the computer software development
industry known as Object Oriented Analysis and Design but also has
applications beyond this field, especially – but not limited to – in the field
of understanding and documenting business processes. Among the
benefits of object-oriented analysis and design are:

� required changes are localized and unexpected interactions with other

program modules are unlikely
� inheritance and polymorphism make OO systems more extensible,

thus contributing to more rapid development
� object-based design is suitable for distributed, parallel or sequential

implementation
� objects correspond more closely to the entities in the conceptual worlds

of the designer and user, leading to greater seamlessness and
traceability

� shared data areas are encapsulated, reducing the possibility of
unexpected modifications or other update anomalies

Object-oriented analysis and design methods share the following basic
steps although the details and the ordering of the steps vary quite a lot:

� find the ways that the system interacts with its environment (use cases)
� identify objects and their attribute and method names
� establish the relationships between objects
� establish the interface(s) of each object and exception handling
� implement and test the objects
� assemble and test systems

 Sheet: 96 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Experiences with systems modelled by average developers have
demonstrated that data-driven approaches of modelling techniques
usually lead to a few objects that concentrate the whole behaviour of the
system and other objects that act similar to normalized database tables. In
opposition to models created according to responsibility-driven
approaches these models tend to have less reusable classes as a
consequence. The UML authors promote a development process that is
use-case driven, architecture centric, and iterative and incremental. The
two basic principles of object orientation are very important and cannot be
overstressed: encapsulation and inheritance.

For modelling in UML there are nine types of diagrams that address
different aspects of an application:

� class (package) diagrams: describe the static structure of the system;

package diagrams are a subset of class diagrams and organize
elements of a system into related groups to minimize dependencies
between packages

� object diagrams: describe the static structure of the system at a
particular instant

� use case diagrams: model the functionality of the system using actors
and use cases

� sequence diagrams: describe interactions among classes in terms of
exchange of messages over time

� collaboration diagrams: represent interactions between objects as a
series of sequenced messages thus describing both, the static structure
and the dynamic behaviour, of a system

� statechart diagrams: describe the dynamic behaviour of a system in
response to external stimuli (especially useful in modelling reactive
objects whose states are triggered by specific events)

� activity diagrams: illustrate the dynamic nature of a system by
modelling the flow of control from activity (operation on some class in
the system that results in a change in the state of the system) to activity

� component diagrams: describe the organization of physical software
components, including source code, run-time (binary) code, and
executables.

� deployment diagrams: depict the physical resources in a system,
including nodes, components, and connections.

One of the major strengths of UML is the possibility of extension in case
that something else is required. This can be done with profiles that

 Sheet: 97 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

provide particular extensions for a particular domain (e.g., real-time) or
with free notes that are available for each construct.

In the “UML Profile for Schedulability, Performance & Time” are some
definitions related to the domain of real-time systems:

� Modelling Resources
� Modelling Time
� Modelling Schedulability
� Modelling Performance
� Modelling Concurrency
� Modelling Processing

With the help of these building-blocks a control systems engineer can
model important aspects of hard real-time systems.

 Sheet: 98 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

11 CCM
In the CORBA Component Model (CCM) as defined in [OMG 01a] the
component type is a specific, named collection of features that can be
described by an IDL component definition or a corresponding structure in
an Interface Repository (IR). It encapsulates its internal representation and
implementation. Although the component specification includes standard
frameworks for component implementation, these frameworks, and any
assumptions that they might entail, are completely hidden from clients of
the component.

There are two levels of components: basic and extended. Both are
managed by component homes, but they differ in the capabilities they can
offer. While basic components essentially provide a simple mechanism to
“componentize” a regular CORBA object, extended components, on the
other hand, provide a richer set of functionality.

In OMG Terminology a component may support a variety of surface
features through which clients and other elements of an application
environment may interact with a component. These surface features are
called ports. The component model supports the following basic kinds of
ports:

� facets: distinct named interfaces provided by the component for client

interaction
� receptacles: named connection points that describe the components

ability to use a reference supplied by some external agent
� event sources: named connection points that emit events of a specified

type to one or more interested event consumers, or to an event channel
� event sinks: named connection points into which events of a specified

type may be pushed
� attributes: named values exposed through accessor and mutator

operations. Attributes are primarily intended to be used for component
configuration, although they may be used in a variety of other ways.

 Sheet: 99 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

While extended components may offer any type of port the basic
components may only offer attributes. Thus it is very similar to an
Enterprise Java Bean (EJB).

Using components allows defining typical patterns in an easy way.
Among them are persistence or transactions of objects. Thus the
programmer can focus on the “real” problem and does not have to deal
with these problems.

 Sheet: 100 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

12 Data-Distribution Service
Many real-time applications have a requirement to model some of their
communication patterns as a pure data-centric exchange, where
applications publish “data” which is then available to the remote
applications that are interested in it. This specification (see [OMG 03b])
targets at solving the following problems:

Predictable distribution of data with minimal overhead is of primary
concern to these real-time applications since it is not feasible to infinitely
extend the needed resources.

The need to scale to hundreds or thousands of publishers and subscribers
in a robust manner is an important requirement. This is actually not only a
requirement of scalability but also a requirement of flexibility. Data-centric
communications decouples senders from receivers; the less coupled the
publishers and the subscribers are, the easier these extensions become.

The Data-Centric Publish-Subscribe (DCPS) model has become popular in
many real-time applications. Compared to distributed shared memory
which is a classic model that provides data-centric exchanges this model is
easier to implement efficiently over a network and allows the required
scalability and flexibility. It builds on the concept of a “global data space”
that is accessible to all interested applications. Applications that want to
contribute information to this data space declare their intent to become
“Publishers.” Similarly, applications that want to access portions of this
data space declare their intent to become “Subscribers”. Each time a
Publisher posts new data into this “global data space”, the middleware
propagates the information to all interested Subscribers.

Another common need is a Data Local Reconstruction Layer (DLRL) that
automatically reconstructs the data locally from the updates and allows
the application to access the data 'as if' it were local. In that case, the
middleware not only propagates the information to all interested
subscribers but also updates a local copy of the information.

 Sheet: 101 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

It defines a Platform Independent Model (PIM) for Publisher and
Subscriber and the mapping rules to the Platform Specific Model (PSM).
Since there is a separation between the publish sides and the subscribe
sides an application process that only participates as a publisher can
embed just what strictly relates to publication and vice versa.

 Sheet: 102 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

13 Other Domain Specifications
13.1 Enhanced Views of Time

This specification (see [OMG 02a]) defines a format for representation of
time and related terms (e.g., intervals) in CORBA as well as
synchronization of clocks or periodic execution of tasks.

The basic format supports a granularity of 100 ns and allows a range of
about ± 30000 years. The Clock Service makes no assumption about the
accuracy of underlying time sources. It provides, however, means for
characterizing the properties of each available time source, so that
applications may select among them.

It allows to specify several characteristics for each clock:

� resolution: the granularity of the clock
� precision: the number of bits provided in the clock readout and their

scaling
� stability: the ability of a clock to “tick” at a constant rate

In addition for a set of clocks the following parameters may be specified:

� offset: The difference between two clocks at a particular instant
� skew: the rate of change (first derivative) of the offset between two

clocks
� drift: the rate of change of skew (second derivative of offset) between

two clocks

Further for a ensemble of clocks that is synchronized with a reference the
following parameters may be specified:

� coordination time scale: the time scale directly (through an external

time source) or indirectly coordinated with
� coordination strata: an indication of “directness” of the coordination

with the ultimate time source

 Sheet: 103 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

� coordination source: the source of coordination.

The format supports more than ten time-formats (e.g., UTC, TAI, GPS) as
well as time-displacement and functions for comparing timestamps and
intervals against each other.

For special applications there are interfaces for controllable clocks, that can
be paused, resumed, reset, or otherwise controlled and support for
delayed execution.

This specification defines a lot of features that could be useful for control
systems engineering. However this versatility could be a problem in
embedded systems with limited resources. Since there is support for
several time-formats and support for time-displacement there are several
representations for one and the same instant. Choosing a time-format with
leap-seconds (e.g., UTC) could lead to sporadic problems that are very
hard to track since they occur rarely. Further the conversion of timestamps
in systems without a hardware-floating-point-unit could require
noticeable CPU time.

13.2 Smart Transducers
This specification (see [OMG 03c]) defines an abstract interface for a
cluster of STs (smart transducers; small compact devices containing a
sensor and/or actuator element, a microcontroller, and a communication
controller) that allows to encapsulate the internal details and thus lower
the complexity of the system.

It defines three different interfaces intended for different type of service
levels: the time-critical real-time service (RS) interface, the non real-time
diagnostic and management (DM) interface, and the configuration
planning (CP) interface. Using simple and understandable orthogonal
concepts is another key principle for reducing complexity.

These interfaces allow access to a distributed interface file system (IFS)
that contains all values that should be visible to the outside while internal
details are hidden by not mapping them into the IFS. Access to an ST is
performed as read, write, or execute operation to the IFS. This means that
also real-time data is available as state information in the IFS.

This specification also defines a format for timestamps that is especially
suited for embedded systems with few resources because it consists only
of an 8-byte integer value with a granularity of 2-24 and a precision field.

 Sheet: 104 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

This allows a granularity of about 60 ns and also allows access to the full
second with bit-shift-operations that are available on every
microcontroller which makes synchronization with, e.g. GPS, very easy.
By setting the precision (the number of valid bits in the time-stamp)
setting to an appropriate value it is possible to specify timestamps in a
cluster with imprecise clocks or bad synchronization.

Since this specification is especially targeting at small embedded systems
(prototype implementations required an 8-byte controller with 4 kb ROM
and 64 bytes of RAM) it presents some interesting approaches for
equipping small (in terms of CPU power) sensors with CORBA.

 Sheet: 105 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Part 3
Software and Hardware

 Sheet: 106 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

This page has been intentionally left blank.

 Sheet: 107 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

14 ORBs
14.1 Implementations of CORBA ORBs

There are many implementations of CORBA ORBs currently available; they vary
in the degree of CORBA compliance, quality of support, portability and
availability of additional features. There are even fully compliant public domain
implementations. Subsections below describe the most widely available ORBs.

14.1.1 TAO

TAO is the real-time ORB from the Distributed Object Computing (DOC) Group.
The DOC is a distributed research consortium consisting of the Center for
Distributed Object Computing in the Computer Science department at
Washington University and the Laboratory for Distributed Object Computing in
the Electrical and Computer Engineering department at the University of
California, Irvine. In addition, the DOC Group also includes members at Siemens
ZT in Munich, Germany, Bell Labs in Murray Hill, New Jersey, and OCI in St.
Louis, MO. The purpose of the DOC group is to support advanced R&D on

Figure 16: The ACE ORB (TAO)

 Sheet: 108 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

distributed object computing middleware using an open source software
development model.

TAO is based in the Adaptive Communications Environment (ACE) which is a
network programming environment written in C++. This is also an open-software
framework based on patterns for concurrent communication. The TAO acronym
stands for “The ACE ORB” which reflects that TAO is based on ACE.

ACE was built with the objectives of providing portability, software quality,
efficiency and predictability and ease of transition to higher-level middleware like
TAO. ACE and TAO have been funded for over a decade by the DARPA Quorum
program, NSF and several industrial sponsors (Lockheed Martin, Motorola,
Microsoft, Nortel, Nokia, Boeing, Siemens, Raytheon and many more). ACE and
TAO are commercially supported by Riverace, OCI and Prism Technologies on a
open-software business model.

TAO is a real-time CORBA broker that is compliant with most of the services and
features of the CORBA 3.x specification (including the Real-Time CORBA
specification). TAO runs on Windows and on many UNIX systems and real-time
operating systems. The main problem of TAO is its heavy footprint. In the
minimum TAO configuration which lacks lots of features it has a footprint of 1,3

Figure 17: The Adaptive Communication Environment (ACE)

 Sheet: 109 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Mb (in a release version with no debugging information) which is an enormous
footprint for any embedded system.

In addition, TAO provides many of the standard CORBA services as audio/video
streaming service, Concurrency service, Event service, Lifecycle service, Naming
service, Property service, Logging service, Persistent State service, Trading
service, etc.

Regarding real-time there are other services as the Real-Time Event service, Load
Balancing service and Scheduling service specially developed for real-time
systems.

The pricing strategy for TAO is simple, it is a free broker. There are companies
(Prismtech and OCI) that provide support and maintenance for TAO and access
to the more up-to-date versions of the product.

14.1.2 Orbix
Orbix is the CORBA broker for IONA. IONA's story began in 1983 in the
computer science department of Trinity College in Dublin. Chris Horn,
Annrai O'Toole and Sean Baker spent much of the decade researching the
ability to make computers, and the software that runs them, work together
collaboratively.

In the years that followed, Horn, O’Toole and Baker continued the
distributed computing research that would eventually become patented
technology used by almost every Global 2000 company today. New
funding came in from the European Union, the Irish Government, and in
due course from Sun Microsystems of California (who would later sell
their position after a 100-fold increase).

In 1993, IONA shipped its ORBIX product and left the Trinity College
campus and began opening offices around the world. In 1995, the
company opened its U.S. headquarters in Boston. Two years later, IONA
"went public" on the NASDAQ exchange, in what was then the 5th largest
software IPO ever. Currently, IONA employs more than 900 people in 30
offices world-wide, generating in excess of $150-million dollars in annual
revenue and has been profitable every year since its foundation.

Still led by Chairman Chris Horn and CEO Barry Morris, IONA has
become one of the leading software companies in the world. Over the past
ten years, IONA has proven to more than 5,000 customers that it is capable
of solving their integration problems and currently controls 40%.of the

 Sheet: 110 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

CORBA market. The company’s products have been used in a wide range
of organisations including:

• Telecom
• e-commerce
• Manufacturing
• Financial
• Petroleum
• Research
• Defense
• Multimedia

Customers include Ford Motor Company, Southwest Airlines, Boeing,
Deutsche Bahn AG, Lufthansa, Credit Suisse, ABN AMRO, Chicago Stock
Exchange, Compaq, Silicon Graphics, Cisco Systems, Sun Microsystems,
BSA Consulting, KPGM, Matra Systèmes & Information, Baxter
Healthcare, Telefónica I+D, NOKIA Telecommunications, Nortel, etc.

Despite all the company software products and services it lacked products
for embedded or real-time development. On February 2, 2001 the
company announced the acquisition of Object Oriented Concepts, Inc.
(OOC) to add embedded/real-time functionality to the Orbix family. This
effort resulted in the ORBIX/E product (previously Orbacus/E from
OOC) focused towards the embedded market. The acquisition of OOC
brought to IONA more than 2000 new developer licenses, 350 new
customers from OOC and more than 20 technical engineering experts.

IONA markets its products world-wide, primarily through a direct-sales
organisation. They have their headquarters in Dublin and regional offices
at Waltham, Santa Clara, Carlsbad, St John’s, Denver, Alpharetta, Chicago,
New York, Austin, Addison, Reston, Bellevue, Utrecht, Wokingham,
Beijing, Espoo, Frankfurt, Munich, Karlsruhe, Hong Kong, Powai, Milan,
Rome, Akasaka, Kangnam-ku, London, Paris, Perth, Madrid, Duebendorf,
Stockholm, Sydney and Melbourne. IONA also maintains a partner
program with solution and technology providers with benefits such as
benefiting from the IONA brand recognition through co-marketing efforts.

Orbix 3 is the CORBA broker from IONA. It is compliant with the 2.1
CORBA specification and it is maintained by the company as a link with
older CORBA systems. Orbix E2A is the current CORBA product sold by
the company as an application server and heterogeneous system
integration solution. It is mainly focused towards enterprise/business

 Sheet: 111 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

applications and its features are compliant with CORBA 2.4. The company
sells Orbix/E as its product for embedded systems.

Orbix/E is a lightweight CORBA v2.3 ORB. Lightweight means that only a
subset of the CORBA specification has been implemented, allowing the
product to present a small memory footprint. Orbix/E is not a real-time
ORB but its footprint (100 kb for clients and 150 kb for servers in a low
profile configuration) make it a good choice for some types of embedded
and real-time applications.

Orbix/E is commercialised in a per-developer name, one license per
platform and language fashion. There are also runtime license fees (as
much as 3000$ per runtime license for small quantities).

14.1.3 Visibroker
Visibroker is the CORBA ORB from Borland. Borland Software
Corporation is one of the leading providers of technology that helps
Global 1000 companies develop, deploy, and integrate software
applications. Delivering some of the best-in-class solutions dedicated to
interoperability, Borland allows enterprises of all sizes to move into Web-
based computing while continuing to leverage the benefits of legacy
systems. With more than 1,100 employees worldwide and operations in
more than 20 countries, Borland is a technology innovator that has been
serving global customers with best-in-class technology solutions for more
than 19 years.

Since 1983, Borland has been simplifying and speeding the process of
application development. As a pioneer in this space, Borland launched one
of the first PC development environments, Turbo Pascal, ®, which made
possible the commercial development of PC applications. Through the
years, Borland has anticipated the need of millions of software
professionals around the world; the company has continually refined its
technology to meet the evolving demands of business environments. In
1996, Borland began expanding its offerings to serve a broader range of
customers: the company launched a Java™ development environment
with the award-winning Borland JBuilder, ™ which is now the industry
leader in the expansive Java development space. In 1997, the company
acquired VisiGenic Software, enabling Borland to extend its application
development expertise to enterprise application deployment. The year
2001 brought the launch of Borland Kylix, ™ a development environment

 Sheet: 112 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

for the Linux® platform. Within six months, Kylix became the industry
leader in this space.

Today, Borland continues to deliver on its mission to help customers
embrace the future without abandoning the past. Borland carries out this
mission by supporting the major software architectures used to develop,
deploy, integrate and manage enterprise e-business applications. These
include the Sun® J2EE™ platform and the Microsoft® .NET™ framework.
Keeping pace with the rapid evolution of enterprise information
technology, Borland has emerged as a key player in delivering
development and deployment solutions for robust, standards-based Web
Services and wireless applications.

Borland offers its Visibroker product in two different flavours; Borland
Enterprise Server, Visibroker Edition and Visibroker-RT. The enterprise
server is a unified, cost-effective software platform for deploying and
managing a wide range of e-business applications and Web Services based
on the Visibroker ORB. All Visibroker CORBA features are version 2.5
compliant.

Visibroker-RT is the CORBA solution from Borland for the development
of distributed applications that incorporate embedded computers,
including communications equipment, defence electronics,
instrumentation, and process control systems. Visibroker-RT was
developer by HighLander Engineering which was acquired by Borland in
2002. This solution from Borland is intended for the development of
distributed real-time software that integrates with most real-time
operating systems. Visibroker-RT offers either a complete embedded
implementation of the CORBA specification or a Minimum CORBA
subset. In both configurations the real-time CORBA extensions are
supported. Visibroker also provides embedded implementations of the
Naming service and of the Event service. Additionally, it also provides
proprietary extensions for high availability. It is possible to have backup
implementations for CORBA objects. If an object is no longer accessible
requests automatically fail-over to a backup. Objects can also be visible on
several networks simultaneously so communication can be re-routed in
case of failure.

14.1.4 e*ORB

e*ORB is the real-time ORB from Prism Technologies. PrismTech, founded
in 1992, is a privately held company, with both US and European

 Sheet: 113 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

operations. The company is an acknowledged leader in the provision of
standards-based middleware to a list of multinational customers world-
wide, operating primarily in the Telecom, Defence, Financial Services and
Manufacturing sectors. The customer list includes companies such as ABN
Amro, Alcatel, AT&T, Bank of America, Boeing, Cisco Systems, Deutsche
Bank, Ericsson, France Telecom, JP Morgan Chase, Lucent Technologies,
Marconi, NEC, Nokia, Nortel Networks, Raytheon Systems, SBC, Siemens,
Sonera, Sprint, Telcordia Technologies, UBS, US West and many more.
PrismTech has rapidly grown its customer base since the launch of
OpenFusion in 1999. Its market share has accelerated since the launch of
the “Total CORBA Solution” product suite in 2001 that elevated
PrismTech to a "full-service" CORBA vendor. PrismTech intends to
become the market leading CORBA vendor by the end of 2003. During
2002/3 PrismTech also intends applying its business model to embrace
J2EE and Web Services middleware opportunities.

e*ORB claims to be the fastest and smallest ORB in the world. It is a
lightweight flexible and modular implementation of the Minimum
CORBA specification v2.4 (fully compliant). Among its advantages is its
availability in multiple configurations, capability of user-defined memory
allocation and de-allocation, the extensible server-side threading

Figure 18: Open Fusion e*ORB architecture

 Sheet: 114 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

framework and the proprietary pluggable protocol framework (PPF). The
ORB also provides a set of different POAs with different levels of
functionality which can be used depending on the resource requirements
of the target applications.

Additionally, e*ORB support logging, tracing and dumping for
application debugging and analysis and also Naming, Telecom Logging,
Notification and fault tolerance services.

The pricing strategy for e*ORB is based on licenses per developer/runtime
model and both are per product or per project.

14.1.5 ORB Express from Objective Interface
ORBExpress is the real-time CORBA ORB from Objective Interface
Systems (OIS). The company develops real-time, embedded and high
performance software for use in products throughout telecom/datacom,
military/aerospace, medical, process control and aerospace industries
since 1989. OIS is one of the pioneers in the development and
implementation of a real-time CORBA ORB and it is actively involved in
the Object Management Group.

Among their customers there are CERN, National Lawrence Livermore
Laboraty, Boeing, Nortel Networks, Ericsson, Daimler-Benz Aerospace,
Lockheed Martin, etc.

OIS also claims (as PrismTech) to have the fastest ORB in the market. It is
an ORB for the real-time and embedded market. ORB Express implements
the Real-Time CORBA standard and provides additional features as plug-
in transports. ORBExpress comes in three different flavours: ORBExpress
RT, ORBExpress ST and ORBExpress GT.

ORBExpress RT is the flagship product from OIS and its features go
beyond those of real-time CORBA. It is designed for hard and soft real-
time applications and supports plug-in transports, transport quality of
service and fail-over fault resilient connections.

 Sheet: 115 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

ORBExpress ST is basically the high-performance core of the family of
ORBs from OIS. It is a fully multithreaded ORB that always multiplexes
connections in order to save resources. It also supports fail-over for
connections.

ORBExpress GT provides more features to those of ORBExpress ST for the
development of embedded systems. The ORB has a segmented
architecture in which features can be used depending on the requirements
of the target application and can be deployed in three different
configurations (standard, small and tiny).

ORBExpress is licensed per developer name with no charge for runtimes.
Volume discounts are available.

14.1.6 ICa from SCILabs Ingenieros

ICa is the real-time ORB from SCILabs Ingenieros. SCILabs was founded
in 1998 with a clear interest in distributed control systems. The Integrated
Control Architecture (ICA) ORB offers an extensible framework for
architecture based development of product lines in the complex system
control area.

ICa product family is available in two different formats. The Real-Time
ICa for real-time systems and the Real-Time minimum ICa for real-time
embedded systems. ICa is available for a wide range of operating systems

Figure 19: OE benchmark vs. TAO and raw sockets

 Sheet: 116 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

and hardware platforms. It has been successfully deployed in distributed
control Remote Terminal Units (RTU), network device servers and time-
triggered network devices for high predictability systems. ICa is
compliant with the real-time CORBA specification and exhibits a small
footprint (≈ 200 Kb in its minimal configuration).

ICa is licensed in a per developer/ per runtime model with volume
discounts. Runtime licensed vary in a sliding scale and maintenance is
based on a yearly fee.

14.2 Qualitative Feature Comparison
In the table below a qualitative comparison of the previous brokers has
been made. Several features of the ORBs are compared; CORBA and Real-
Time CORBA degree of compliance to the specification, suitability for
embedded applications, availability for different platforms and operating
systems, additional proprietary features and CORBA services, level of tech
support, maintenance, and pricing strategy. Finally a global score is given
for all the ORBs.

C
O

R
B

A

R
ea

l-T
im

e
C

O
R

B
A

Em
be

dd
ed

Pe
rf

or
m

an
ce

Pl
at

fo
rm

s
&

R

TO
S

A
dd

iti
on

al

fe
at

ur
es

Te
ch

ni
ca

l
Su

pp
or

t

Pr
ic

in
g

G
lo

ba
l s

co
re

TAO ���� ����� � � ����� ����� ��� ����� ����
Orbix/E ��� - ����� �� ��� ��� �� ��� ���
Visibroker-RT �������������������� ������������ -8 �� ���������������� ���������������� �������� ���� ������������
e*ORB ���� ���� ����� ���� ���� ��� �� � ����
ORBExpress ���� ����� ����� ���� ���� ��� �� � �����
ICa ���� ����� ���� ���� ��� �� �� ��� ���

Notice that TAO which is a free research real-time ORB gets a very good
qualification. This is because it is free, implements most of CORBA and
real-time CORBA features and has lots of additional features (mainly
CORBA services). Nevertheless, it must be understood that its suitability
for real-time/embedded systems depends on the needs of the system. For
instance the lowest memory footprint for TAO is 1,3 Mb and regarding
performance a simple roundtrip request takes as much as 1,3 ms. Its

8 There is no information on the minimum footprint for Visibroker

 Sheet: 117 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

competitors footprint can be as small as 100 Kb and regarding
performance they can be several times faster.

 Sheet: 118 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

15 Design Tools

15.1 UML
UML stands for Unified Modelling Language. It helps specify, visualise,
design, construct and deploy software-intensive artefacts. It was first
introduced in 1997 and provides a standard notation to express a system’s
blueprint. UML allows to express either conceptual things as processes or
functionality or concrete things as programming language classes or
database schemas. UML started to form when Grady Booch, Ivar Jacobson,
and James Rumbaugh began to adopt ideas from each other’s methods
(Booch, Jacobson’s OOSE and Rumbaugh’s OMT). Towards by the mid
1990s, they realised that their methods were already evolving toward each
other independently and they decided it made sense to continue that
evolution together rather than apart.

To express the semantics of CORBA a UML profile for CORBA
specification was designed by the OMG. This has the advantage that an
standardised set of UML extensions can be used among all stakeholders.
As can be seen in the example of Figure 20, the UML profile for CORBA is
greatly based upon the UML concept of Stereotype. In the UML
metamodel, a Stereotype extends an element or elements of the
metamodel. For example the stereotype <<CORBAException>> extends
the UML metamodel Exception element. The aggregation of members into
constructed types in CORBA types is always modelled as an aggregation
Association with navigability away from the aggregate.

The UML profile for schedulability, performance and time enables the
construction of models that can be used to make quantitative predictions
regarding these characteristics. This is part of al larger initiative by the
Real-Time Analysis and Design Group in the OMG to provide a solution
for the modelling of real-time systems. In this case, the problem is tougher
than that of the UML profile for CORBA. It covers different aspects of the

 Sheet: 119 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

design and implementation of real-time systems; UML metamodel, real-
time domain analysis, and schedulability analysis.

The UML profile for schedulability performance and time is the result of
the lack in UML of a quantifiable notion of time and resources which was
an impediment for its use in broader range of real-time an embedded
applications. The aim of the profile is to extend the UML metamodel in
order to provide capabilities that allow designers to determine the
schedulability of a piece of code before beginning to write a single line of
it. This poses the need to model Quality Of Service aspects of the planned
system.

The profile does not make any assumptions about real-time modelling
concepts and leaves to the developer full control of UML modelling
features to model a specific real-time system. This has been a consequence
of the wide range of real-time and embedded systems and their varying
demands; fault-tolerance, safety/mission critical, soft and hard real-time,
etc.

Figure 20: Example of the use of the CORBA UML Profile

 Sheet: 120 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

The profile recognises the importance of modelling for analysis in this
type of systems so predictability checks can be done automating the
process with analysis tools. Different analysis methods focus on different
aspects of a model. Analysis methods need a simplified view of the model
in order to perform its task. The different perspectives of a model are
called analysis views. An analysis view is a simplified version of the
complete model and is extracted on the basis of a particular analysis or
domain viewpoint representative of a specific analysis method (e.g. the
“schedulability analysis viewpoint”).

The profile is organised so it is possible to make modelling for analysis or
modelling process. Modelling for process means modelling for analysis
plus synthesis. The profile defines a framework which is suitable for the
modelling from the analysis or synthesis perspectives. The general
structure of the framework is depicted in Figure 21.

Figure 21: Structure of the UML Profile for performance, schedulability and time

 Sheet: 121 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

The framework is modularised so only elements of the profile needed can
be used. The profile is structured into the General Resource Modelling
Framework and into the Analysis models.
The resource framework is partitioned in a set of sub-profiles for resource
modelling. These include core resource concepts and specific sub-profiles
for concurrency and time as these are basic requirements behind the UML
profile.

The Analysis models package is split into three different sub-profiles for
analysis which are based on the general resource modelling framework.
One sub-profile is dedicated to performance analysis while another is for
schedulability analysis. The schedulability analysis sub-profile is also
further specialised for schedulability analysis of Real-Time CORBA
applications.

Finally, the profile specification contains a model library with a high-level
UML model of Real-Time CORBA. The intent of this model is to serve as
the basis for more complex models where it is necessary to model parts of
the system infrastructure (Real-Time CORBA in this case) as it is usual in
these applications (e.g. fault tolerance).

 Sheet: 122 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Figure 22shows an example on the use of the stereotypes for a real-time
application with one client and two servers. The figure shows three layers
separated by the horizontal lines. The layer at the top is a logical layer
which is independent of the technology used. The middle layer is more
related to the application realisation; in this case it is a real-time CORBA
applications in which different ORBs are involved. The bottom layer is the
hardware layer which shows the different processors of the system and
the Real-Time CORBA functionality assigned to them.

15.2 IBM Rational
Rational is a family of products that use the industry’s de facto standard
language (UML) for the modelling of system software architecture and
design models. Rational products range from model-driven design (IBM
Rational Rose Real-Time), target-based component testing and runtime
analysis (IBM Rational Test Real-Time and IBM Rational Purify Plus Real-
Time) and life-cycle support (the Rational Suite Team Unifying Platform).

Figure 22: Example Real-Time CORBA Application

 Sheet: 123 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

15.2.1 IBM Rational Rose Real-Time
The tool is a complete lifecycle UML development environment targeted
at real-time/embedded systems. This tools is specifically suited to deal
with the problems of concurrency and distribution. Rose Real-Time
provides from requirements capture through code generation, testing and
debugging for real-time operating system targets.

15.2.2 IBM Rational Test Real-Time
Rational Test Real-Time is a solution for cross-platform real-time and
embedded product testing. Test Real-Time allows to test, analyse and
debug during development on host and target platforms and provides
mechanisms for component and system testing as well as memory,
performance and thread profiling. The tool also has the ability to perform
code coverage analysis and runtime tracing.

15.3 I-Logix Rhapsody

Figure 23: IBM Rational Product Family for real-
time/embedded systems

 Sheet: 124 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Rhapsody from I-Logix is another family of tools targeted at real-time and
embedded systems. These family of tools also follow a Model Driven
Development approach as those from IBM Rational. The Rhapsody family
is composed by the three tools below.

• Rhapsody Architect. This product is the base of the Rhapsody

family. It is a MDD environment based on UML which performs
requirements analysis, design and documentation of real-time
embedded applications.

• Rhapsody Designer. The Designer enables executable validation of
the model-based designs on the development host platform. The
tool provides the features of the Architect package plus design-level
debugging to prove behaviour and functionality and to validate
analysis models.

• Rhapsody Developer. Rhapsody Developer is the flagship product
of the family and encapsulates the functionality of the previous two
tools. It also provides an environment for testing and deployment,
and production code generation together with an execution
platform for deployment in the target hardware.

Figure 24: Design-level debugging during runtime using Rhapsody.

 Sheet: 125 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

15.4 Artisan Software Real-Time Studio
Artisan tools for real-time and embedded systems is one of the
collaborators of the UML Profile for Schedulabilty, Perfomance and Time.
The profile’s proof of concept used the analysis tools from Tri-Pacific and
TimeSys and made them interwork with the UML modelling tools from
Artisan Software and IBM Rational.

Real-Time Studio is a multi-user suite of tools specifically suited for
technical systems. The tools provide UML modelling with real-time
extensions and design validations. Among the features there are the
following.

• State models simulation of system behaviour.
• Generation of test harnesses for behaviour verification.
• Front-panel simulation with the Altia Face Plate (Graphics tools

for simulation).

Real-Time Studio is able to animate sequence diagrams, simulate state
models and integrate graphic panel displays from Altia. Real-Time Studio
also provides CORBA support with the generation of IDL files for CORBA
interfaces.

15.5 PrismTech OpenFusion CORBA Explorer
CORBA Explorer is basically a user interface for CORBA distributed
computing systems. CORBA Explorer is formed by a set of four tools to
explore CORBA systems.

 Sheet: 126 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

• Object Explorer. Gives direct access to object whose interface is
available in an interface repository. The object interface is exposed
and operation can be invoked. Values can be assigned and return
values can be inspected. It is a tool thought to explore object

implementation or to test prototype objects.
• Interface Repository Explorer. It is a graphical user interface for

browsing a CORBA Interface Repository. The Interface Repository
is shown as a hierarchical tree and objects are shown via their IDL
interfaces.

• Name Service Explorer. It is a browser for a CORBA Naming
Service. CORBA Names and Contexts are shown on a tree-view
pane while object references are shown on a list. It also is able to
resolve names, create or destroy contexts and to bind or unbind
object names.

• CORBA Shell. Provides a command programming language and
user interface to a CORBA system. The CORBA shell can process
scripts and is able to simulate a CORBA environment by scripting
clients and servers.

Figure 25: Artisan Real-Time Studio model simulation

 Sheet: 127 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

15.6 No Magic MagicDraw UML
MagicDraw UML from No Magic is a visual UML modelling tool with
teamwork support. MagicDraw is one of the cheapest options for UML
diagramming available in the market. It is not intended for real-time
embedded systems and does not support real-time UML extensions
(although the metamodel can be extended via stereotypes). MagicDraw
generates CORBA IDL interfaces code automatically and UML 1.4
notation and semantics. The CORBA IDL support also provides reverse
engineering from IDL sources. It is written in Java which makes slow as
runs over the Java virtual machine.

15.7 Microsoft Visio
Microsoft Visio is a general purpose diagramming tool from Microsoft that
supports UML 1.2 model diagramming. Visio also allows reverse
engineering of Microsoft specific language development environments as
MS Visual C++ or Microsoft Visual Basic. Visio provides model error
checking and code generation for the Microsoft developer tools.

Figure 26: OpenFusion CORBA Explorer

 Sheet: 128 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

15.8 Design Tools Comparison Chart
The table below shows a feature comparison chart for several UML
modelling tools.

9 There is only support for import/export of model elements, not for diagrams.

Supported Diagrams Code
Generation

To
ol

M
an

uf
ac

tu
re

r

U
M

L

U
se

-c
as

e

C
la

ss

S
ta

te

A
ct

iv
ity

S
eq

ue
nc

e

C
ol

la
bo

ra
tio

n

C
om

po
ne

nt

D
ep

lo
ym

en
t

R
ea

l-T
im

e
ex

te
ns

io
ns

C
O

R
B

A
 ID

L

C
++

Ja
va

A
da

XM
I

Rational
Rose IBM - � � � � � � � � � � � � � �

Rhapsody I-Logix UML
v2.0 � � � � � � � � � � � � � �

Real-Time
Studio

Artisan
Software

UML
v2.0 � � � � � � � � � � � � �

MagicDraw
UML No Magic UML

v1.4 � � � � � � � � � � � �

Visio Microsoft UML
v1.2 � � � � � � � � �

Describe Embarcadero - � � � � � � � � � � � �

TAU-UML Telelogic - � � � � � � � � � � � � �

Visual UML Visual Object
Modelers

UML
v1.4 � � � � � � � � � � -9

 Sheet: 129 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

16 Platforms

This section is a non-exhaustive list of hardware platforms where real-
time CORBA has been run. The hardware platforms described can be used
in systems with different demands from embedded soft real-time systems
to fault-tolerant embedded hard real-time systems.

16.1 Embedded industrial PC Boards
This type of boards usually have a small size factor (e.g. PC104 or
HDD3,5” form factors) and provide interfaces for special equipment (e.g.
GPS). Usually this type of boards is equipped with low power
consumption processors and common interfaces to external equipment
(serial, parallel and ethernet). For obvious industrial reasons this type of
boards usually comes with compact flash memory storage device which
serves the purpose of hard disk. Figure 27 and Figure 28 show two
industrial PC boards with different form factors from Lanner Electronics.

16.2 Networked Device Servers
Networked device servers are general purpose boards that use specialised
hardware and processors. As industrial devices, this type of server is

Figure 27: A PC104 form factor
industrial PC board

Figure 28: A HDD3,5" form factor
industrial PC board

 Sheet: 130 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

enclosed in sturdy casing and complies to immunity, emission and safety
standards.
The network device servers use flash memory for the software system
storage and are fully programmable. The usefulness of a device network
server relies in the variety of their interfaces. One or more ethernet/fast
ethernet ports and several serial RS232 and parallel and USB ports are
common configurations for this type of devices. RS485/422 are also
commonly found as they provide serial communication over longer
distances to devices. Figures 19 and 18 show a network device server
board from AXIS Communications.

16.3 Control Units
Control Units are small computers used for automation of processes such
us control of machinery or assembly product lines. They have either
modular or integral input/output circuitry that monitors field sensors and
controls output actuators according to the programmed control strategy of
the unit. They are usually integrated into DCSs.

Figure 30: AXIS network device server
(front side)

Figure 29: AXIS network device server
(back side)

 Sheet: 131 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

16.4 Time-Triggered Hardware
TTP is a time-triggered network protocol based on a TDMA bus access
scheme. There are several classes of TTP protocols raging from TTP/A for
low-cost systems to TTP/C for high speed network with high-
dependability requirements. TTP provides the predictability needed for
hard real-time applications while keeping fault-tolerance capabilities.

The TTP-Development Cluster hardware shown in Figure 33 is based on
TTP-Powernodes mounted in a rack and with one TTPMonitoring Node
for real-time TTP bus monitoring and download. Each TTP-Powernode is
equipped with the TTP-C2 controller (AS8202). In addition to TTP, a broad

Figure 31: A control unit from ELIOP

Figure 33: A TTP development cluster

Figure 32: A TTP-by-wire box

 Sheet: 132 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

variety of interfaces is supported: ISO 9141 (suitable for TTP/A, LIN, and
ISO-K), CAN, digital I/O, and analog inputs.

The TTP-by-wire box of Figure 32 is a platform for rapid development of
TTP-based distributed control systems in advanced automotive
applications with high-power actuators. The box is an actuator control
unit that offers hardware and software support for direct control of a
brushless DC motor.

16.5 Telecom Equipment
Telecom hardware platforms have been from the beginning one of the
most widely platforms targeted by real-time CORBA. The reason behind it
is that telecom companies constantly suffer the nightmare of dealing with
multiple network protocols and CORBA provided them a transparent
platform for interoperation.

Figure 34 shows the CISCO ONS 15454 Optical Transport Platform. It is
the first optical transport platform that enabled service providers to vary
the capacity of an optical network between 155 Mbit/s and 10 Gbit/s. This
platform runs a real-time ORB for its management software.

Figure 34: A CISCO Optical Transport
Platform

 Sheet: 133 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Part 4
Core Methodology

 Sheet: 134 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

This page has been intentionally left blank.

 Sheet: 135 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

17 A Methodological Approach

17.1 Methodology rationale
The search of quality and cost/time reduction leads to the definition of
coherent methodologies for system development. As a starting point for
the discussion, a definition of methodology is provided:

meth.od.ol.o.gy n, pl -gies [NL methodologia, fr. L methodus + -logia -
logy] (1800) 1: a body of methods, rules, and postulates employed by a
discipline: a particular procedure or set of procedures 2: the analysis
of the principles or procedures of inquiry in a particular field.

Merriam-Webster's Collegiate Dictionary
What we need is a body of methods, rules and postulates (a procedure) to
build complex controllers.

Finding the correct procedure to build complex process control systems is
almost a no hope task. Heterogeneity in process problems leads to a high
degree of variety in application structure and technology. Some of the
reasons for the complexity of the search of a methodology are:

• Use of heterogeneous software technologies and heterogeneous
platforms.

• Need of integration with legacy systems.
• Use of non deterministic computational methods and platforms; and in

particular artificial intelligence technologies, which are inherently
unpredictable.

• Knowledge based processing.
• Knowledge extraction, representation, sharing and coherence

problems.
• Application structure dynamics.
• Exploratory programming typically used in contoller implementation.
• High level of novelty. Most systems are of the one-of-a-kind type.
• Strong coupling between development phases: inherent life cycle

feedback.

 Sheet: 136 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

• Postponed specifications and designs.
• Complex non-hierarchical development teams.
• Multidisciplinarity of the expertise needed.

The complexity of the tasks the complete methodology must address is
enormous:

• Software development methodologies: There is a need for a global
application design, process, distributed system construction, real-time,
artificial intelligence, validation and verification, product line
management, etc.

• Control systems methodologies: The heterogeneity of elementary
controllers lead to specific (sub)methodologies for all them. Classical
controllers, expert systems (knowledge management), fuzzy controllers
(uncertainty representation), neural networks (topology, laws), genetic
algorithms, learning, heterogeneous system performance (stability,
etc.).

Even when an ultimate methodology is not achievable in principle, at the
end, what is really needed, is a software methodology coupled with some
control submethodologies.

In the CORBA-based control systems domain, we address the issue of
complex software controllers focusing in software more than in control
aspects. Classical software methodologies offer good alternatives as
starting points for a more suitable one for our domain (a domain specific
methodology address problems in a focused domain).

Some examples of useful methodologies (they offer some ideas valuable
for an integrated control software methodology) are:

� Shlaer-Mellor, Booch, OMT, Objectory, RUP: Generic object oriented
methodologies.

� ROOM, OCTOPUS, ROPES: Real time distributed systems.

� ODM, FODA: Domain analysis.

� KADS: Knowledge acquisition and elicitation.

� HINT: Heterogeneous control systems.

� AOM10, GAIA, ROADMAP, Prometheus, ADELFE: Agent oriented
methodologies. They are of special interest for the construction of
CCS.

10 Also Aspect Oriented Methodology.

 Sheet: 137 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Each one has it niches, strengths and weaknesses, focusing on specific
aspects of the development process or the target system. They are
commented below only as a sample of the methodological hodgepodge
that managers have available throughout the world of information
systems development. There are –literally– thousands of methodologies
out there. A question arises: Do we need another one?

17.2 A Methodology for Complex Process Controllers
The methodologies commented are examples of the spectrum of available
ones. All them fit to some extent within a complex control methodology
targeting one-of a-kind systems.

Methodology based engineering must consider this and provide ways to
cope with variability. This will translate in apparent overgeneralization or
underspecification of some phases and/or tasks.

The task of complex controller construction can be viewed from two
perspectives:

Figure 35: Prometheus methodology phases, artefacts and
relationships in the design process.

 Sheet: 138 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

� Short term: Oriented towards the construction of a single controller
(tackling one control problem); i.e. a classical control system project
approach.

� Long term: Oriented towards the construction of a successive series
of controllers coping with heterogeneous problems in the plant
along an extended period of time. This is worth a product line
approach.

A comprehensive long-term methodology should provide support for
developing a family of integrated control systems for a plant –or related
group of plants– following a product line approach. This is the best
approach to provide a cohesive global control system for the plant.
The base phasing proposed by DIXIT can be seen in the section of DIXIT
Methodology.

17.3 Key Concepts for a Methodology
The search for better ways to build software systems is pervasive. Like the
slain heads of the Hydra, software engineering threads seem to multiply
each time they are defeated. If you are searching the web in seek of
relevant literature, some of the key terms for a complex software controller
methodology are (in alphabetical order):

� Agents

� Architecture based design

� Artificial intelligence

� Concurrent Engineering

� Reducing design commitments

� Distributed system

� Domain engineering

� Frameworks

� Integration

� Life cycle

� Model based software engineering

� Object oriented programming

� Ontology

� Patterns

 Sheet: 139 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

� Product Line Engineering

� Real time systems

� Reusability

� Software components

� Software Process

Most of them are quite related (for example reuse and components, or
domain engineering and product line engineering).

17.4 Divide and Conquer
The strategy of solving complex control problems by decomposing it into
partial control problems is called the divide-and-conquer approach. This
approach basically consists of three steps:

1. Decomposing the overall control problem into a complete set of well-
defined partial control problems.

2. Solving the partial control problems.
3. Integrating the partial solutions into an overall solution.

Although this strategy is commonly used to solve complex control
problems, few theory and tools have been developed that support this
strategy. It has the status of a heuristic method, rather than a structured
design method. Traditional control theory is concerned with the analysis of
the dynamical behaviour of controlled systems, often in terms of
differential equations. Therefore, it is well applicable for solving well-
defined partial control problems. The divide-and-conquer approach,
however, is concerned with the synthesis of solutions for complex
problems. An important design issue related to this approach is how to
deal with the dependencies between the partial control problems when
decomposing the overall problem and integrating the obtained partial
solutions. The trends in design and implementation frameworks support
the divide-and-conquer approach by providing tools for the structuring of
complex control problems in terms of partial control problems and their
interdependencies, and by providing tools for integrating partial solutions
into an overall solution.

In the case of CORBA-based controller, componentization is granted and
composite behaviour can be obtained without sacrificing local
functionality by means of proper structuring using the resources provided
by the Real-time CORBA specification. Much should be done however, in

 Sheet: 140 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

the development of tools to support this type of process, because the
available design, analysis and development environments fall short of
what is needed.

 Sheet: 141 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

18 Basic processes
18.1 Introduction

The construction process suggested in this document is relatively simple
and straightforward. It is based on a series of consecutive phases of
development with a domain-centric perspective.

While it is well known that waterfall models of development are not very
suitable in general we propose here a stepwise process composed of six
phases:

� Early requirements
� Late requirements
� Analysis
� Architectural design
� Detailed design
� Implementation

We consider that CORBA technology enables this simple organisation due
to the domain characteristics of component-based complex distributed
control systems. A complex distributed controller is composed by a
collection of real-time, semi-autonomous, interacting agents.

Complex control systems are typically large-scale, heterogeneous
applications, that perfectly match the characteristics that Wooldridge
specifies for the target domain of the Gaia methodology [Wooldridge 00]:

� Agents are coarse-grained computational systems, each making use of

significant computational resources (think of each agent as having the
resources of a UNIX process/thread).

� It is assumed that the goal is to obtain a system that maximises some
global quality measure, but which may be sub-optimal from the point
of view of the system components11.

11 Gaia is not intended for systems that admit the possibility of true conflict.

 Sheet: 142 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

� Agents are heterogeneous, in that different agents may be
implemented using different programming languages, architectures,
and techniques. We make no assumptions about the delivery platform.

� The organisation structure of the system is static, in that inter-agent
relationships do not change at run-time.

� The abilities of agents and the services they provide are static, in that
they do not change at run-time.

� The overall system contains a comparatively small number of different
agent types (less than 100).

This means that, to some extent, it is possible to exploit the concepts and
models that Gaia proposes in the implementation of the methodology
herewith described.

18.2 Early requirements
The early requirements activity in information systems is concerned with
understanding the problems faced by an organization and how an
information system can help “solve” these problems.

Early requirements elicitation usually begins when the organization
identifies some problem and mandates a person or a group of people to
investigate possible solutions for this problem.

In the case of control systems in industry this is hardly the case as
outsourcing practices limit the amount of detailed knowledge that
software analysts can have about the industrial organisation. In other type
of control domains (aircraft, military, automobile, etc), they usually have
an in-house engineering task force that clearly perceives the situation.
This, however, leads to the in-house, domain limited, early requirement
elicitation that moves to domain specific solutions.

Early requirements are usually approached through the following steps:

� Define what is needed or wanted by the organization

� Specify as many optional ways as possible for doing what needs to
be done

� Specify the potential influence of each option on the other options

� Select among the most interesting or acceptable set of options

 Sheet: 143 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Problems, however, are multi-faceted constructs that don’t yield to easy
analysis. Some of the problems faced by requirements engineers are the
following:

� What is needed or wanted is not clear. Among a set of stakeholders
there’s rarely an agreement on what is needed or wanted.

� Specifying options is not easy

� Selecting, among the options those to implement is even more
difficult

The problem of understanding what is needed has been known for many
years. Many methods have been proposed to address this problem. The
main point of most, if not all, of these methods is the creation of
discussions among stakeholders, including developers. The purpose of
these discussions is to help stakeholders to understand what is needed
and what is technologically feasible. Rapid prototyping, stakeholder
workshops, eXtreme Programming, Agile Development etc. have all been
developed with the goal of understanding what is needed and what is
feasible. The main tool provided for this purpose in UML is the use case.
Use cases were used by developers to define how a potential user will
interact with the system being defined, but that is typically not precise
enough for what control engineers would like to see.

However, in recent years the understanding has developed that during
early requirements phases, it is not good practice to think in terms of
interactions of users with a system to be built. This is especially important
in relation with embedded control systems, where user interaction is
minimal. Focusing excessively in humans, may prevent the stakeholders
from specifying optional ways of reaching the same expected result. Thus,
goal-oriented use cases have been proposed as an alternative.

18.3 Late requirements
Late requirements are detailed requirements that affect the concrete target
application.

They are typically captured by means of use-cases and scenarios and lead
to the definition of permissions and responsibilities for the roles that
constitute the system.

 Sheet: 144 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

18.4 Analysis
This stage identifies the system features which are essential to the
development and implementation process.

In theory, the objective of the analysis stage is to develop an
understanding of the system and its structure (without reference to any
implementation detail). But in fact this understanding manifests in the
form of early design commitments. Typically, this understanding is
captured in the system's organisation. An organisation is a collection of
roles to be played by CORBA objects, that stand in certain relationships to
one another, and that take part in systematic, institutionalised patterns of
interactions with other roles.

To analyse a complex system is too hard a task, so it needs to be
decomposed into sub-models. Possible models to be used throughout the
whole process —not only analysis— are:

� Domain model: it describes the concepts belonging the domain

� System model: it identifies entities of the system

� Roles / Tasks model: it identifies the tasks in the system as well as
their relationship

� Object/Agent model: it specifies the objects and their methods

Domain model

It is related to the domain or environment for which the system is
developed. This model targets the set of early requierements. It models
generically needed classes, attributes and relationships among them. It is
important to specify the variables that could posses real-time features.
This model is develop simultaneously or in parallel with the development
of the other models. It could be modified as needed, once object and
domain features are fully specified.

As a conclusion, the former models are just tools to allow in the analysis
process. They could consider the system requirements right from the
beginning. However, an iterative analysis process could be of better use.
Therefore, at a first stage, early requirements can be specified in the
analysis phase. Later on, late requirements not previously considered can
be added.

 Sheet: 145 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

18.5 Architectural design
To design consists in defining a solution to fulfil the features described in
the analysis phase and its models. The design phase could be divided in
two stages: architectural design and detailed design:

� Architectural design: it is a high-level design where objects,
methods, relationships, etc are detailed.

� Detailed design: it is a low-level design where the internal structure,
attributes, real-time features of the objects are considered.

System model

It allows identifying the objects belonging to the system and those external
to it. Being a real-time system, it also allows identifying time-based
constraints and relationships. The main tasks to build up this model are:

� To identify use cases and external actors, to describe the system
functions related to external entities (end-users, modellers, software
engineers, software systems, etc). It could be done extending an
UML use case diagram according to RT-UML.

� To identify external events that might affect to the system
functioning. To develop a real-time system, the events occurring
outside the system may interfere with the system performance.
Therefore, a detailed list of events should be made, as well as to
specify the event attributes to characterise how the system will react
to that particular event. Among those attributes, features such as
response time to the event or pattern arrival could be considered.

� To describe the use cases and actors behaviour as a means to
characterise the general system behaviour. This could be made by
using the UML statechart, activity and sequence diagrams extended
as appropriate with RT-UML to express real-time constraints. The
statechart diagram allows to model system features as based-time
events, concurrency, activities, conditions and actions associated to
transitions. The activity diagram allows to model features such as
concurrency, synchronisation, branches and transitions. The
sequence diagram allows modelling the message sequence between
objects and external entities, specifying possible time constraints.

 Sheet: 146 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

18.6 Detailed design
Agent/Object model

Its purpose is to identify the objects and their methods in the system
taking into account some of the elements described in former models.

For each object, elements to be identified are: name, attributes, methods
(own and other object methods) and real-time features. This should be an
iterative process refine as the system is implemented. It is not, therefore, a
static process. Objects and their relationships could be documented and
specified using UML class and object diagrams considering real-time
features.

Roles / Tasks /Services model

This model is used to identify the roles to be played and the tasks to be
performed by these roles tasks that are needed to achieve system
performance. From a real-time point of view, three different type of tasks
could be considered:

� Hard-time tasks: critical time constraints are applied to achieve the
task. If not, it may have consequences on the system.

� Soft-time tasks: soft time constraints are considered in this case. The
task should be achieved in a deadline, otherwise it is useless.
However, if it is not achieved, there are not major consequences.

� Normal tasks: there are not time constraints to fulfil the task.

Some artefacts could be used to help in identifying tasks and their types.
Tasks schemas are used to identify core features of each task. UML
statechart and activity diagrams to model the tasks and time constraints.
Flow diagrams will allow possible task precedence as well as assigning
tasks to objects.

18.7 Implementation
The implementation consists in the construction of the CORBA objects that
have the characteristics specified during the design phases.

 Sheet: 147 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

In theory this should be a straightforward issue; however, CORBA object
interaction models do not directly reflect the variety of interactions that
can happen in agent communities (see Figure 36).

However, if we consider the collection of design patterns that is available
in the CORBA Services collection, we promptly discover that the
implementation of alternative communication models is not only possible
but that is already available in CORBA-based platforms.

Concrete implementation details for control agents go beyond what is
available in agent architectures. Real-time issues are critical and they are
commented in the next chapter.

 Topology of Inter-Agent Relationships
 Centralized

(master-slave)
Decentralized
(among peers)

Direct
(messages between

agents)

Construction
(Build-time)
Command
(Run-time)

Conversation Information
Flow

Indirect
(non-message

interaction)

Constraint Stigmergy
(generic)

Competition
(limited resources)

Figure 36: Categories of agent communication [Parunak 03].

 Sheet: 148 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

19 Engineering Objects for Real-
time
The engineering process for real-time applications shares all of the
elements of the engineering process for non real-time applications. The
timing requirements in most cases come in as non-functional or extra-
functional requirements in addition to the functional requirements.
To begin one has to decide upon whether the timing constraints are hard
or soft. Hard real-time constraints are timing constraints that must be
ensured by the implementation. Soft real-time constraints can occasionally
be missed without any fatal consequences. The main issue in this chapter
is hard real-time applications.

The hard real-time characteristic can either be imposed by the application
or by the designer. The latter case is most common. The hard real-time
model is overly restrictive in most applications. In most cases an
occasional missed deadline is no catastrophe. However, it can still be a
good engineering decision to treat an application as hard, even if that not
really is the case. One example can be when it simplifies verification using
formal methods.

In order to ensure that a hard real-time application meets its deadlines it is
necessary to add schedulability analysis to the analysis phase of the
engineering process.

19.1 Schedulability Analysis
In order to at all be allowed to launch a safety-critical hard real-time
application one must first ensure that all real-time requirements really are
met. Hence, it is necessary to perform the analysis before the application is
started or before any new tasks are added to an already schedulable,
executing application (dynamic admission control).

 Sheet: 149 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

A prerequisite for all real-time system scheduling is knowledge of the
worst-case execution times (WCET) of the different tasks and of the critical
sections within the tasks. There are two main ways of obtaining this
information: using measurements and using analysis. When measuring
the execution times are measured using code instrumentation or with
external measuring devices. The main drawback with this is the risk of
being overly optimistic. It is not possible to guarantee that the worst case
encountered during measurement really is the true worst case. The second
alternative is based on adding the worst-case execution times for the
individual native code statements together with the help of a tool. The
main problem with this approach is the risk of being overly pessimistic.
When applying this technique, generally a number of worst-case
assumptions are made one after another. Other problems with the
approach are the lack of tools, and difficulties with handling many of the
features of modern hardware architectures such as caches, pipelines, and
speculative execution.

Several alternative scheduling approaches are available. A main difference
concerns whether the analysis is static or dynamic. In a static schedule the
complete execution schedule is decided beforehand, typically using some
heuristic optimization algorithm. At run-time the task dispatcher simply
has to follow the static schedule. Static scheduling is the technique applied
for time-triggered system architectures. It has several advantages. The
resulting system will have a very high level of temporal determinism, at it
is, at every given point in time, known beforehand which task that is
executing. It can be used both to schedule the computations in the nodes
of a distributed system and the network communication. A large number
of constraints on precedence, exclusion, etc can be included in the
optimization problem. The resulting schedule can be executed on very
small and inexpensive computing platforms, as it typically does not
require the functionality of a full real-time kernel. The main drawback
with static scheduling is the inflexibility. It is not possible to add new tasks
dynamically to the system.

In a dynamic schedule the decision which task to execute is taken on line
(dynamically) by the task dispatcher within the real-time kernel. The
decision is based on some importance measure associated with the task in
most cases a fixed, or static, priority. The kernel always selects the tasks
with the highest priority among the tasks that are currently ready, for
execution. Fixed-priority based scheduling is the state-of-the-art in today’s
real-time systems, with a possible exception for safety-critical applications
where static scheduling still is employed.

 Sheet: 150 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

For fixed-priority scheduling a quite mature scheduling theory has been
developed during the last 25 years. In rate-monotonic scheduling the
priority is assigned to tasks according to their period. A short period
means a high priority. The associated scheduling theory covers task
communication employing, e.g., the priority ceiling protocol, task context
switching overhead, tick-based clock interrupts, and task offsets. The
theory also extends to the scheduling of distributed systems based on
CAN-bus communication.

Alternatively, the task priority can be based on the task deadline. In
addition to the simple periodic task model, the theory has also been
extended to cover more complex task models, e.g, multi-frame task
models, sub-task models, and offset-based task models. A number of
scheduling models task sets that combines hard periodic tasks with
aperiodic soft tasks have also been developed. These are typically based
on having a periodic task as a server for the aperiodic tasks. A number of
approaches have been developed, e.g., the priority exchange server, the
sporadic server, the slack server, and the deferrable server.

Within the academic real-time community most of the current research is
devoted to dynamic scheduling based on dynamic priorities. The most
well-known of these approaches is the Earliest Deadline First (EDF)
scheduling approach where the tasks dispatcher always selects the task
that is closest to its deadline for executing. Also, for the scheduling model
a vast amount of theory has been developed. However, since it is not yet
so well-supported by commercial real-time kernels its usage in industry
lacks behind.

For soft real-time applications the main focus today is on adaptive and
flexible scheduling approaches. These are typically designed to provide
best-effort guarantees for task sets that are characterized by uncertainties
in resource requirements and where tasks may arrive dynamically.
Schedulability analysis for stochastic task sets and for tasks sets that can
be modeled as consisting of tasks with mandatory and optional parts
(imprecise scheduling models) has been derived. The use of feedback
control as means of handling uncertainty and providing flexibility is
receiving increased attention (feedback scheduling). This is often
combined with quality-of-service approaches where the different
performance metrics are treated as quality parameters that the user or the
application can provide the desired values for.

 Sheet: 151 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

19.2 Engineering of real-time control applications
Engineering of real-time control applications adds a number of control
related phases to the engineering process. To begin with it must be
pointed out that control applications can mean a large variety of different
things. One important class of control problems is discrete or event-based
control. These control problems are often modelled and implemented
using state-transition based mechanisms such as Statecharts, Grafcet,
Sequential Function Charts, or ordinary state machines. However, also
here the actual implementation is often based on periodic tasks, where the
requirement on sampling intervals and deadlines arises from the
requirements on response times in the particular application. However,
the control problems that are most often associated with computer-based
control are continuous control problems where a control algorithm is used
to calculate new control signals as a function of the measurement values
with a constant sampling interval. This is what we primarily will consider
in the sequel.

The first of the design phases is the actual control design. The inputs to
this are the requirement analysis that decides what needs to be controlled,
and in most cases what the control signals should be. Other inputs to the
control design could be a dynamic model of the process to be controlled or
input-output data from which a model could be derived using system
identification methods. Once the model is available and the specifications
on the closed loop are available the actual design process can begin.
Depending on the available model knowledge, the inputs available for
control, the disturbances acting on the process, and the level of
uncertainty involved in the process, a certain control design approach and
controller structure is selected, The controller is sometimes derived
through the solution to an optimization problem, e.g., in LQG control
(Linear Quadratic Gaussian) control or in MPC control (Model Predictive
Control). In other cases a certain controller structure is pre-specified as the
controller parameters are tuned to obtain a certain closed loop dynamics,
e.g. in pole-placement control using state feedback or using output
feedback, or in PID (Proportional Integral Derivative) control.

The design of computer-based controllers can further be distinguished
with respect to whether the design is performed in the continuous-time
domain and then later approximated to a discrete-time design, or whether
a discrete time controller is postulated to begin with. In both cases the
nominal sampling interval is selected using rules of thumb. In the discrete
time case the rules of thumb typically involves the dynamics of the desired
closed loop system, whereas in the continuous time design the rules of

 Sheet: 152 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

thumb typically involves the bandwidth of the open loop system. In most
cases the control design is performed assuming a negligible input-output
latency. It is assumed to be so small in relation to the sampling interval
that it can be safely be ignored. However, especially in networked control
applications this is far from always being true. Another alternative is to
attempt to implement the system in such a way that the latency is
constant. In that case the input-output latency can be modelled and
compensated for at the design stage in the same way as if the latency
originated from a constant transport delay within the controlled plant.
This approach is especially suitable if a time-triggered network protocol
such as TTP/C is used, where the network latency jitter is very small.
However, delays always have a negative effect on control performance.
For example, it is in many cases better with a varying but short latency,
than with a longer but constant latency. This is often true also if the
constant latency is compensated for. Even better performance can be
achieved if the compensation is performed for the average value of the
time-varying delay.

If it is possible to measure the actual latency from sample to sample then it
is possible to, to a certain extent, compensate for the latency on-line. The
latency can be viewed as a temporal disturbance acting on the feedback
loop, or as an uncertainty. By applying control-based methods such as
disturbance feed-forward or gain-scheduling the variations can be
compensated for. However, it is normally only the part of the latency that
lies between the sensor node and the controller node that can be handled
in this way. In networked control loops a prerequisite is also that time
stamping information is associated with the measurement data.

The analysis of how control loop timing parameters such as sampling
interval, input-output latency, and the jitter in these, affect control
performance is very complicated. For linear system and where all delays
are independent from sample to sample it is possible to apply jump-linear
theory and Markov theory to perform the analysis numerically. This
theory has been packaged within the Jitterbug toolbox developed by Lund
University.

Although it is possible to, to some extent, analyze how imperfect
controller timing will affect control performance, this is seldom done in
industrial practice. Instead there are too often a clear separation between
the control design group and the software implementation group. The
control designer simply assumes that the software group will provide an
implementation with jitter-free sampling and negligible latency, whereas

 Sheet: 153 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

the software engineers often have a very vague understanding of how
delays and jitter influence control performance.

Simulation is a common activity in all control design. However, normally
the simulation performed is restricted to the pure control aspects,
disregarding the effects caused by the computing and communication.
The normal setup is simulation of feedback loops consisting of continuous
time models of the controlled plant and discrete time models of the
controller. Issues like computational latency and network latency are at
best modelled as constant time delays. However, using the new Simulink-
based simulation tool TrueTime, developed at Lund University, it is now
also possible to simulate the true timely behaviour of a networked control
loop, taking issues like delays caused by preemption and blocking in real-
time kernels and delays caused by collisions and resendings in networks
into account. Hence, it is possible to perform true co-simulations of the
control aspects, computation aspects, and communication aspects of a
networked control loop.

The fact that most control loops are relatively robust towards timing
variations can also be utilized to obtain more flexibility. This is achieved if
the control performance is treated as a quality-of-service parameter
(quality-of-control), for which the designer provides desired values
together with acceptable ranges. Associated with the different available
controller are capability parameters that decide which level of
performance the controller can obtain as a function of the sampling
interval and the latency of the control loop. During run-time an adaptive
scheduler can then adjust sampling intervals and switch between different
controller based on feedback from the current resource utilization and
control performance. Methods based on contracts and negotiation can be
applied. The resulting system has the potential to cope better with
uncertain and dynamically changing workloads than current, statically
designed, systems. Dynamic system solutions of this type create new
demands on representation of timing related information. The timing
information must be available at run-time and be accessible from the
scheduling system. The scheduling system must also have access to timing
information from the network, e.g., worst-case and best-case latencies or
latency distributions. It is still an open question how this information best
is represented. One possibility would be to represent this information in
the IDL. The area of dynamic feedback scheduling-based control systems,
although promising and interesting, is, however, still at the research level.

 Sheet: 154 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

 Sheet: 155 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Part 5
Case Studies

 Sheet: 156 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

This page has been intentionally left blank.

 Sheet: 157 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

20 Strategic Plant Control
20.1 Introduction

Strategic decision making in complex continuous process plants (chemical,
oil, cement, etc.) has been a topic restricted for humans since ever
[Sheridan 83]. The reasons for this restriction —lack of automation
indeed— are grounded in the unpredictability derived from plant
complexity [Åström 00].

Strategic control issues are those related with the top level management of
the plant. They are oriented to reach global objectives that, in many cases,
are not suitable to be integrated in an automated planner due to their
heterogeneity and abstractness. Examples are safety, production, stability
or maintainability. In these plants, the responsibility for this type of
decisions is always of a human that decides what to do in any problematic
situation.

Automation, however, is desirable —in a general sense— in any type of
plant and for any type of task if this automation does not mean the
sacrifice of any one of those top level objectives. Partial automation is
achieved for some of the objectives but no total solution is available in
general because these plants are mostly unique (at least after some time of
operation).

The flexibility offered by present day information technology helps bridge
the gap between a heterogeneous collection of information sources
without sacrificing dependability or performance. Automated decision
support systems are emerging to help human operators in making reliable,
fast, and economically advantageous decisions [Petrov 00].

In this chapter we are going to show an example of how a suitable
integration technology like CORBA can lead to a specifically tailored
decision support system that can provide an integrated plant view for
strategic decision making.

 Sheet: 158 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Not surprisingly, the construction process for these tailored systems is
extremely complex due to the needs of integrating heterogeneous
information sources (new and legacy systems) into a single whole
application. Extreme complexity is reached when the system is designed
even for integration with future (not yet existing nor specified) systems as
is the common need in complex plants.

The PIKMAC system described in this chapter was developed12 to support
human-centered operation of a cement plant during periods when this
operator is the only person in the plant (i.e. the only person capable of
making strategic decisions in real-time). This application exploits the
integrational capability of CORBA middleware [OMG 00] to gather
heterogeneous information that is fused into simple quality, economy and
maintenance views. This application was deployed atop the first version
of the ICa integrated control architecture [Sanz 99b] that was specifically
built for the control systems domain.

20.2 Strategic Process Control
Control systems in large plants are hierarchically organized to integrate
the complex functionality required from them. Figure 37 shows an
overview of the layers of a typical hierarchy. Lower layers are typically
available in any process control system and higher layers are typically
custom-built to target specific plant needs.

12 This work was funded by the European Commission through Project IST DIXIT

 Sheet: 159 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Figure 37: Typical hierarchical organization of a layered control system in
complex plants.

Strategic process control is the set of activities regarding top level decision
making in a process plant. Strategic control is traditionally considered a
management activity and hence studied as part of business processes and
practice [Simons 95]. In our domain we consider it as mostly related with
global optimization and risk management at the enterprise level. Hence
this chapter focus strictly on a technical level, addressing strategic control
of production systems from a purely technical perspective.

While strategic decision making is typically considered a human activity,
the necessary incorporation of advanced computing mechanisms in the
top-level decision making process in large industries, makes this process
an mixed human-machine system. In the case of management of purely
technical systems, the decision support system becomes critical for the
proper and timely understanding and assessment of the situation of the
plant.

Decision Support Systems (DSS) are a specific class of interactive
computing system that support human decision-making activities. DSS in
control applications are interactive computer-based systems intended to
help plant operators (decision makers) use control, computing and
communications technologies to exploit data, documents, knowledge
and/or models to identify and solve problems and make proper decisions
in real-time. Five specific DSS types are typically identified:

� Communications-driven DSS,

 Sheet: 160 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

� Data-driven DSS,

� Document-driven DSS,

� Knowledge-driven DSS, and

� Model-driven DSS.

Expert systems technology has been instrumental in the implementation
of knowledge-based decision support systems leading to multiple
successes in the enhancement of processes carried by human operators.
Good results have been achieved even in the presence of uncertainty by
means of mechanisms based on bayesian methods or fuzzy logic.

But in many cases, decision making is done in the presence of excess of
uncertainty that forbids automatic decision-making. This is particularly
clear during fault and emergency management. Even while experiments
have been done in the automatic management of these situations in small
systems [Bernard 99], the technologies available so far do not scale up to
complex industrial plant emergency management. In these situations
decisions are necessarily taken by hybrid decision makers (human +
machine).

The work described in this article focus on the implementation of a
concrete DSS that uses CORBA technology to integrate heterogeneous
sources of knowledge to help the decision making-process.

20.3 Operational objectives for the Contes plant
Cement production is somewhat tricky due to the extreme nature of the
process (chemical reactions in high-temperature fused material) and the
nature of the input solids (they are usually rocks from a mountain nearby).
Chemical composition is critical for the quality of the final product (it gets
hard by chemical reaction with water) and the main cost is not raw
materials but energy and salaries.

Energy is obtained from the combustion of different products: coal, fuel,
oil, waste, etc. (during one of the demonstrations of this application they
were burning peach). Each type of fuel has its own qualities (energy per
kilogram, cost per kilogram) and side effects (especially in kiln
controllability).

Cement plants suffer —as any other industrial plant— the global business
objective of reduction of human personnel in all types of tasks. But this

 Sheet: 161 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

must be done with a minimum sacrifice in the rest of the strategic
objectives.

Some of the key factors of success for cement industry are to gain
capability to quickly react to customer needs; be able to employ different
fuels of poor quality (heavy fuel, recycled oils, waste, etc.) without altering
the quality of the final product; and reach the capability to compete at a
larger geographic scale by permanently streamlining the production costs,
and optimizing the value created by the company [DIXIT 98b].

To advance in the achievement of these capabilities Lafarge Ciments
managers decided to develop a new generation of IT applications, taking
advantage of existing process automation and supervision applications
already installed, to be used by all types of plant personnel.

The ideas behind this technology programme were:

� To extract from the huge amount of data continuously stored in
CIM.21 process database and other plant databases, the synthetic
information relevant for decision making at any moment;

� To derive through an explicit (mathematical) model or an implicit
(neural net) models high level value added information consistent
with the overall target objectives of the plant (cost, quantity,
quality);

� To provide decision support to control room operator to take better
decisions in case of failure, in a way that incorporate commercial
data, economic factors and human resources constraints to the pure
technical data usually taken into account until now;

� To gather in a single user interface all the information,
heterogeneous in nature, to facilitate the global control of the
production;

� To offer an innovative presentation paradigm and exploration tool
making easier production global performance comparison for
different moments (for example now vs one month ago) or different
process configurations (fuel types, clinker quality, etc).

� To facilitate the real time dissemination of production performance
information according to formats that can be shared and understood
by all the plant department people (management, maintenance,
commercial, production, quality, etc.).

 Sheet: 162 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

The plant selected for the development of the PIKMAC tools is placed in
Contes, France. This plant had another challenge for PIKMAC, because it
was operated by only one person during night and week-end shifts (this
means that he was the only person in plant during that time).

20.4 The PIKMAC decision support system

PIKMAC stands for Process Information and Knowledge Modelling for
Advanced Control. This CORBA application was demonstrated in the
Lafarge Ciments cement plant in Contes (France).

The purpose of this system is to keep operators informed to perform a
better strategic control of the process in terms of maintenance, quality and
cost. PIKMAC is based on the fact that a lot of process information is
continuously acquired (sensor measurements, control system variables,
operator commands, automatic test laboratory, etc.) but remains under-
used in most cases.

This information concerns all the parts of the cement production process
—raw material mill, kiln, cooler and clinker mill— and covers a wide
range of process behaviour characteristics.

While several applications could be designed in order to efficiently
support the plant operators and process engineers only three integrated
applications were demonstrated in PIKMAC:

� Production Performance Synthetic Indicator (PPSI): provides real
time estimations of production performance (quantity and cost)
using a Global Production Control concept.

� Quality Deviation Early Detector (QDED): estimates continuously
key quality parameters making possible the early detection of non-
optimal situations.

� Alarm Management Operator Assistant (AMOA): helps the operator
—in particular during night shifts and weekends— to deal with
alarm situations to optimize calls to maintenance people.

20.5 Global Application Structure

 Sheet: 163 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

The global structure of the application is very simple: it is a collection of
active and passive agents running over the ICa broker. These agents
provide different types of functions and their interaction capabilities are
expressed by means of CORBA Interface Definition Language (IDL) [OMG
00].

The system is depicted in Figure 38 showing the collection of agents that
composed the application.

Figure 38: PIKMAC is built as a collection of active CORBA objects that provide
specific pieces of functionality: core systems, legacy application wrapping, operator
interface and system support.

The domain architecture for PIKMAC was designed by Lafarge Ciments
personnel to follow their own ideas on this new set of IT tools for plant
management. The people in charge of the DIXIT architecture did only map
that conceptual architecture to a specific CORBA implementation based on
ICa agents.

 PIKMAC agents can be grouped in four categories:

� Core systems: they provide the basic functionality of the PIKMAC
demonstrator. They are QDED, PPSI and AMOA.

 Sheet: 164 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

� Data sources wrappers: they wrap external data sources to be
exploited in a CORBA environment. They are CIM.21, LAB and
IRDB.

� Operator interface: they are the user interface for the system. There
is only one type of agent (OI) but it can be replicated in any number
of hosts.

� System Support: they provide hidden functionality for the rest of the
agents. They are the ICa Monitor and the VarManager.

20.5.1 Data Sources Wrappers

The three main data sources for PIKMAC are:

� the real-time process database of the CIM.21 control system,

� the incident report database (IRDB) and

� the automated laboratory (Lab). All they are legacy systems that can
be accessed using their specific APIs.

They appear in PIKMAC as conventional CORBA objects resulting from
wrapping part of the APIs.

20.5.2 PPSI

The PPSI agent implements the core functionality for PPSI service. It
performs calculations of process throughput and cost per processed unit.
These calculations are done online in a continuous manner and uses
sampled process data gathered from the plant.

 Sheet: 165 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Figure 39: An overall view of PPSI calculation model.

The PPSI implements a sophisticated cost calculation model (Figure 39)
which takes into account the long processing time for the raw material in
cement production.

20.5.3 AMOA

AMOA is built entirely on G2, an expert systems development tool from
Gensym (www.gensym.com). It uses DIXIT's G2-ORB Bridge to connect to
the plant data sources and other applications like the operator interface
through the ICa ORB.

The main component in AMOA is the process reasoning module. It gathers
and analyzes the real data coming from the plant, generating reports
regarding present and possible future failures. In case of a problem
situation, AMOA will generate reports informing the user about the real
root causes of the problem, based on the process analysis it does. AMOA
will also guide the user in the task of deciding whether a maintenance
team is to be called or not, and which is the maintenance team that must
be called if it is the case.

 Sheet: 166 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Figure 40: Failure causal flow chart about P30 flow rate used in the
knowledge base of AMOA.

The interaction with AMOA can be done using the generic PIKMAC user
interface (that provides a simple synthetic view) or the more specialized
AMOA native G2 interface.

20.5.4 QDED

The QDED is not an agent but an agent society predicts some critical
quality properties of cement (free lime percentage, SO3 ratio, C3S ratio
and C3A ratio) as the cement is produced in the factory.

 Sheet: 167 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Figure 41: The QDED neural network uses inputs from all the cement
process with proper delays to estimate present quality.

QDED agents use neural networks trained on historical data to make
online predictions (see Figure 41). The core issue here is to provide reliable
estimates of these parameters, avoiding the delay and the cost derived
from slow and expensive automatic laboratory analysis.

A single network is trained for each of these tasks, and the final version of
QDED thus requires all four agents running simultaneously to provide
estimates for all four parameters.

20.5.5 Operator interface

The PIKMAC system is deployed over a heterogeneous collection of
computing equipment. In the demonstration application most parts are
running on Alpha/UNIX and Intel/NT platforms.

The user interface runs on NT computers providing a synthetic view of the
plant state from the three perspectives: cost, quality and maintenance.

Figure 42 shows the main user interface for the quality section. It provides
numeric and visual information about the status of quality elements for
the cement provided by a remote QDED agent.

 Sheet: 168 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Figure 42: PIKMAC has a user-friendly human-machine interface that runs on Windows
NT platforms. This figure shows the part of the operator interface that contains quality
information from QDED.

There is no fixed number of operator interfaces than can be run in an
installation, thanks to the brokerage mechanisms provided by the CORBA
middleware.

This agent is built using native Microsoft technology elements (i.e. COM
components, OLE Automation and Active-X controls) that are connected
to the CORBA world by means of COM-CORBA interoperability
mechanisms.

20.5.6 System Support

There are two agents that provide support for the rest of the system. ICa
Monitor continuously monitors the state of the systems controlling the
particular status of any agent.

PIKMAC VarManager is a real-time database with added features for
domain applications: it gathers data from data sources upon schedule, can

 Sheet: 169 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

process this information and calculate derived data and also supports
subscription services for any data it handles.

20.6 Lessons learnt

The PIKMAC system demonstrates how integration architectures and
technologies help develop future plant-wide integrated control systems in
an easy and modular way. All the systems described here were developed
by five development groups in four countries and put to work together in
a matter of hours (only for demonstration purposes).

The PIKMAC application can only be considered a demonstration of the
technology and not a full fledged application. More work is necessary to
make it a dependable decision support system. Extensions to support
expert systems justification [Guida 97] or fault tolerance [OMG 99b, Butler
93] are obviously necessary to exploit it in a real context.

CORBA technology is here to stay and offers a clear opportunity for
control system developers for leveraging previous developments in an
easy way. But some contribution to OMG is needed from the controls

community. While CORBA is been widely used in real-time settings (see
Figure 43) not many industrial applications are described that pose critical
requirements for the ORB infrastructure.

The contribution of control systems engineers is necessary for this
technology, and the results that we can obtain from it are extremely high

Consumer
12%

Military/Aerospace
44%

Medical
12%

Scientific
Instrumentation

6%

Telecom/Datacom
26%

Figure 43: Current use of ORB middleware in embedded and real-

time applications (from [Czerny 00]).

 Sheet: 170 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

for the deployment of new control technologies in large, complex and
distributed plants. A new working group in Control Systems has been
recently chartered by the OMG to foster the suitability of OMG
technologies for control systems implementation.

 Sheet: 171 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

21 Strategic Emergency
Management
The system described here was implemented to support human operators
dealing with cement plants but the technology behind it was also
successfully used to implement other strategic controllers focused on risk
reduction and emergency management.

The RiskMan system [Sanz 00d] was implemented as a solution to the
problems of emergency management in chemical plants by means of ICa-
based agents. The basic subsystems in this application were a prevention
system, an emergency manager and a work permit manager to handle
human induced risks. All them were implemented using CORBA objects
over the ICa integration middleware (see Figure 24).

Figure 44: RiskMan Application structure as a collection of interacting CORBA objects.
The figure shows the base middleware (ICa) and the objects that implement system
functionality.

The Emergency Manager deals with the management of emergencies and
implementation of the plant safety plan following the already established
policies for dealing with emergencies. Safety protocols for this plant are

 Sheet: 172 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

very complex because they involve safety regulations from the European
Union, Spanish laws, Catalonian laws, Tarragona's chemical sector plans
and Repsol's own policies. This includes the real-time elaboration of the
emergency organization chart, i.e. the human organization structure to
deal with the emergency, under the constraints posed by the emergency as
well as the communication of the actuation procedures to the personnel
involved in the emergency.

Once the emergency is declared, the system automatically handles all
issues related to the organization chart elaboration and information
management.

Figure 45: RiskMan Emergency manager user interface. The figure shows the navigation
map used to focus on specific areas of the chemical complex.

The Preventive System monitors the state of a subsystem detecting
abnormal situations before they reach a critical stage. This component is
only applied to a set of selected equipment in order to fully test its
suitability and correctness. A complete implementation, i.e. covering the
whole complex, was out of the scope of the project. A rule-based approach
is utilized in this software module.

 Sheet: 173 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

The acceptance or not of certain human-performed maintenance activities
depends on the result of a risk evaluation. It was estimated that
automating these protocols, at least partially, could save a lot of time and
reduce the risk of accident in the maintenance operations. This leads to the
definition and implementation of a Workpermit Manager, an application
that helps Repsol personnel in the management of the protocols for the
authorization and control of risk-inducing maintenance operations. In
order to do so, the application automates many of the procedures that are
currently done by hand with the subsequent loss of time and increase of
risk. The application helps the user by considering relevant on-line
process information that should be taken into account for the
authorization and execution of such maintenance operations.

 Sheet: 174 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

22 The HRTC Process Control
Testbed

22.1 Introduction
The Process Control Testbed is an experimental platform to evaluate
distributed systems software in the implementation of integrated process
control systems.

The purpose of the PCT is:

“The main objective of the distributed process control testbed is to identify
(mainly hard real time) requirements for distributed control systems and perform
experiments in conditions of systems heterogeneity and legacy integration.
Experiments will be done using conventional IIOP and the new real-time
protocol. “

22.2 Process description
The physical process (the plant) is the neutralization of acetic acid (0.1M)
with sodium hydroxide (0.1M). It has two control loops: one controls the
pH and another one controls the temperature.

The process has two feeds, the first one is the acid which is the one to be
neutralized. This is set to a fixed flow and concentration and any variation
is a disturbance to the process. The second one is the base feed, this feed is
set by the pH control loop. This loop has the pHmeter a controller (PI) and
the base pump as the actuator.

The PCT uses a small CST reactor for the neutralization process and its
output stream goes to a product tank through a weir.

 Sheet: 175 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

There is an additional control loop for temperature control. This loop has
no special relevance for this particular process but it is needed for the
experiments to be taken. This loop has a temperature transmitter (pt100) a
controller (PI) and pump as actuator. This pump is fed by hot water

coming from a heater.

Figure 47: Process control set up

22.3 Computing Components

22.3.1 Ethernet network

A 100BASE-TX Ethernet with (redundant) connection to 2 switches. A
maximum of 8 nodes are used in any of the experiments.

22.3.2 Instruments

Sensors

Sensors measure physical values of the process variables. There are
different types in a process plant: temperature sensors, pressure sensors,
flowmeters, etc.

 Sheet: 176 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Sensors are usually connected to conventional (4-20 mA) or ‘smart’ (digital
bus) transmitters that transport the measurement to the control system. In
the commercial DCS they enter through the I/O cards.

For connecting the sensors to the Ethernet network in the PCT it is
necessary to have a wrapper node that, ideally, could be embedded in the
instrument. In the PCT we use dedicated computers to perform this
function.

Two kind of sensors are used:

1. Actual (physical) instruments with a transmitter and an input card
in the DCS (analog signal or serial interface) or the wrapper node
(serial interface).

2. Simulated sensors instantiated in any node. They allow testing the
effect of a large number (a more realistic scenario at a reasonable
cost) of sensor on the system performance.

Actuators

Actuators are the final elements of a control loop, modifying the process
conditions as the result of the controller command. They include control
valves, frequency variators, etc.

As it happened in the case of the sensors, a wrapper node (or the DCS)
with I/O cards is necessary to connect them to the network (or the HPM
controller, see TPS subsection below). Also two kinds of actuators are used
in the experiments:

1. Actual actuators
2. Simulated actuators

Controllers

The controller receives the signal of the sensors and as a function of their
setpoints and control algorithms calculate the output signal to be sent to
the actuator. There are two controller types:

1. Controllers that are integrated in the DCS (HPM) that receives and
sends signals (initially) internally without entering the Ethernet
network.

 Sheet: 177 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

2. Controller nodes specifically built for this testbed as CORBA objects
that implement the control algorithms, and that communicate with
the sensors and actuators through the Ethernet or TT networks.

22.3.3 Human-Machine Interface

The Human-Machine Interface in most plant control systems is usually a
graphical interface, with or without windows. The HMI allows the
monitoring function carried by human operators, as well as their
interaction with the process by means or control actions, such as starting
up/stopping units, changing setpoints, etc.

In the PCT, graphical HMI nodes are used in order to access and interact
with the data and agents on the network.

22.3.4 Database

Historical databases record selected data from the control system
configuration and/or operation. Also, they usually contain the system
software files. Operators can typically access them through HMIs.

22.3.5 Commercial DCS (TPS)

An already available commercial DCS, the Honeywell TPS (TDC 3000), is
used. The system is composed by:

1. A High-Performance Process Manager (HPM) controller
2. A Global User Station (GUS)
3. A History Module (HM)
4. A Network Interface Module (NIM)
5. A redundant Local Control Network (LCN)
6. A redundant Universal Control Network (UCN)
7. Several I/O cards:

a. Analog Input (AI)
b. Analog Output (AO)
c. Digital Input (DI)
d. Digital Output (DO)
e. Serial (Modbus) Interface (SI)

With the available hardware, to integrate the TPS in the Ethernet network
the system could be wrapped (with a PC) via the serial bus or via the GUS.

 Sheet: 178 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

The serial bus has the advantage of directly accessing the controller (HPM)
like sensors or actuators do.

A temperature sensor and transmitter enter the system through the AI
card. The heating module is controlled by an AO output signal.

22.3.6 Simulation

An increasing number of control and monitoring functions utilize models
in on-line and off-line applications as:

1. Hardware in the loop
2. Operator training

In such context, the availability of pluggable simulation nodes accessible
by the other components in a transparent way will constitute and advance
from the current state. The software AbACUSS is used in this testbed by
means of a CORBA object wrapper.

22.4 Functionality
The PCT is able to comprehend the functionality of both present and
future process plant control systems. The original idea that motivated the
construction of the testbed is to try to build such a control system using
CORBA components and check whether it was possible to:

1. Perform the tasks that current systems usually do.
2. Accomplish the tasks that future systems are expected to achieve.

The results of the experiments (mainly the negative ones) will identify the
features needed in distributed software technology to be used in control
systems.

Some of the experiments performed are:

1. Single control loop
2. Legacy system integration
3. Simulation components integration
4. Traffic capacity test
5. Concurrent access

 Sheet: 179 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

22.5 Hardware Setup
Figure 48 shows the basic process hardware (& equipment) setup. This
topology is used to perform the experiments although in some cases a
node can change its functionality as in the case that the sensor (H007.1)
becomes the simulation node to perform Operators training with the HMI.
In other cases an additional nodes can be connected to the network, as in
the intensive traffic experiment.

 Sheet: 180 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

22.6 Software Setup
The software of the PCT is based on CORBA objects that, while based in
the same pattern, offer different functionality.

Figure 48: PCT Hardware.

 Sheet: 181 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Figure 49 shows the implementation for the main control loop. Node
functionality is as follows: Database is a server to all the other nodes,
Sensor and Actuator are clients to the database and servers to the
regulator. Regulator is a client to the Sensor, Actuator and Database nodes
and finally the HMI is a client of all the other nodes. Each line represents a
CORBA thread for client-server communication. Communication between
the sensor wrapper node and the actual pH sensor are through a serial
port. Communication between the actuator wrapper node and the actual
actuator (pump) is made through a PCI data acquisition card delivering a
0-5volt signal to the pump.

Figure 49: PCT Software organisation for the simple control loop experiment.

 Sheet: 182 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Figure 50: PCT Software organisation for the legacy integration experiment.

Figure 50 shows the software implementation for the legacy systems
(Honeywell TPS) experiment. Communication between the DCS wrapper
node and the commercial DCS is made through a serial port using
MODBUS.

 Sheet: 183 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

23 The Integrated Control
Architecture

The PIKMAC and RiskMan applications described befor (see Chapters 20
and 21) were deployed using an implementation of CORBA middleware
specially suited for control purposes. This was the first release of the ICa
Broker and it is placed at the cornerstone of the Integrated Control
Architecture project.

This is an ongoing, long-term project at the Universidad Politécnica de
Madrid, with a basic objective: simplify the construction, deployment and
maintenance of software intensive, distributed controllers.

The Integrated Control Architecture follows the specifications developed
by OMG for distributed object systems. On top of these specifications, it
uses control design patterns [Sanz 03] and class libraries to support these
patterns.

The election of CORBA as a basis for the architecture is grounded in its
extensibility and the capabilities it offers for real-time and embedded
systems [OMG 00, OMG 02]. It is not easy to find these capabilities in
other enterprise integration architectures like Microsoft .NET, Java EJB or
XML/SOAP.

As an example, the Figure 51 shows how CORBA subsystems running
atop heterogeneous protocols (for example TCP/IP and IEC 60870) can be
seamless interoperated [Sanz 02].

 Sheet: 184 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Figure 51: A CORBA-based domain architecture provides the required functionality to
deal with the special requirements of the distributed, real-time and embedded domain.

The ICa methodology is strongly based on the use of design patterns.
Software pattern technology [Gamma 95, Buschmann 96] is a
methodology used for the capture, transfer and exploitation of design
knowledge. It has been deeply used in the object-oriented programming
community but it has also proved useful in other communities related
with the design and implementation of complex real-time systems [Sanz
03].

The development model is based on the use of object frameworks that are
specialized to narrower domains to construct complex control product
lines [Sanz 99]. The CORBA IDL technology helps in this task because it
provides mechanisms of multiple inheritance that simplify the mixing of
functionality that is typically required when using multiple design
patterns.

 Sheet: 185 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Part 6
Additional Materials

 Sheet: 186 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

This page has been intentionally left blank.

 Sheet: 187 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

24 Common pitfalls
24.1 Don’t start from the beginning

What is most useful of all CORBA technology is the core conceptual model
that it provides and that matches so well the distributed controls domain.
However, not many people do grasp this strength in its full capacity and
offer/perform entries into the CORBA world based just on the fashionable
automatic distributed code generation from IDL.

What is important is the object, not the interface. This is clear in the OMA
and this should be clear for CORBA developers. Try start reading about
the core model and left the tools for the after-understanding phases.
Object autonomy should be the central analysis and design target of
CORBA solutions.

The Object Management Architecture Guide (OMAG) describes OMG’s
technical objectives and terminology and provides the conceptual infra-structure
upon which supporting specifications are based. The guide includes the OMG
Object Model, which defines common semantics for specifying the externally
visible characteristics of objects in a standard implementation-independent way,
and the OMA Reference Model.

24.2 Overselling of CORBA solutions
CORBA is a good technology for many applications. This has the negative
consequence of inappropriate fitness. While the CORBA core object model
suits perfectly the modular design of distributed controllers, many
engineers fail to understand where CORBA may usefully be applied.

CORBA gets its best in the implementation of control systems when
factors concur: distribution, openness, transparency, consistency,
heterogeneity, load sharing, etc.

CORBA is a complex technology with educational and implementations
barriers for common use. A thorough evaluation should be done before
deciding to use it in a concrete application, while, in or experience, the

 Sheet: 188 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

range of applicability grows when domain engineering is considered a
target of the development process.

24.3 Being religious or dogmatic about CORBA
The ideas behind CORBA are common in other technology bases. Some of
the available technology in CORBA is obsolete. It is not a revealed truth.

Being religious about the technology only means attaching oneself to
suboptimal solutions that do not meet the necessary requierements in
control systems. OMG process is a good process for evolution and this is a
best focus for dogmatism: make specifications evolve as control domain
knowledge is gained.

24.4 Don’t know why we want CORBA
Excessive hype has the effect of convincing without arguments. To some
extent CORBA has been on the safe side of this problem because there are
not good selling practices in this business. However, other related
technologies, like agents or Java, do have this effect and in some situations
this can influence also CORBA.

CORBA is difficult to understand and master, even while it is a relatively
simple thing.

24.5 Being generic for one-of-a-a-kind problems
CORBA is a killer technology in the sense that it can be used for
implementing everything (except extreme applications). As was said in
section 24.3, CORBA is good when domain engineering is involved but
sometimes this is taken too far.

There are situations, i.e. applications, which will not have a future
evolution and are not complex enough to require the use of this type of
technology. While CORBA objects can be small and targeted, achieving it
usually requires a big amount of knowledge and expertise. CORBA
objects, by nature, are universally interoperable in the GIOP world, which
means that they are usually too generic to be efficient, in particular for
one-off applications.

In these systems it is usually much more effective the use of simpler, less
universal frameworks, that will require a little platform works that will be
compensated by the less effort put into analysis and design phases.

 Sheet: 189 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

It should not be forgot, however, that when a developer master the
technology, the affectivity in building not very constrained applications is
maximal if using this technology.

24.6 Belief in silver bullets
There are no silver bullets. CORBA is not a silver bullet (even when it may
look like that if we pay attention to what has been written in this
document and others).

24.7 Forget that the focus is developing software controllers
It is usually the case that the amount of software that really implements
the very control code is less that 1% of the total code. If using CORBA this
proportion may reach 0.1 % or less with ease.

Any distributed control system project has its budget and its deadline. The
use of CORBA technology may refocus the effort on the CORBA thing
instead of the control thing. This is specially critical when the people
developing the controller are not CORBA experts but control experts. The
CORBA learning barrier is so high that might vampirize other parts of the
effort.

Besides the requested focus on core control code, car must be taken to
approach the problem of controller construction using the best software
practices available. Having good platforms like CORBA do not alleviate
the load of doing our work properly.

Also, the flexibility of the technology is so high that people get trapped in
some for of digital art, adding distributed features to applications just for
the sake of funny added functionality without any traceability to
requirements.

24.8 Forget about true physical concurrency

Problems will happen if we forget the fact that we’re implementing true
multithreaded software. From the inherently multithreasded nature of
truly distributed applications to the inner workings of a POA,
understanding concurrency and being careful about it is mandatory.

 Sheet: 190 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Problems will appear if we are not conscious about the facts that
distributed systems are inherently concurrent. Problems will also appear
—or to be more precise, will not disappear— if we are unable to do a
design that does exploit this concurrency.

24.9 NIH Architectural Syndrome
There are many CORBA-based frameworks for reactive, autonomous,
agent-based applications. Each CORBA-based control developer ends
building its own active agent class. Why?

The NIH13 Syndrome is well known and is always lurking inside the
apparent special requirements from our applications. Beware of
innovation in a field so full of working brains.

24.10 Insufficient Intelligence in CORBA Agents
Many things can happen to a CORBA control object. From intrinsic
failures of the control code itself to physical actuator faults or global
networking or host failures. CORBA objects in control systems cannot
(well, should not) be stupid pieces of code.

Fault-tolerant CORBA helps a little handling these problems, but that’s not
enough. There are many things that should be taken into account when
performing actions that are necessary or could be catastrophic. There are
many cases of controller that are not safe-critical, but in any case, good
engineering can increase the level of intelligence of CORBA objects to
reach an adequate trade-off between complexity or run-time impact and
the capabilities for autonomous behaviour.

24.11 Excessive Intelligence in CORBA Agents
While intelligence is necessary we should be aware of the risk of excessive
intelligence. Using the words of J. Doyne Farmer we can say that CORBA
control components should be “smarter than Ping-Pong balls, but not
smarter that they need to be.”

We can use a complete BDI14 architecture to implement the CORBA
objects that constitute our distributed PID control. That’s an obvious

13 Not Invented Here.
14 Beliefs, Desires, Intentions.

 Sheet: 191 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

overkill. Simple objects for simple applications don not need the capability
of speaking Ontolingua.

Object-oriented CORBA technology by means of multiple interface and
implementation inheritance, somewhat helps solving this problem. The
cost we must pay for this feature is making harder the understanding and
mastering of the frameworks.

24.12 Seeing Objects/Agents Everywhere
There are cases where objectifying does not help at all. Conventional data-
centric applications are good solutions for many applications or particular
subsystems. Object wrapping helps in the integration of such
heterogeneous pieces of code into cohesive CORBA applications.

24.13 Monolithic Agencies
Beware the big agent. Beware of control systems as single-man agencies.
This is another manifestation of the old fat class problem of object
orientation. Fat objects are candidates (or better, opportunities) for
refactoring.

24.14 All time working in the infrastructure
Project after project we find ourselves repeating, rebuilding some parts of
the application (typically integration code). This phenomenon takes
engineers into the conviction that it is necessary to work-out the
infrastructure once for ever.

Illuminati tend to do work into the real issues of middleware, protocols,
schedulers and relatives, while the real control application is never
thought enough15. In some sense this is another manifestation of the NIH
Syndrome.

24.15 Insufficient Freedom for Agents
Distributed control systems are distributed. That means that components
are inherently independent. Trying to totally tight masters and slaves in
such an schema often leads to brain trash paralysis. The central brain is
continuously paying attention to details that could be handled in an
autonomic way efficiently.

15 This is not the case of the HRTC Project, which had a specific focus on these issues.

 Sheet: 192 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Control policies in distributed control applications are necessarily
distributed (unless the platform completely hides the fact that the
application is distributed).

This is strongly related with the proper level of intelligence and autonomy
that was discussed before.

24.16 Excessive Freedom for Agents
In the same sense, control applications control plants with a single,
typically economical, objective. Coordination to achieve the central
objective is necessary and object autonomy should necessarily be bounded
autonomy.

 Sheet: 193 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Part 7
Appendices

 Sheet: 194 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

This page has been intentionally left blank.

 Sheet: 195 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

25 References
[Aarsten 96] Amund Aarsten, Davide Brugali and Giuseppe Menga. Designing

Concurrent and Distributed Control Systems. Communications of the
ACM, October 1996.

[Aarsten 97] Amund Aarsten and Davide Brugali. From Object Orientation to Agent
Orientation: Common issues in the development of System
Architectures. ICRA’97, Albuquerque, USA; 1997.

[Adler 95] Richard M. Adler, Emerging Standards for Component Software. IEEE
Computer, March 1995.

[Agha 86] Gul Agha. Actors, A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[Agre 95] Philip E. Agre and Stanley S. Rosenschein. Computational Theories of
Interaction and Agency. MIT Press, 1995.

[Alarcón 94] Alarcón, M.I., Rodríguez, P., Almeida, L.B., Sanz, R., Fontaine, L.,
Gómez, P., Alamán, X., Nordin, P., Bejder, H. and de Pablo, E.;
Heterogeneous Integration Architecture for Intelligent Control.
Intelligent Systems Engineering, Autumn 1994.

[Albus] James S. Albus. RCS: A Reference Model Architecture for Intelligent
Systems. National Institute of Standards and Technology.

[Allen 96] Realtime CORBA. A White Paper - Issue 1.0. December 5, 1996.

[Astrom 97] Aström, Karl Johan and Björn Wittenmark (1997). Computer Controlled
Systems. third ed. Prentice-Hall. New York, NJ.

[Awad 96] Maher Awad, Juha Kuusela and Jurgen Ziegler. Object Oriented
Technology for Real-Time Systems. Prentice-Hall, 1996.

[Bass 97] Len Bass, Paul Clements, Sholom Cohen, Linda Northrop and James
Withey. Product Line Practice Workshop Report. CMU/SEI-97-TR-003.
June 1997.

[Blanke 01] Blanke, Mogens, Christian Frei, Franta Kraus, Ron J. Patton and Marcel
Staroswiecki (2000). Fault tolerant control systems. In: Control of
Complex Systems (Aström et al. Eds.). Springer. 2001.

 [Boullart 92] Boullart, L., Krijsman, A. and Vingerhoeds, R.A. (Eds) Application of
Artificial Intelligence in Process Control. Pergamon, 1992.

[Bresciani 2001] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, J. Mylopoulos,
Modeling early requirements in Tropos: a transformation based
approach. AOSE workshop at Conf. Agents 2001

 Sheet: 196 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

[Brownsword 96] Lisa Brownsword and Paul Clements. A Case Study in Successful
Product Line Development. CMU/SEI-96-TR-016 October 1996.

[Brugali 98] David Brugali. From Objects to Agents: Software Reuse for Distributed
Systems. PhD Thesis. Politecnico di Torino, 1998.

[Buschman 96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad
and Michael Stal. Pattern Oriented Software Architecture. A System of
Patterns. Wiley, 1996.

[Davidson 1994] John B. Davidson and David K. Schmidt. Extended Cooperative Control
Synthesis. NASA Technical Memorandum 4561. 1994.

[Fischer 94] Fischer, G. Domain-Oriented Design Environments. Automated Software
Engineering, Vol. 1 No. 2, pp. 177-203, 1994.

[Francez 96] Nissim Francez and Ira R. Forman. Interacting Processes. A Multiparty
Approach to Coordinated Distributed Programming. ACM Press-
Addison Wesley, 1996.

[Franklin 96] Franklin, S. and Graesser, A. Is it an Agent, or just a Program?: A
Taxonomy for Autonomous Agents. In Proceedings of the Third
International Workshop on Agent Theories, Architectures, and Languages.
Springer-Verlag, 1996

[Fuxman 2001] A. Fuxman, M. Pistore, J. Mylopoulos, P. Traverso. Model Checking
Early Requirements Specifications in Tropos. IEEE Int. Symp. on
Requirements Engineering, 2001

[Gamma 94] Erich Gamma, Richard Helm, Ralph Jhonson and John Vlissides. Design
Patterns. Elements of Reusable Object Oriented Software. Addison-Wesley,
1994.

[Garlan 94] Garlan, D., Allen, R. and Ockerbloom, J. Exploiting Style in
Architectural Design Environments. ACM SIGSOFT’94, USA, 1994.

[Garlan 95a] David Garlan, Robert Allen and John Ockerbloom. Architectural
Mismatch: Why Reuse is so Hard. IEEE Software, November 1995.

[Giorgini 2001] P. Giorgini, A. Perini, J. Mylopoulos, F. Giunchiglia, P. Bresciani. Agent-
Oriented Software Development: A Case Study. Proc. Int. Conf. on
Software Engineering & Knowledge Engineering (SEKE01), 2001

[Gupta 96] Gupta, M.M. and N.K. Singh (1996). Intelligent Control Systems. IEEE
Press. Piscataway, NJ.

[Gupta 96] M.M. Gupta and N.K. Sinha. Intelligent Control Systems. IEEE Press,
1996.

[HINT 94] HINT Manual for System Developers. HINT Consortium, 1994.

[ISO 97] ISO/IEC & ITU-T, Open Distributed Processing - Reference Model -
Part 1: Overview” ITU-T Rec. X.901 | ISO/IEC IS 10746-1: 1997

[ISO 96] ISO/IEC & ITU-T, Open Distributed Processing - Reference Model -
Part 2: Foundations” ITU-T Rec. X.902 | ISO/IEC IS 10746-2: 1996

[ISO 96a] ISO/IEC & ITU-T, Open Distributed Processing - Reference Model -
Part 3: Architecture” ITU-T Rec. X.903 | ISO/IEC IS 10746-3: 1996

 Sheet: 197 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

[ISO 98] ISO/IEC Information technology -- Guideline for the design of
programming languages. TR 10176:1998

[Jagannathan 89] Jagannathan, V., Dodhiwala, R., Baum, L.S.; Blackboard Architectures
and Applications. Academic Press, New York..

[Jalote 94] Pankaj Jalote. Fault Tolerance in Distributed Systems. Prentice-Hall, 1994.

[Jennings 94] N.R. Jennings. Cooperation in Industrial Multi-Agent Systems. World
Scientific, 1994.

[Kinny 97] David Kinny and Michael Georgeff. Modelling and Design of Multi-
Agent Systems. In [Muller 97].

[Klingler] Carol Diane Klingler James Solderitsch.Dagar: A Process For Domain
Architecture Definition and Asset Implementation.

[Kolp 2001] M. Kolp, P. Giorgini, J. Mylopoulos. A Goal-Based Organizational
Perspective on Multi-Agent Architectures. Proc. Int. Workshop ATAL-
2001

[Krutchen 95] Philippe Krutchen. The 4+1 View of Software Architecture. IEEE
Software, November 1995.

[Lejter 96] Moises Lejter and Thomas Dean. A Framework for the Development of
Multiagent Architectures. IEEE Expert, December 1996.

[Linden 95] Frank J. Van der Linden and Jürgen K. Muller. Creating Architectures
with Building Blocks. IEEE Software, November 1995.

[Luyben 90] William H. Luyben. Process Modeling, Simulation and Control for
Chemical Engineers. McGraw-Hill. 1990.

[Maffeis 97] S. Maffeis and D.C. Schmidt. Constructing Reliable Distributed
Communication Systems with CORBA. IEEE Comunications Magazine,
Vol. 14, No.2. 1997.

[Medvidovic 97] N. Medvidovic. A Classification and Comparison Framework for
Software Architecture Description Languages. Technical Report, UCI-
ICS-97-02, University of California, Irvine, January 1997.

[Monroe 97] Robert T. Monroe, Andrew Kompanek, Ralph Melton and David
Garlan. Architectural Styles, Design Patterns and Objects. IEEE Software
Jan/Feb 1997.

[Mowbray 97] Thomas J. Mowbray and Raphael C Malveau. CORBA Design Patterns.
Wiley, 1997.

[Musliner 96] David J. Musliner & Christopher A. Miller. Agent and Task Modeling at
Honeywell. Working Notes of the AAAI Workshop on Agent Modeling.
Portland, Oregon, August 1996, pp. 112-118.

[Ogata 90] Katsuhiko Ogata. Modern Control Engineering. Prentice Hall, 1990.

[OMG 96] An Overview of the OMA. Object management Group.

[OMG 96] Realtime CORBA. A White Paper. OMG Realtime SIG. Object
Management Group, 1996.

[OMG 97] UML Notation Guide, version 1.1 (1 September 1997), The Object
Management Group, doc. no. ad/97-08-05.

 Sheet: 198 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

[OMG 98] Common Object Request Broker Architecture and Specification, Ver.
2.2. Object Management Group, 1998.

[OMG 98] Real-Time CORBA. Joint Revised Submission Document Number
orbos/1998-12-10, Object Management Group, Needham, MA, U.S.A.,
December 1998. Available at http://doc.omg.org/orbos/1998-12-10.

[OMG 01a] CORBA 3.0 New Components Chapters. Updated CCM specification
Document Number ptc/2001-11-03, Object Management Group,
Needham, MA, U.S.A., November 30, 2001. Available at
http://doc.omg.org/ptc/2001-11-03.

[OMG01b] Real-Time CORBA 2.0: Dynamic Scheduling Specification. Final
Adopted specification Document Number ptc/2001-08-34, Object
Management Group, Needham, MA, U.S.A., August 2001. Available at
http://doc.omg.org/ptc/2001-08-34.

[OMG 02] Common Object Request Broker Architecture and Specification. Release
3.0. Object Management Group. Falls Church, USA.

[OMG02a] Enhanced View of Time V1.1. Available Specification Document
Number formal/2002-05-07, Object Management Group, Needham,
MA, U.S.A., May 2002. Available at http://doc.omg.org/formal/2002-
05-07.

[OMG 02b] Fault Tolerant CORBA. Available Specification Document Number
formal/2002-06-59, Object Management Group, Needham, MA, U.S.A.,
May 2002. Available at http://doc.omg.org/formal/2002-06-59.

[OMG 03a] Extensible Transport Framework. Revised Submission Document
Number mars/2003-02-01, Object Management Group, Needham, MA,
U.S.A., March 3, 2003. Available at http://doc.omg.org/mars/2003-02-
01.

[OMG 03b] Data Distribution Service submission. Joint Submission Document
Number mars/2003-03-16, Object Management Group, Needham, MA,
U.S.A., March, 2003. Available at http://doc.omg.org/mars/2003-03-
16.

[OMG 03c] Smart Transducers Interface V1.0. Available Specification Document
Number formal/2003-01-01, Object Management Group, Needham,
MA, U.S.A., January 2003. Available at
http://doc.omg.org/formal/2003-01-01.

[OMG 03d] Unified Modeling Language V1.5. Available Specification Document
Number formal/2003-03-01, Object Management Group, Needham,
MA, U.S.A., March 2003. Available at
http://doc.omg.org/formal/2003-03-01.

[Otte 96] Randy Otte, Paul Patrick and Mark Roy. Understanding CORBA.
Prentice Hall PTR. 1996.

[Parunak 03] Parunak, H. Van Dyke, Sven Brueckner, Mitch Fleischer and James
Odell. A Preliminary Taxonomy of Multi-Agent Interactions. Second
International Conference on Autonomous Agents and Multi-Agent
Systems, AAMAS’03. 2003.

 Sheet: 199 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

[Perini 2001] A. Perini, P. Bresciani, F. Giunchiglia, P. Giorgini and J. Mylopoulos, A
Knowledge Level Software Engineering Methodology for Agent
Oriented Programming. Proc. Int. Conf. Agents 2001

[Peterson 94] A. Spencer Peterson and Jay L. Stanley Jr. Mapping a Domain Model
and Architecture to a Generic Design. Technical Report CMU/SEI-94-
TR-8. May 1994.

[POSIX.21 95] Interface Requirements for Real-Time Distributed Systems
Communication. IEEE POSIX.21 Working Group, 1995.

[Regev 02] G. Regev, A. Wegmann, UML for Early Requirements Elicitation: A
Regulation based Approach 1/15 EPFL-IC Technical report no.
IC/2002/013.

[Rodriguez 99] Rodríguez, Manuel and Ricardo Sanz (1999). HOMME: A modeling
environment to andel complexity. In: IASTED Modeling and Simulation
Conference.

[Rushby 99] Rushby, John (1999). Partitioning in avionics architectures:
Requirements, mechanisms, and assurance. Technical Report
NASA/CR-1999-209347. NASA.

[Samad 00] Samad, Tariq and Weyrauch, John, Eds. (2000). Automation, Control,
and Complexity: New Developments and Directions. John Wiley and
Sons. Chichester, UK.

[Samad 98] Samad, Tariq (1998). Complexity management: Multidisciplinary
perspectives on automation and control. Technical Report CON-R98-
001. Honeywell Technology Center. Minneapolis, USA.

[Sanz 00] Sanz, Ricardo (2000). Agents for complex control systems. Chap. 10, pp.
171–190. In: Samad and Weyrauch (2000).

[Sanz 91] Sanz, R., A.Jiménez, R.Galán, F.Matía and E.A.Puente. Intelligent
Process Control: The CONEX Architecture. In Engineering Systems with
Intelligence. S. Tzafestas (Ed.). Kluwer Academic Publishers, 1991.

[Sanz 94] Sanz, R., R.Galán, A.Jiménez, F.Matía, J.Velasco and G.Martínez.
Computational Intelligence in Process Control. ICNN'94, IEEE
International Conference in Neural Networks. Orlando, USA, 1994.

[Sanz 96] Sanz, R., F.Matía, R.Galán and A. Jiménez. Integration of Fuzzy
Technology in Complex Process Control Systems. FLAMOC'96. Sydney,
Australia, 1996.

[Sanz 98] Sanz, Ricardo et al. Progressive Domain Focalization in Intelligent
Control Systems. IFAC 5th Workshop on Algorithms and Architectures for
Real Time Control. Cancún, Mexico, 1998.

[Sanz 99a] Sanz, Ricardo, Idoia Alarcón, Miguel J. Segarra, Angel de Antonio and
José A. Clavijo (1999a). Progressive domain focalization in intelligent
control systems. Control Engineering Practice 7(5), 665–671.

[Sanz 99b] Sanz, Ricardo, Miguel J. Segarra, Angel de Antonio and José A. Clavijo
(1999b). ICa: Mid-dleware for intelligent process control. In: IEEE
International Symposium on Intelligent Control, ISIC’1999. Cambridge,
USA.

 Sheet: 200 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

[Sanz 99c] Sanz, Ricardo, Miguel J. Segarra, Angel de Antonio, Fernando Matía,
Agustín Jiménez and Ramón Galán (1999c). Patterns in intelligent
control systems. In: Proceedings of IFAC 14th World Congress. Beijing,
China.

[Sanz 03] Sanz, Ricardo and Janusz Zalewsky. Control Engineering using Design
Patterns. IEEE Control Systems Magazine, June 2003.

[Schmidt 96] Douglas C. Schmidt, Ralph E. Johnson and Mohamed Fayad. Software
Patterns. Communications of the ACM, Vol. 39, No. 10, October 1996.

[Selic 94] Bran Selic, Garth Gullekson and Paul T. Ward. Real-Time Object Oriented
Modelling. Wiley, 1994.

[Selic 96] Bran Selic & Garth Gullekson. Design Patterns for Real-Time Software.
Embedded Systems Conference West ’96. 1996.

[Selic 98] Bran Selic and Jim Rumbaugh. Using UML for Modeling Complex Real-
Time Systems. March 11, 1998

[Sha 93] Sha, L. and Sathaye, S.S. A Systematic Approach to Designing
Distributed Real-Time Systems. IEEE Computer, Vol.26, No.9, 1993.

[Sha 95] Sha, Lui; Rajkumar, Ragunathan; Gagliardi, Michael. A Software
Architecture for Dependable and Evolvable Industrial Computing
Systems. Technical report CMU/SEI-95-TR-005. 1995.

[Shaw 96] Shaw, Mary and David Garlan (1996). Software Architecture. An
Emerging Discipline. Pren-tice- Hall. Upper Saddle River, NJ.

[Shokri 00] Shokri, Eltefaat and Phillip Sheu (2000). Real-time distributed object
computing: An emerging field. IEEE Computer pp. 45–46.

[Siegel 00] Siegel, Jon (2000). CORBA 3: Fundamentals and Programming. 2nd ed.
OMG Press/Wiley. New York.

[Siegel 96] Jon Siegel. CORBA Fundamentals and Programming. Wiley 1996.

[Siljak 91] Dragoslav Siljak. Decentralized Control of Complex Systems. Academic
Press, 1991.

[Svoboda] Svoboda, Frank. The Three "R's" of Mature System Development:
Reuse, Reengineering, and Architecture [online]. Available WWW
<http://source.asset.com/stars/darpa/Papers/ArchPapers.html>
(1996).

[van der Linden 95] Frank van der Linden and Jürgen Müller. Creating Architectures
with Building Blocks. IEEE Software 1995.

[White 92] White, D.A., and Sofge, D.A. (Eds) Handbook of Intelligent Control. Van
Nostrand-Reinhold, 1992.

[Wickman] Grant R. Wickman, Dr James Solderitsch and Mark Simos.A Systematic
Software Reuse Program Based on an Architecture-Centric Domain.

[Wielinga 94] Bob Wielinga, Guus Schreiber, Wouter Jansweijer, Anjo Anjewierden
and Frank van Harmelen, Framework and Formalism for Expressing
Ontologies. University of Amsterdam. KACTUS DO1b.1. 1994.

 Sheet: 201 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

[Wittig 92] Wittig, T. (Ed). ARCHON, an Architecture for Multi-Agent Systems. Ellis
Horwood, 1992.

[Wooldridge 95] M.J. Wooldridge and N.R.Jennings. Intelligent Agents. Springer Verlag
1995.

[Wooldridge 96] Michael Wooldridge, Jörg P. Müller and Milind Tambe. Intelligent
Agents II. Springer Verlag 1996.

[Wooldridge 00] Michael Wooldridge, Nicholas R. Jennings and David Kinny. The Gaia
Methodology for Agent-Oriented Analysis and Design. Autonomous
Agents and Multi-Agent Systems, 3, 285-312, 2000.

 Sheet: 202 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

26 OMG Specification Catalog
This is the list of OMG specifications as of the date of closing of this
document. An updated list can be obtained from:

http://www.omg.org/technology/documents/spec_summary.htm

Specification category Domain Current Document # Past

OMG Modeling Specifications

Common Warehouse
Metamodel (CWM™)

data
warehousing,
modeling

1.1 formal/2003-03-02
(volume 1) 1.0

Common Warehouse
Metamodel (CWM™)
Metadata Interchange
Patterns (MIPS)

data
warehousing,
modeling

1.0 finalization ptc/2002-12-01 n/a

Meta-Object Facility
(MOF™) modeling 1.4 formal/2002-04-03 1.3

Software Process
Engineering Metamodel
(SPEM)

modeling 1.0 formal/2002-11-14 n/a

Unified Modeling
Language™ (UML™) modeling 1.5 formal/2003-03-01

1.4 and
Action
Semantics

UML Human-Usable
Textual Notation (HUTN) modeling 1.0 finalization ptc/2003-06-05 n/a

UML™ Profile for
CORBA® modeling 1.0 formal/2002-04-01 n/a

UML™ Profile for
Enterprise Application
Integration (EAI)

modeling 1.0 finalization ptc/2003-02-01 n/a

UML™ Profile for
Enterprise Distributed
Object Computing (EDOC)

modeling 1.0 finalization ptc/2002-02-05 n/a

UML™ Profile for
Schedulability, Performance
and Time

modeling 1.0 finalization ptc/2003-03-02 n/a

 Sheet: 203 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

UML™ Testing Profile modeling 1.0 finalization ptc/2003-07-01 n/a
XML Metadata Interchage
(XMI®) modeling 1.2 formal/2002-01-01 1.1

 modeling 2.0 formal/2003-05-02 1.1

CORBA/IIOP Specifications

Common Object Request
Broker Architecture
(CORBA/IIOP)

middleware 3.0.2 formal/2002-12-02 3.0.1

Common Secure
Interoperability (CSIv2)

security,
middleware 3.0.2 Chapter 24 of

CORBA/IIOP 3.0.2

Chapter 24 of
CORBA/IIOP
2.6

CORBA Component Model middleware,
components 3.0 formal/2002-06-65 n/a

CORBA-FTAM/FTP
Interworking middleware 1.0 formal/2002-03-13 n/a

CORBA / TC Interworking
and SCCP-Inter ORB
Protocol

middleware 1.0 formal/2001-01-01 n/a

CORBA-WSDL/SOAP
Interworking middleware 1.0 finalization ptc/2003-05-15 n/a

Deployment and
Configuration of
Component-based
Distributed Applications

middleware 1.0 finalization ptc/2003-07-02 n/a

Fault Tolerance middleware 3.0.2 Chapter 23 of
CORBA/IIOP 3.0.2

Chapter 23 of
CORBA/IIOP
3.0.1

Firewall Traversal middleware 1.0 finalization ptc/2003-01-13 n/a

GIOP SCTP
middleware,
telecommunicatio
ns

1.0 finalization ptc/2003-08-20 n/a

Interworking between
CORBA and TMN Systems

middleware,
telecommunicatio
ns

1.0 formal/2000-08-01 n/a

Online Upgrades middleware 1.0 finalization ptc/2003-03-03 n/a
Wireless Access & Terminal
Mobility in CORBA
(Telecom Wireless)

middleware,
telecommunicatio
ns

1.0 formal/2003-03-64 n/a

WSDL/SOAP-CORBA
Interworking middleware 1.0 finalization ptc/2003-07-04 n/a

CORBA Security Specifications

Authorization Token Layer
Acquisition Service
(ATLAS)

security,
middleware 1.0 formal/2002-10-01 n/a

Common Secure (see

 Sheet: 204 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Interoperability (CSIv2) CORBA/IIOP
Specifications)

Security Service
(see
CORBAservices
Specifications)

Resource Access Decision
Facility

(see OMG
Domain
Specifications)

IDL / Language Mapping Specifications

Ada software
development 1.2 formal/2001-10-42 1.1

C software
development 1.0 formal/99-07-35 n/a

C++ software
development 1.0 formal/99-07-41 n/a

COBOL software
development 1.0 formal/99-07-47 n/a

CORBA Scripting Language software
development 1.1 formal/2003-02-01 1.0

IDL to Java software
development 1.2 formal/2002-08-05 1.1

Java to IDL software
development 1.2 formal/2002-08-06 1.1

Lisp software
development 1.0 formal/2000-06-02 n/a

PL/1 software
development 1.0 formal/2002-09-05 n/a

Python software
development 1.2 formal/2002-11-05 1.1

Smalltalk software
development 1.0 formal/99-07-65 n/a

XML software
development 1.1 formal/2003-04-01 1.0

Specialized CORBA Specifications

Data Distribution real-time,
middleware 1.0 finalization ptc/2003-07-07 n/a

Data Parallel Processing real-time,
middleware 1.0 finalization ptc/2003-03-05 n/a

Dynamic Scheduling real-time,
middleware 1.0 finalization ptc/2002-09-14 n/a

Lightweight Logging
Service

real-time,
middleware,
telecommunicatio
ns

1.0 finalization ptc/2003-05-22 n/a

Minimum CORBA real-time, 1.0 formal/2002-08-01 n/a

 Sheet: 205 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

middleware

Online Upgrades
(see
CORBA/IIOP
Specifications)

Real-Time CORBA
Architecture

real-time,
middleware 1.1 formal/2002-08-02

Chapter 24 of
CORBA/IIOP
2.5

Unreliable Multicast real-time,
middleware 1.0 finalization ptc/2003-01-11 n/a

CORBA Embedded Intelligence Specifications

Smart Transducers
real-time,
embedded
systems

1.0 formal/2003-01-01 n/a

CORBAservices Specifications

Additional Structuring
Mechanisms for the OTS

transaction
mgmnt,
middleware

1.0 formal/2002-09-03 n/a

Collection Service collection mgmnt,
middleware 1.0.1 formal/2002-08-03 1.0

Concurrency Service
object
consistency,
middleware

1.0 formal/2000-06-14 n/a

Enhanced View of Time time mgmnt,
middleware 1.1 formal/2002-05-07 1.0

Event Service event mgmnt,
middleware 1.1 formal/2001-03-01 1.0

Externalization Service
object state
mgmnt,
middleware

1.0 formal/2000-06-16 n/a

Licensing Service
software
licensing,
middleware

1.0 formal/2000-06-17 n/a

Life Cycle Service
object life cycle
mgmnt,
middleware

1.2 formal/2002-09-01 1.1

Management of Event
Domains

event mgmnt,
middleware 1.0 formal/2001-06-03 n/a

Naming Service
object location
mgmnt,
middleware

1.2 formal/2002-09-02 1.1

Notification Service event mgmnt,
middleware 1.0.1 formal/2002-08-04 1.0

Notification / JMS
Interworking

event mgmnt,
middleware 1.0 finalization dtc/2003-06-01 n/a

 Sheet: 206 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Persistent State Service object persistence,
middleware 2.0 formal/2002-09-06

replaces
Persistent
Object Service

Property Service object properties,
middleware 1.0 formal/2000-06-22 n/a

Query Service collection mgmnt,
middleware 1.0 formal/2000-06-23 n/a

Relationship Service
object
relationships,
middleware

1.0 formal/2000-06-24 n/a

Security Service security,
middleware 1.8 formal/2002-03-11 1.7

Telecoms Log Service
(see OMG
Domain
Specifications)

Time Service time mgmnt,
middleware 1.1 formal/2002-05-06 1.0

Trading Object Service
object location
mgmnt,
middleware

1.0 formal/2000-06-27 n/a

Transaction Service
transaction
mgmnt,
middleware

1.3 formal/2002-08-07 1.2.1

CORBAfacilities Specifications

Internationalization and
Time

software
development 1.0 formal/2000-01-01 n/a

Mobile Agent Facility software
development 1.0 formal/2000-01-02 n/a

OMG Domain Specifications

Air Traffic Control transportation 1.0 formal/2000-05-01 n/a

Audio / Visual Streams telecommunicatio
ns 1.0 formal/2000-01-03 n/a

Bibliographic Query Service life sciences
research 1.0 formal/2002-05-03 n/a

Biomolecular Sequence
Analysis (BSA)

life sciences
research 1.0 formal/2001-06-08 n/a

Clinical Observations
Access Service (COAS) healthcare 1.0 formal/2001-04-06 n/a

Computer Aided Design
(CAD) Services

manufacturing &
utilities 1.1 formal/2003-03-63 1.0

CORBA-FTAM/FTP
Interworking

(see
CORBA/IIOP
Specifications)

CORBA / TC Interworking
and SCCP-Inter ORB

(see
CORBA/IIOP

 Sheet: 207 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Protocol Specifications)
Currency finance 1.0 formal/2000-06-29 n/a
Data Acquisition from
Industrial Systems (DAIS)

manufacturing &
utilities 1.0 formal/2002-11-07 n/a

Distributed Simulation
Systems simulation 2.0 formal/2002-11-11 1.1

Federated Charging telecommunicatio
ns 1.0 finalization dtc/2003-01-01 n/a

General Ledger finance 1.0 formal/2001-02-67 n/a

Gene Expression life sciences
research 1.1 formal/2003-10-01 1.0

Genomic Maps life sciences
research 1.0 formal/2002-02-01 n/a

GIOP Tunneling over
Bluetooth

telecommunicatio
ns 1.0 finalization dtc/2003-05-06 n/a

Historical Data Acquisition
from Industrial Systems
(HDAIS)

manufacturing &
utilities 1.0 finalization dtc/2003-02-01 n/a

Interworking between
CORBA and TMN Systems

(see
CORBA/IIOP
Specifications)

Laboratory Equipment
Control Interface
Specification (LECIS)

life sciences
research 1.0 formal/2003-03-19 n/a

Lexicon Query Service healthcare 1.0 formal/2000-06-31 n/a

Lightweight Logging
Service

(see Specialized
CORBA
Specifications)

Macromolecular Structure life sciences
research 1.0 formal/2002-05-01 n/a

Management of Event
Domains

telecommunicatio
ns 1.0 formal/2001-06-03 n/a

Negotiation Facility electronic
commerce 1.0 formal/2002-03-14 n/a

Notification / JMS
Interworking

(see
CORBAservices
Specifications)

Organizational Structure
(OSF) cross-domain 1.0 finalization dtc/2001-09-04 n/a

Party Management Facility finance 1.0 formal/2001-02-68 n/a
Person Identification
Service (PIDS) healthcare 1.1 formal/2001-04-04 1.0

PIM and PSM for SDO cross-domain 1.0 finalization dtc/2003-04-02 n/a
Product Data Management
(PDM) Enablers

manufacturing &
utilities 1.3 formal/2000-11-11 1.2

Public Key Infrastructure
(PKI)

electronic
commerce,
security

1.0 formal/2002-09-04 n/a

Resource Access Decision
(RAD)

healthcare,
security 1.0 formal/2001-04-01 n/a

 Sheet: 208 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

Surveillance User Interface
(Surveillance Manager) transportation 1.0 formal/2003-03-62 n/a

Task and Session cross-domain 1.0 formal/2000-05-03 n/a

Telecoms Log Service telecommunicatio
ns 1.1.2 formal/2003-06-01 1.1.1

Telecom Service & Access
Subscription (TSAS)

telecommunicatio
ns 1.0 formal/2002-12-01 n/a

Telemetry and
Telecommand Data (XTCE) space 1.0 finalization dtc/2003-05-07 n/a

Utility Management
Systems (UMS) Data Access
Facility

utility
management 2.0 formal/2002-11-08 1.0

Wireless Access & Terminal
Mobility in CORBA
(Telecom Wireless)

(see
CORBA/IIOP
Specifications)

Workflow Management
Facility cross-domain 1.2 formal/2002-05-02 n/a

 Sheet: 209 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

27 Final Comments
27.1 Some final thoughts

CORBA technology is impressive for people writing controller code. But
perhaps it is too impressive for normal control systems developers.

In some sense it suffers what has been called a second system effect, trying
to address any possible functionality or requirement. As control engineers,
we must clearly identify our own needs and determine if the CORBA way
fits our needs. If not, we are still in time to modify it.

Perhaps the main question is Why do we need integration?. Beyond many
obvious answers (to build TotalPlants, to achieve total safety, to be the
first in the market, to spend less money, etc.) we would like to stress one
door that this approach opens for us: The modular approach fostered by
CORBA will let us develop true modular control systems, and this will
eventually lead to reach enormous complexity levels as those found in
human minds. For sure CORBA will not be the integration technology for
future C3POs, but it will open the way. If you remember the movie 2010,
HAL 9000 goes back to life (or conscience) when Dr. Chandra reconnects
the modules that encapsulate high-level mental functions using an
integrational backbone.

The second point we want to mention is design freedom. Design freedom is
necessary in the complex control systems domain to explore alternative
controller designs. Excessively restrictive technologies will unnecessarily
collapse design dimensions of the controller design space [Shaw 96]. This
is, for example, the case of some fieldbus technologies that support several
slaves but only one master. While design restrictions simplify development
(by means of prerequisite design decisions) they sacrifice flexibility.

Can we get both, simple development and flexibility? The key are no-
compromises frameworks, i.e. frameworks where design dimensions are
still open even when pre-built designs are available. To continue the
example of the fieldbus, the one-master/several-slaves approach is one

 Sheet: 210 of 210

Reference: IST37652/072
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Public

type of pre-built, directly usable, design; but the underlying field bus
mechanism should allow for alternative, multi-master designs. This can be
done by means of the development of agent libraries that provide
predefined partial designs in the form of design patterns [Sanz 03], and a
transparent object-oriented real-time middleware. CORBA is a less-
commitment approach, so to say.

This approach will let complex control system developers construct their
own agencies to support their own designs because it is impossible to fight
the not-invented-here syndrome. Let the people do what they think that
they need. Do not define ultimate solutions. Provide reusable assets that
can be adapted to any problem in a progressively focused domain [Sanz
99].

27.2 A lot of work to be done
This handbook is a first attempt at providing a compendium of necessary
knowledge to effectively apply CORBA technology in the domain of
industrial control systems.

As any first attempt it is full of problems, errors and missing items. Much
work needs to be done in future releases to make it a valuable tool for the
complex distributed control engineer.

Sample topics to be addresses in future releases:

� UML Profile for Schedulability, Performance and Time

� UML CORBA Profile

� Quality assurance practices

� CORBA control system validation

� Agent UML

� DAIS and HDAIS

� Lightweigth CORBA Component Model

� CORBAsec and MLS

� Relations with other standardization bodies (ISO, IEEE, ITU)

