
www.hardrealtimecorba.org

IST-2001-37652
Hard Real-time CORBA

 Title D3.4
Robot Control Testbed
Soft real-time implementation

 Authors Klas Nilsson (klas@cs.lth.se)
Mathias Haage (mathias@cs.lth.se)

 Reference IST37652/075 Deliverable 3.4
 Date 2003-10-23
 Release 1.0
 Status Final
 Clearance Consortium

 Partners Universidad Politécnica de Madrid
Lunds Tekniska Högskola
Technische Universität Wien
SCILabs Ingenieros

 Sheet: 2 of 16

 Reference: IST37652/075 Deliverable 3.4
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Summary Sheet

IST Project 2001-37652
HRTC
Hard Real-time CORBA

D 3.4 Robot Control Testbed
Soft real-time implementation

Abstract:

Based on the design of the Robot Control Testbed (RCT) for Hard Real-Time CORBA (HRT
CORBA), the soft/non RT part of the testbed has been implemented. The primary test case is to
use stereo vision to control a robot motions to catch a thrown ball.

One part of the implementation is the virtual testbed, which uses OpenGL-based rendering
with synchronized updates of the virtual world to obtain virtual camera images that are
consistent with the manipulator motions. Graphics and dynamics was implemented in C/C++,
whereas the simplified control code was written in Java to support simple prototyping of the
IDLs.

The physical implementation used the same IDLs but object/servant implementations were
made in C for the actual hardware, but still on the TCP/IP (IIOP) level. The main purpose is to
prepare for the hard real-time RCT, which is required to actually run the physical servo control
of the robot joints. Thus RT-CORBA is not sufficient for controlling industrial robot.

Copyright

This is an unpublished document produced by the HRTC Consortium. The copyright of this
work rests in the companies and bodies listed below. All rights reserved. The information
contained herein is the property of the identified companies and bodies, and is supplied
without liability for errors or omissions. No part may be reproduced, used or transmitted to
third parties in any form or by any means except as authorised by contract or other written
permission. The copyright and the foregoing restriction on reproduction, use and transmission
extend to all media in which this information may be embodied.

HRTC Partners:

Universidad Politécnica de Madrid
Lunds Tekniska Högskola
Technische Universität Wien
SCILabs Ingenieros.

 Sheet: 3 of 16

 Reference: IST37652/075 Deliverable 3.4
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Release Sheet (1)

Release: 0.1 Draft
Date: 2003-09-27
Scope Initial version
Sheets All

Release: 1.0 Final
Date: 2003-10-23
Scope Final version
Sheets All

 Sheet: 4 of 16

 Reference: IST37652/075 Deliverable 3.4
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Table of Contents

1 Introduction__ 5

2 Implementation outline according to the generic design ___________ 6

3 The PCI-based RCT implementation____________________________ 7

4 The VME-based RCT implementation for hard real-time testing ____ 10
4.1 PPC control computers__10
4.2 Distributed ETRAX computers ____________________________________12
4.3 Host computers__12

5 Virtual testbed___ 13

6 References ___ 16

 Sheet: 5 of 16

 Reference: IST37652/075 Deliverable 3.4
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

1 Introduction
The Robot Control Testbed (RCT) implementation was planned to be carried
out in two stages: one early stage for the non- or soft real-time support, and a
later stage for the hard real-time part. In practice as found during the
specifications, and as reported in the quarterly reports and in the design and
specification documents, the open issues for the hard real-time support needed
to be clarified prior to procurement and soft real-time implementation. That in
turn implied that the implementations had to start earlier (to explore potential
difficulties), and the soft real-time part had to be made with the hard real-time
demands on the system in mind (not to end up with two completely different
systems). Therefore, this document describes the testbed hardware and
structure from both soft and hard real-time points of view, while the
description of the implementation for the hard real-time documents the further
development of the software and communication to meet the requirements of
the hard real-time CORBA experiments.

Two robot systems were available for the RCT implementation:

1. The ABB Irb-2000 robot with external VME-based control computers as
developed @control.LTH.se replacing the original ABB S3 control
computers.

2. The ABB Irb-2400 robot with internal PCI-based control computers, with
additional PCI/PMC-based control computers extending (but not
replacing) the original system.

The aim and plan was to make use of the item 1 system, since that system
provides access to the innermost control (communication) loop of the motion
control. There are, however, arguments for implementing the RCT based on the
item 2 system:

• The hardware in system 2 is entirely based on commercially available
components, so there are external support available for fault analysis and
repair. In particular, this includes the measurement system of the robot.

• The added control computer for external sensor based control is a (as
described in the design and in the procurement) Motorola PrPMC800
PPC PMC board, which is a quite modern and PCI-based computer well
suited for running (PowerPC) Linux, as needed for the ORBs. On the
VME boards, on the other hand, there are on-board PCI logic connected
to the back-plane VME bus, and it was not clear what efforts that was
needed to get Linux installable and runnable on this hardware.

With these items in mind for the purpose of reducing the risk of an RCT
implementation failure, and while waiting for the other parts of the project to
approach testing, the implementation was carried out for both systems

 Sheet: 6 of 16

 Reference: IST37652/075 Deliverable 3.4
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

mentioned. We will refer to the first system by calling it VME-based, while the
second will be called the PCI-based controller.

During final implementation it became clear that an RCT based on item 1 above
was possible, and best for demanding test cases, so that is the system covered in
the hard real-time implementation. In the following, both systems are covered
since even if there is no full RCT implementation based on the Irb-2400 and its
brand new ABB controller, the implementation done is important to mention
for possible future developments; with less than 4 months of (estimated) work a
HRTC a hard real-time CORBA robot control kit could be accomplished for use
in practically any lab with a new ABB robot. Actually, a configuration for the
next generation of ABB controllers is also possible. Therefore that item 2
platform is documented here, even if the possibilities are outside the scope of
this project (recall that the motivation for the work here was risk management).

2 Implementation outline according to the generic design
As described in the RCT design, the system consists of a number of units

connected via switched fast Ethernet, as depicted in the following figure.

LAN (TCP+UDP)
Soft RT
sensor

Power

Switch PVS: Hard RT ext. sensor

RJS

RJA

RJC

 Sheet: 7 of 16

 Reference: IST37652/075 Deliverable 3.4
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

A minimum implementation is to have an ORB and CORBA objects
encapsulating the RJC, and thereby also the total built-in control. The aim of
providing HRT-CORBA enabled units for external sensing, in this case the
external cameras, was found to be possible (but not within the timeframe of the
project): The next generation of cameras from Axis Communication
(www.axis.com) includes the same type of ETRAX processors and network
interface as our VME-based RCT included for joint sensing and actuation.1 For
the current RCT, however, Sony FireWire cameras are used since the delivery of
the new cameras from Axis was delayed. Therefore, hard real-time
communication is only used for control of the robot joints, and currently only
for the VME-based system. Due to the fact that the drivers for the
Sony/UniBrain FireWire interface is only available for Windows, the RCT with
visual feedback includes at least one Windows computer, of course not for the
hard real-time part. On the other hand, the presence of a heterogeneous system
with different operating systems (Linux/Solaris/Windows) very well illustrates
the benefit of the CORBA platform independence.

3 The PCI-based RCT implementation
The basic real-time control functionality of the PCI-based Irb-2400 system was
demonstrated to the reviewers during the final review visit in Lund. The robot
performed compliant force control by reading an external force/torque sensor
via an interface board on the PCI bus, and by adjusting the position control
references of the motion controller via shared memory. The control cabinet is
depicted in Figure 1.

1 In other words, an extra outcome of this project is that it will be possible to run the HRTC
communication and ORB-techniques in future low-cost cameras. We intend to make use of this
in future robot projects, for low-cost 3D vision.

 Sheet: 8 of 16

 Reference: IST37652/075 Deliverable 3.4
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Figure 1 The robot control cabinet (left) that internally (right) is extended by the PPC
PrPMC800 in the PCI3 slot where the arrow points at the 100Mbit/s Ethernet that provides
the new network interface added to the original system. The force/torque sensor is connected
to the lower PCI5 slot, which is used by the PPC processor to accomplish force control.

The organization of the hardware on the PCI bus is shown in Figure 2. The
difficulties encountered during the implementation included changes of the
Linux kernel for installation and execution on the PPC board. Another difficulty
was the very complex booting and shared memory allocation, since we could
not change the BIOS of the ABB Main computer running VxWorks and the reset
of the PPC processor prevented it from allocating its PCI resources in time. The
solution is based on remapping the shared memory to an area that the
PCI/PMC carrier board (see Figure 2) gets allocated during system boot.

 Sheet: 9 of 16

 Reference: IST37652/075 Deliverable 3.4
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

DSQC 500
Main
computer

S4C+
Backplane

DSQC 522
I/O
computer

DSQC 503
Axis
computer

PCI Bus 0
PCI Bus 1

JR3 Force
Sensor
Interface

CPU PCI#0.1 PCI#0.2 PCI#0.3

PCI#1.1 PCI#1.2

PCI/PCI
Bridge
(ABB-HW)

PCI#1.3 PCI#1.4

PPC-G4
Force
computer

PMC-IO
Digital+
Analog

PMC/PCI Carrier *

Ethernet

Figure 2 The PCI bus and connected boards. There are Ethernet connections (not shown) also
to the Main computer and to the IO computer but with standard TCP/IP as defined by ABB,
while the PPC Ethernet connection (marked as Ethernet) forms the real-time Ethernet for
adding HRT CORBA to the system. The ABB communication works with 10Mbit/s, which
provides throttling so it does not disturb the real-time traffic too much.

When implementing the actual force controller (or some other application
specific control as the visual servoing below), it is convenient to work
graphically and define the controller by a so called block scheme. For the force
control of the demo the definition of the controller is shown in Figure 3
(actually, the specific algorithms are internal to the force ctrl block).

The interface blocks (that after code generation provides the shared memory
interface) would be good candidates to form CORBA interfaces. However, the
installation procedure (installing modules in the Linux kernel during runtime)
would mean object migration of hard real-time objects. That is outside the scope
of the project, but it is interesting to see the need and the experimental
possibilities.

 Sheet: 10 of 16

 Reference: IST37652/075 Deliverable 3.4
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Figure 3 The compliant force controller component, defined graphically with interfaces in
terms of the blocks marked.

4 The VME-based RCT implementation for hard real-time testing
The VME-based control computer replaces (due to earlier reconfigurations done
at ULund) the original 4xCPU computer board of the Irb-2000 robot. The new
external (located outside the control cabinet) computer boards are of type
Motorola MVME2400 and MVME2600 with PowerPC (PPC) processors, except
for a legacy M68030 board that performs some supervision tasks (like checking
motor temperatures and checking the timing of periodic control threads in
other CPUs). Other parts of the system consist of the distributed ETRAX
processors and the host PC computers. The implementations of these three
different parts of the system are commented in one section each below.

4.1 PPC control computers
Prior to the HRTC work, the in-house Stork real-time kernel was used,
including our own communication stacks and IO device handlers. File systems
and typical operating system type of calls were not available, since they were
not really needed for the control of the robot. However, to run even a standard
non-real-time ORB, the platform in terms of operating system and device
drivers has to resemble typical OSs; otherwise it would be necessary to rewrite

 Sheet: 11 of 16

 Reference: IST37652/075 Deliverable 3.4
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

many parts of the ORB to tailor it to the specific platform at hand. That would
be neither desirable nor possible within the project. The only reasonable option
is to run Linux on the VME boards. During the planning and initial work we
considered the porting/making of the Linux kernel for this type of hardware to
be risky from a project time point of view, which was also the reason for the
alternative platform according to the pervious section. For example, there is an
internal PCI/PMC connector on the board for interfacing local peripherals and
mapping of global VME-bus memory had to be done in two stages via the PCI
logic. Hardware interfacing was on the other hand expected to be straight
forward since we had device handlers working for the Stork kernel.

It turned out to be the opposite: the Linux system was better prepared for this
type of hardware than expected, but adopting the hardware interfaces for IO
and networking was harder than expected. In total, without hard real-time
communication, the platform work proceeded according to the plans. To get the
ORB and the OCI interface to run was, however, harder. First the needed PPC
version of the ORB was decided to be developed after the TTP communication
was supported. Then using the OCI support of the ICa ORB, due to our lack of
such experience and some bugs, resulted in substantial development efforts.
Parts of this was due to the fact that hard real-time support (using our
ThrottleNet protocol) was considered already during the work with the
soft/non real-time implementation. Details of the implementation can be found
in the hard real-time implementation document.

The VME board of primary interest is the so called slave computer, which takes
care of the low-level control and the communication with the ETRAX-based
sensing and actuation of the robot joints. The old motion control code was
rewritten in C (and also a Java version was made in an adjacent master thesis
project but never used in the physical tests) for Linux/RTAI, but making a
separate user-space implementation was not considered to be meaningful or
worthwhile since such an implementation was likely not to work due to the
fault detections that are built into our hardware. Instead, an instrumented real-
time version was developed to permit introduction of the timing of non-real-
time communication. Then the system can be booted using jitter-free
communication, and then the instrumentation permits the activation of the
timing of the non-RT communication.

In practice, for the ETRAX-PPC-ETRAX communication of the joint control,
such a communication network was set up with dummy hardware control of
the robot but with exactly the same type of processors. Then the control code
and ORBs using TCP/IP and IIOP communication was used and the timing was
measured and logged. The measured timing was then introduced as delays in
the real-time implementation. An extra benefit of this procedure was that

 Sheet: 12 of 16

 Reference: IST37652/075 Deliverable 3.4
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

fractions of the full delay could be used and changed during run-time. Refer to
the documentation of the tests for further details and a video showing the
physical results.

4.2 Distributed ETRAX computers
We had Linux running on the ETRAX computers already before start of this
project. However, it was with Ethernet support coded by Axis into the kernel
(not in a separate module), without RTAI to prepare for the hard real-time part
of the work, without TrottleNet, and without knowing if an ORB actually
would be possible to run on this amount of memory.

Due to extensive technical difficulties with the development of a robustly
working real-time communication, this work was divided into two approaches
in order to be able to complete the project (almost) in time. That is, the non rela-
time communication was possible to test as described in previous section, but
preparing for the hard real-time part was done in two ways. First, the full
ThrottleNet compatible implementation of the networking (including extraction
of the Ethernet driver from the kernel to a separate Linux kernel module) was
done on separate ETRAX computers for testing of the communication without
the physical robot. Secondly, the two ETRAX boards connected to the robot
hardware were used with modified integrated Ethernet drivers to accomplish
ThrottleNet compatible traffic (but hard-coded without separate kernel
modules).

The installation of the ICa ORB on the ETRAX went well. Out of the available
memory of 3 Mbytes, 30% was used whit the CORBA support. Clearly it would
be desirable to better determine which parts of RT CORBA that really are
necessary in order to further decrease the memory footprint. Our impression is
that minimumCORBA [minCORB] with extended (for configuration of the hard
real-time communication) OCI support would be appropriate.

4.3 Host computers
The vision system is running in soft real-time following standard video rate
(30Hz). Three computers are involved in the current system; two Sony FireWire
digital cameras are interfaced with a PC (running Windows) that is responsible
for image acquisition and image processing (digital green filter and
segmentation). A Matlab Linux PC is responsible for calculating a catch point
by upgrading recognized image feature points to Cartesian space. Finally, a
Solaris Sun workstation runs a Java application for converting Matlab
communication to appropriate CORBA calls into the robot controller.

 Sheet: 13 of 16

 Reference: IST37652/075 Deliverable 3.4
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

5 Virtual testbed
The simulation/analysis toolbox TrueTime mentioned in the RCT design is
documented in a separate deliverable. Here the virtual testbed refers to the
simulation of the RCT with appropriate visualisation to illustrate the testbed
experiments. Since true real-time performance cannot be assumed to work on
such computers, time driven software may need to be simulated in an event
driven manner. The CORBA interfaces should of course be the same, and the
dynamic behaviour should be close to that of the physical platform.

As mentioned the RCT design, visualization will either be based to dedicated
OpenGL-based graphical models, and/or implemented in Java3D in the case
that the virtual testbed is Java-based. Initial test with both principles have been
carried out, but decision about the best technique was postponed until
implementation phase. It was found that an OpenGL-based visualisation was
preferable since it permitted appropriate 3D reconstruction of moving objects
using stereo cameras in the virtual world. The difficulty was that the cameras
and other objects need to be synchronised in time, not only for the simulation of
motions but also for the rendering of the image since the image forms the
feedback data for the visual servoing. The specific algorithms and are outside
the scope of this document, and the source code listing is omitted for brevity
but can be obtained by e-mail request from the consortium.

The data flows comprising the two RCT control loops are simulated in the
virtual RCT as follows. Images are obtained from the virtual world (the native
part of the virtual RCT) at a (simulated) 30 Hz frequency (left part of the picture
below). Based on the images the target joint positions are computed and passed
as references to the joint servo control, which runs at a rate of 4 to 8 kHz (right
part of the picture below, where the rate is stated to be 4 kHz).

 Sheet: 14 of 16

 Reference: IST37652/075 Deliverable 3.4
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

The interconnection of these two data flows and the involved IDLs are:

w
w

w
.hardrealtim

ecorba.org

Figure 4 The distributed objects/ID

Ls that form
 the virtual R

C
T.

www.hardrealtimecorba.org

Both the Arm and its simulated dynamics and the other objects, including the
Unidentified Flying Object (UFO) to catch, are part of the virtual world that is
natively implemented based on OpenGL by a set of 33 C++ classes. The rest of
the implementation was done in Java. The main part or the implementation is
the classes implementing the IDLs above. The IDLs are the same as later used in
the physical testbed implementation, but we found it more convenient to work
with CORBA in Java (that is, hard real-time Java for hard real-time CORBA
would be preferable, but outside the scope of this project).

In principle, neglecting timing and dependability issues, the control
computations within each node could be carried out by a main application
calling the methods of the various distributed objects (that have access to the
IO). For real-time, and in particular for reliable hard real time, distributed active
objects that periodically perform control computations and actions are needed,
as shown by results from other partners of the HRTC consortium (TUWien). In
the RCT, we accomplish that in a CORBA-compatible way by having active
objects implementing an Activity interface providing a start method. Calling
start, as in Java, means creating an active object with its own thread of
execution. Here, on the other hand, instead of actually creating a new thread,
we occupy a servant thread that performs according to arguments to start
(details not worked out).

Starting an active object can also involve scheduling the traffic within the local
network, influencing scheduled ThrottleNet or TTP in a manner that becomes
rather independent of the actual protocol used. We found the virtual RCT to be
valuable for exploring these and other possibilities.

6 References
[CORB] Common Object Request Broker Architecture (CORBA/IIOP)
Specification 3.01, Object Management Group, Needham, MA, U.S.A.,
2002, http://www.omg.org

[RTCORB] OMG: Real-Time CORBA 1.0 Specification, http://www.omg.org

[minCORB] OMG: Minimum CORBA Specification, version 1.0,
http://www.omg.org/docs/formal/02-08-01.pdf

[PCI] PCI Special Interest Group: “PCI Local Bus Specification”, 1998,
http://www.pcisig.com

[PrPMC] VITA Standards Organization (VSO): “Processor PMC Standard For
Processor PCI Mezzanine Cards”, 1999, http://www.vita.com

[ETRAX] Axis Developer Board LX, Axis Communications, 2002,
http://developer.axis.com/products/devboard/index.html

