
www.hardrealtimecorba.org

IST-2001-37652
Hard Real-time CORBA

 Title D3.5
Robot Control Testbed
Hard real-time implementation

 Authors Klas Nilsson (klas@cs.lth.se)
Anders Blomdell (andersb@control.lth.se)

 Reference IST37652/076 Deliverable 3.5
 Date 2003-10-23
 Release 1.0
 Status Final
 Clearance Consortium

 Partners Universidad Politécnica de Madrid
Lunds Tekniska Högskola
Technische Universität Wien
SCILabs Ingenieros

 Sheet: 2 of 13

 Reference: IST37652/076 Deliverable 3.5
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Summary Sheet

IST Project 2001-37652
HRTC
Hard Real-time CORBA

D3.5 Robot Control Testbed
Hard real-time implementation

Abstract:

The robot control testbed for evaluation of hard real-time CORBA has been
implemented based on hard real-time communication via the ThottleNet real-
time Ethernet protocol. An ABB Irb-2000 robot that has been reconfigured to
permit control experiments is used. The control computers include an external
VME-based computer system with Motorola PPC processors. These are
connected via Ethernet to both dedicated ETRAX processors for hard real-time
sensing and actuation, and also to host computers handling external soft real-
time sensors. The platform permits testing of different timing and real-time
communication principles.

Copyright

This is an unpublished document produced by the HRTC Consortium. The
copyright of this work rests in the companies and bodies listed below. All rights
reserved. The information contained herein is the property of the identified
companies and bodies, and is supplied without liability for errors or omissions.
No part may be reproduced, used or transmitted to third parties in any form or
by any means except as authorised by contract or other written permission. The
copyright and the foregoing restriction on reproduction, use and transmission
extend to all media in which this information may be embodied.

HRTC Partners:

Universidad Politécnica de Madrid
Lunds Tekniska Högskola
Technische Universität Wien
SCILabs Ingenieros.

 Sheet: 3 of 13

 Reference: IST37652/076 Deliverable 3.5
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Release Sheet (1)

Release: 0.1 Draft
Date: 2003-09-27
Scope Initial version
Sheets All

Release: 0.2 Draft
Date: 2003-10-12
Scope Revised version
Sheets All

Release: 1.0 Final
Date: 2003-10-23
Scope Final version
Sheets All

 Sheet: 4 of 13

 Reference: IST37652/076 Deliverable 3.5
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Table of Contents

1 Introduction__ 5

2 Using the ThrottleNet real-time Ethernet protocol_________________ 5

3 The Linux Real-Time Application Interface (RTAI)_________________ 8

4 User-space ORB and kernel-space applications __________________ 9

5 The hybrid HRTC communication approach ____________________ 11

6 References ___ 13

 Sheet: 5 of 13

 Reference: IST37652/076 Deliverable 3.5
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

1 Introduction

The testbed implementation for non real-time testing included development of
a virtual testbed, a PCI-based controller for an ABB Irb-2400 robot, and the
VME-based system for the Irb-2000 robot that was selected for the full
implementation for hard real-time purposes. In that system, it is the servo
control of the robot joints that comprises the innermost control loop including
distributed objects and real-time communication. That is, external sensor based
control (based on stereo vision in this case) is based on soft real-time
communication/computing is not the primary concern here. The focus is on the
hard real-time communication in the context of the testbed application. Thus it
is the nodes Sensor, Controller, Actuator and GlobeThrottle that are covered
here, see Figure 1.

Figure 1 The testbed including ThrottleNet communication.

2 Using the ThrottleNet real-time Ethernet protocol
Basic idea of ThrottleNet (TN) is to accomplish hard-RT communication over a
local switched Ethernet area (RTLAN, see Figure 2) by restricting the amount of
network traffic each sender may generate. It is possible to guarantee an upper
hard bound on the network latency since a switch provides point-to-point
communication between any two single nodes in the RTLAN, and if the traffic
to any single node always stays below the buffering available in the switch, no
network packages are lost [Mart2002]. The bandwidth limitation can in
technical terms be called throttling, hence the name ThrottleNet.

ETRAX

• Linux/RTAI
ETRAX

• Linux/RTAI

Sensor (resolver)

Actuator (motor)

PPC * 2: Linux/RTAI
& STORK

Controller

Camera

GlobeThrottle

• Linux PC

InternetWindows PC

Switch

 Sheet: 6 of 13

 Reference: IST37652/076 Deliverable 3.5
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Figure 2 Computers connected via switched Fast-Ethernet (100Mbit/s), forming a local real-
time network.

Assuming no clock synchronisation and no time-triggered schedule for the
network traffic, the hard-RT guarantees as well as the resulting amount of jitter
come from a buffering/scheduling analysis. The works case for the traffic to a
target node (T) is when all other nodes (that are ever communicating with T)
want to send at exactly the same time. If the switch buffer is sufficient to hold
all these Ethernet packages, it will always be able to do so, and we get a hard
upper bound on the maximum communication delay. For this hard-RT
property to hold, it is also required that
� The communication is full duplex, which switches today typically are.
� The delay caused by the buffering the main source of non-determinism,

which is the case according to our measurement on switches.
� The traffic is periodic, or non-periodic with a lower bound on the time

between any two attempts to communicate.
� Broad-cast and multi-cast traffic is not permitted, that is, all traffic is point-

to-point.
� Keep-alive packets are sent (say, once per minute) to each node so the

switch does not forget the MAC address.
An example of a useful (low-cost) switch is the DES 1016D from D-Link. The
HRT RCT is implemented such that the above assumptions hold.

 Sheet: 7 of 13

 Reference: IST37652/076 Deliverable 3.5
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

To reduce the jitter, clock synchronisation and traffic scheduling could be done
similar to the scheduling of TTP, but that is future work. For the RCT and the
servo control it contains, the communication bandwidth is more important, and
the reason (apart from cost) that we do not use TTP/C in the RCT. From a
CORBA point of view, assuming traffic scheduling and pluggable transports,
the application level can be made independent of the protocol.

The key argument for using TTP/C is dependability; in the RCT the robot
simply stops if one connection is lost, but for a safety critical vehicle application
(e.g. the braking or steering) that would not be acceptable. But for an
application that is not safety critical, the hardware we use can be purchased in
any computer shop near you.

There is a special GlobeThrottle node, called the GlobeThrottle as shown in
Figure 3 and Figure 1, which takes care of the connection to ordinary networks
(LAN or the Internet). Broad-cast and multi-cast traffic from outside the TN to
nodes inside the TN are converted by the GlobeThrottle to uni-cast traffic to
each of the involved TN nodes.

By reserving Ethernet bandwidth for non-RT traffic, and by using special device
drivers, the ordinary TCP/IP non-RT traffic will still work within the TN.

Figure 3 TrottleNet connected via the GlobeThrottle to Internet.

GlobeThrottle

 Sheet: 8 of 13

 Reference: IST37652/076 Deliverable 3.5
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

3 The Linux Real-Time Application Interface (RTAI)
The RTAI provides a valuable combination of predictable execution of real-time
applications (in kernel space) and a full-featured operating system (in user
space). The predictable execution is what we need for hard real-time
applications, while a rather complete OS (Linux in this case) is what we need
for CORBA support. The kernel-space functionality is quite limited or different
compared to the Linux in user space, and therefore we need to do
implementations on both levels as described in the following sections.

On the kernel level, the hard real-time software for communication and control
needs the claimed predictability of RTAI. That included the device drivers for
Ethernet and Throttlenet. However, during implementation and test of the TN
device drivers, the experienced problems with getting the software to work was
traced down to the (according to our opinion) strange handling of interrupts. In
the interrupt service routine (ISR) taking care of the Ethernet network interrupt,
a new available packet is signalled via a semaphore to the consuming thread.
Clearly, the interrupt routine should complete its execution before permitting a
context switch to the signalled thread. However, according to the standard
RTAI implementation, the signalled thread starts to run (until blocking) in the
context of the ISR. This in turn resulted in problems with predictability in
general and with getting the TN devices to work in particular.

There are several enhancements of RTAI that should preferably be done, but to
give an example how it can look, the following is the first and foremost problem
with the TN implementation was reported to the RTAI community as:

I'm having problem with interrupt 18 (ethernet) on a VME2600 (ppc)
system. If the interrupt is only used from RTAI everything works all
right, likewise if it is only used from Linux. But after loading a
driver in Linux space, the interrupt is unusable (blocked) in RTAI.

Here is why:

After boot irq_desc[18].status (arch/ppc/kernel/irq.c) starts with
the value 0x00000040 (IRQ_DISABLED = FALSE). Now it is OK to use
the interrupt from RTAI if I acknowledge the interrupt with
rt_unmask_irq(18), a call which eventually ends up in openpic_end_irq
(arch/ppc/kernel/open_pic.c).

BUT: when I load a Linux driver, it calls setup_irq(18), setting
irq_desc[18].status to 0x00000040 (which is OK) and on unloading it
calls free_irq(18), setting irq_desc[18].status to 0x00000042
(IRQ_DISABLED = TRUE). This is OK for Linux drivers, since next
call to setup_irq(18) reenables the interrupt.

If I now try to load a RTAI driver, (arch/ppc/rtai.c),
irq_desc[18].status is not changed (still 0x00000042; IRQ_DISABLED =
TRUE), and subsequent calls to rt_unmask_irq(18) are not honored,
since openpic_end_irq sees that the irq_desc[18].status is
IRQ_DISABLED, and hence it does not enable the interrupt.

 Sheet: 9 of 13

 Reference: IST37652/076 Deliverable 3.5
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

To me it seems that the solution is to let:
rt_request_global_irq call request_irq

and
rt_free_global_irq call free_irq

To avoid this problem, the following patch was submitted:

--- arch/ppc/rtai.c.orig Mon Sep 15 03:37:35 2003
+++ arch/ppc/rtai.c Mon Sep 15 03:29:36 2003
@@ -768,6 +768,11 @@
static unsigned long irq_action_flags[NR_IRQS];
static int chained_to_linux[NR_IRQS];

+void dummy_handler(int irq, void *dev_id, struct pt_regs *regs)
+{
+ printk("dummy_handler should never be called\n");
+}
+
int rt_request_global_irq(unsigned int irq, void (*handler)(unsigned int irq))
{

unsigned long flags;
@@ -804,6 +809,7 @@

*/
IRQ_DESC[irq].handler = &real_time_irq_type;

#endif
+ request_irq(irq, dummy_handler, SA_SHIRQ, "RTAI fix", &dummy_handler);

hard_unlock_all(flags);

return 0;
@@ -848,6 +854,7 @@

}

flags = hard_lock_all();
+ free_irq(irq, &dummy_handler);

IRQ_DESC[irq].handler = &trapped_linux_irq_type;
if (global_irq[rirq].mapped == RTAI_IRQ_MAPPED_TEMP)

unmap_ppc_irq(irq);

This code fragment also illustrates a typical situation in platform development;
The solution consists of just a few lines of code, but those lines can take weeks
to find out. The RCT contribution to Linux-based real-time are made available
as free software on the Internet, which pays back in terms of improved Linux
support for our hardware.

4 User-space ORB and kernel-space applications
To achieve hard real-time for the entire application, the ORB (or vital parts of it)
must run in an RTOS (RTAI in our case). If that is not the case, no matter how
well the code is tuned and timed, the execution of the hard real-time threads
can be delayed by the scheduling decitions done by the non-RT OS. Clearly, this
is independent of the properties of any hard real-time communication (such as
TTP or TN); the execution platform also has to provide real-time guarantees.
Still, there will be activities and communication links that do not require real
time communication, then typically using TCP/IP.

 Sheet: 10 of 13

 Reference: IST37652/076 Deliverable 3.5
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Figure 4 Communication for non- and hard-RT communication.

With a combined need for hard RT and non-RT, we can make use of the OCI
specification, and the support for it in the ICa ORB. This means, assuming TN
for hard RT communication, that we have a structure as depicted in Figure 4.

However, to accomplish CORBA support on top of an RTOS such as RTAI is
beyond the scope of this project. In fact, it can even be questioned if this is
reasonable at all; the required engineering efforts to port and to maintain such
an ORB may be too extensive, at least compared to other possible approaches
that we are to explore here. Thus, here we have to approach HRT CORBA
without porting the ORB to RTAI. However, in the testbed the ETRAX and PPC
application code need to run in RTAI, to obtain the desired timing properties,
so we need some kind of hybrid approach.

Ethernet
Interface

IP

TCP

IIOP

RT-ORB

RTE

OCI

CORBA client &
server application code

ThrottleNet

RT

RTOS (RTAI)

 Sheet: 11 of 13

 Reference: IST37652/076 Deliverable 3.5
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

5 The hybrid HRTC communication approach
The main idea of the HRTC hybrid RT approach is to let hard RT threads
acquire hard RT communication in a CORBA-compatible manner by obtaining
a handle to the hard RT transport via a call of the user-level ORB.

 Figure 5 Hybrid kernel-space user-space solution.

The characteristics of this HRTC solution is that a full-featured OS (Linux) is
combined with hard real-time support for threads needing that, see Figure 5.
Note that even if the handle/descriptor for the HRT transport is used locally in
kernel-space without involving the ORB for each transfer, the ORB is still aware
of the transport and its usage. That is, first the ORB is responsible for
establishment f the connection and then the ORB can communicate with the
GlobeThrottle (over a non-RT transport) to handle on-line resource utilisation.
Hence, CORBA-level resource awareness is maintained.

RTAI

Linux

Hard RT
Application
Code

getTransportHandle(
IP

TCP

IIOP

RT-ORB

RTE

OCI

Ethernet
Interface

RT

Soft RT
Code

Non-RT
Code

 Sheet: 12 of 13

 Reference: IST37652/076 Deliverable 3.5
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Also note the similarities with TTP/C and the engineering principles used for
time-triggered distributed components, compared to RT-CORBA: There is no
need for priorities or the mapping, propagation, lanes, etc. Instead, distributed
components are designed to be event driven and accepting some timing jitter
(as in the RCT), or components are designed to be time driven and
communicating over so called temporal firewalls (corresponding to TTP or a
scheduled TN, which is outside the scope of this work). In both cases, the
scalability of CORBA is improved since global properties are managed globally
(in the GlobeThrottle or in the TTP configuration) and non-scalable features
such as priorities are kept locally.

As mentioned, sending and receiving data on the hard RT level is done directly
via the handle obtained from the ORB. Note that since data transfer is done
directly (connection-based unicast) between the two communicating nodes that
are configured from the ORB-level, there is no need to send complete GIOP
messages over the RT channels. Instead, full object references are only needed
when obtaining the connection, which is then working with small packets
(configurable but as a default in the current RCT implementation it is set to the
minimum Ethernet packet size of 64 bytes) that are transmitted within one
Ethernet frame. Omitting type definitions and auxiliary functions, the
ThrottleNet header file for the RT-level contains the following:

throttlenet_receive_socket
throttlenet_open_receive_socket(char *name, int size, int period);

void
throttlenet_close_receive_socket(throttlenet_receive_socket socket);

throttlenet_transmit_socket
throttlenet_open_transmit_socket(char *name, int size, int period);

void
throttlenet_close_transmit_socket(throttlenet_transmit_socket socket);

int throttlenet_receive(throttlenet_receive_socket socket,
void *buf, int buf_length);

int throttlenet_transmit(throttlenet_transmit_socket socket,
void *buf, int buf_length);

int throttlenet_tunnel_transmit(void *buf, int buf_length);

These functions reflect that each distributed hard-RT object refers location-
transparently (within the TN area) to other objects by name when opening the
connection, and for ensuring the predictable transport the message size and
period are also provided. The tunnel refers to a connection from the hard-RT
level to the GlobeThrottle node. That tunnel is used by a separate
throttlenet_tunnel kernel module that emulates the Ethernet connection for the
TCP/IP protocol for the non-RT application of the node. The non-RT traffic

 Sheet: 13 of 13

 Reference: IST37652/076 Deliverable 3.5
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

coming via the tunnel is split to fragments fitting into TN packets and put into
the available TN communication slots, and then sent to the GlobThrottle node
where a tunnel_handler (omitted in the header file above) collects TN non-RT
packets and restores the TCP/IP content. The networking on the GlobThrottle
node then remains unchanged on the Linux user-space level, and standard
routing as setup in Linux on the GlobThrottle is used also for routing the traffic
to other nodes in the TN area. Hence, non-RT traffic within the TN area always
goes via the GlobThrottle node, which may look like a detour but in this way all
the routing/handling of non-RT traffic comes for free (no extra code or
programming, which also simplifies dissemination of the technique), and no
additional scheduling of many-to-many connection is needed.

Several extensions for scheduling of time-driven communication and
application support are possible, but outside the scope of the current project.
Even if full implementation and packaging of TN was carried out within the
HRTC efforts and driven by the HRTC needs, experiences from the HRT RCT
implementation makes us believe that ThrottleNet will be used both
independently of CORBA and together with CORBA via the OCI. The current
implementation of TNIOP should, however, be enhanced to better handle the
distribution of GIOP messages on TN packets (Ethernet frames); the current
implementation uses OCI only on the byte-stream level.

On the hard RT level, on the other hand, the robot joints can be controlled with
a sampling/communication frequency of up to 10 kHz. Typically we use 8 kHz
which is the frequency of the force sensing. Since sensor and actuator values for
all joints of the robot fit into one TN/Ethernet packet, most of the bandwidth is
left for non-RT traffic, and due to the throttling the timing of the RT transport is
superior even without exact scheduling the traffic.

6 References
[CORB] Common Object Request Broker Architecture (CORBA/IIOP)
Specification 3.01, Object Management Group, Needham, MA, U.S.A.,
2002, http://www.omg.org

[RTCORB] OMG: Real-Time CORBA 1.0 Specification, http://www.omg.org

[RTAI] Real-Time Application Interface: www.rtai.org

[Mart2002] A. Martinsson: “Scheduling of realtime traffic in a switched Ethernet
network”, Master thesis, Dept. of Automatic Control, 2002.

