
www.hardrealtimecorba.org

IST-2001-37652
Hard Real-time CORBA

 Title D3.6
Robot Control Testbed
Testing

 Authors Klas Nilsson (klas@cs.lth.se)
Mathias Haage (mathias@cs.lth.se)

 Reference IST37652/089 Deliverable D3.6
 Date 2003-10-23
 Release 1.0
 Status Final
 Clearance Consortium

 Partners Universidad Politécnica de Madrid
Lunds Tekniska Högskola
Technische Universität Wien
SCILabs Ingenieros

 Sheet: 2 of 19

 Reference: IST37652/089 Deliverable D3.6
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Summary Sheet

IST Project 2001-37652
HRTC
Hard Real-time CORBA

D 3.6 Robot Control Testbed
Testing

Abstract:

The developed Robot Control Testbed (RCT) for Hard Real-Time CORBA (HRT CORBA) has
been used to test communication techniques in a CORBA context. Tests using non-RT
communication (TCP/IP) show timing variations and worst-case latencies that are too big for
motion control, such as the control of a robotic arm. Testing is carried out both in separate
setups of specific communication channels within the RCT, and also as full-scale test of the
robot arm control.

Testing of the proposed hybrid approach with a HRT-communication aware ORB on the Linux
user level, in combination with HRT-parts of the application and communication running in
Linux kernel space, is done using both TCP/IP and ThrottleNet (TN) transports. Then TCP/IP
is used from user space and is tunnelled over TN which works fine together with the HRT TN
traffic. Using TN from the user level is tested and can be useful for implementation of HRT
CORBA on a predictable RTOS, but the scheduling of user-space threads in Linux prevents
predictability. Running TN from the HRT part of the application (in kernel space using RTAI)
shows that standard fast switched Ethernet gives the desired predictability and performance for
complete robot motion control, thus verifying the usefulness of HRT CORBA.

Copyright

This is an unpublished document produced by the HRTC Consortium. The copyright of this
work rests in the companies and bodies listed below. All rights reserved. The information
contained herein is the property of the identified companies and bodies, and is supplied
without liability for errors or omissions. No part may be reproduced, used or transmitted to
third parties in any form or by any means except as authorised by contract or other written
permission. The copyright and the foregoing restriction on reproduction, use and transmission
extend to all media in which this information may be embodied.

HRTC Partners:

Universidad Politécnica de Madrid
Lunds Tekniska Högskola
Technische Universität Wien
SCILabs Ingenieros.

 Sheet: 3 of 19

 Reference: IST37652/089 Deliverable D3.6
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Release Sheet (1)

Release: 0.1 Draft
Date: 2003-09-28
Scope Initial version
Sheets All

Release: 1.0 Final
Date: 2003-10-23
Scope Final version
Sheets All

 Sheet: 4 of 19

 Reference: IST37652/089 Deliverable D3.6
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Table of Contents

1 Introduction__ 5

2 Hardware setup___ 5

3 IIOP stress-test ___ 7

4 TN latency and jitter test ____________________________________ 13

5 Videos ___ 18

6 References ___ 19

 Sheet: 5 of 19

 Reference: IST37652/089 Deliverable D3.6
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

1 Introduction
This document describes tests performed on the testbed hardware and reports
measurements and results derived from these tests. It does not document the
testbed (D3.7), the hard realtime implementation (D3.5) and the soft realtime
implementation (D3.4). Five different tests have been performed; IIOP
stresstests showing minimum roundtrip latency and jitter using IIOP between
two nodes using an intermediate switch. TN latency and jitter test for specific
periodicity between two nodes. TNIOP test between two nodes demonstrating
GIOP communication between two nodes using an intermediate switch.
Emulated TCP/IP performance using emulated network TCP/IP delay on
testbed system. The testbed experiment is run with emulated TCP/IP and
emulated TN performance and with TN.

2 Hardware setup
The RCT as such is described in design, implementation, and documentation
documents. The processors that are referred to, however, deserve some more
specific performance data for the interpretation of the test results in the
following.

Four types of processors, all running Linux if nothing else stated, are used in
the tests. The properties are outlined in Figure 1. Note that in the test results,
the hardware is referred to by the compiler version. That is,

� Cris refers to the Axis ETRAX port of the GNU C complier.
� PPC refers to the PowerPC (G3 on VME).
� i386 refers to the Intel family, here actually a i686 (Pentium-4).

The rest of the setup is according to the RCT implementation.

 Sheet: 6 of 19

 Reference: IST37652/089 Deliverable D3.6
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

i686 processor : 0
vendor_id : GenuineIntel
cpu family : 15
model : 2
model name : Intel(R) Pentium(R) 4 CPU
2.60GHz
stepping : 9
cpu MHz : 2593.562
cache size : 512 KB
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 2
wp : yes
flags : fpu vme de pse tsc msr pae
mce cx8 apic sep mtrr pge mca cmov pat pse36
clflush dts acpi mmx fxsr sse sse2 ss ht tm
bogomips : 5177.34

PPC cpu : 604r
clock : ???
revision : 49.2 (pvr 0009 3102)
bogomips : 332.59
machine : PReP MVME 2600/2700 with
MVME761
L2 : none

Cris processor : 0
cpu : CRIS
cpu revision : 11
cpu model : ETRAX 100LX v2
cache size : 8 kB
fpu : no
mmu : yes
mmu DMA bug : no
ethernet : 10/100 Mbps
token ring : no
scsi : yes
ata : yes
usb : yes
bogomips : 99.73

Figure 1. /proc/cpuinfo from the different hardware platforms used in the
testbed.

 Sheet: 7 of 19

 Reference: IST37652/089 Deliverable D3.6
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

3 IIOP stress-test
The purpose of the IIOP stress-test is to determine the minimum CORBA call
latency of the standard CORBA network protocol on the different hardware
platforms utilized in the testbed. This is done to measure the performance of the
ORB used in the testbed and to be able to compare performance with the TN
solution.

The test is performed by physically isolating two computer nodes on the
network, only allowing them to communicate between each other through a
switch. The hardware used is documented in Figure 1. Application end-to-end
delay is measured by executing a number of synchronous method calls
measuring time spent in the call. See Figures 2 to 4 for the experiment code.

It should be noted that this test measures both the performance of the TCP/IP-
stack and the ORB residing on top of it. It does not give a clear picture on time
spent in the ORB alone.

module Test{
interface tester_servant {

long a(in long val);
};
};
Figure 2. IDL used for measuring application round-trip delay.

long seq;
long res;
struct timeval tv;
for (seq=0; seq<log_size; seq++) {

res = gettimeofday(&tv, NULL);
memcpy(&(log_tv[seq]), &tv, sizeof(struct timeval));

res = tsv->a(seq);
}

Figure 3. Experiment code executed on the client machine for measuring
round-trip application delay. The “a” method is called repeatable with IIOP
used as transport. Before each call time is read and a timestamp is stored. The
“gettimeofday” call has a resolution according to Figure 5.

 Sheet: 8 of 19

 Reference: IST37652/089 Deliverable D3.6
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

class tester_impl: public virtual
POA_Test::tester_servant{

public:

long a(long val)ICA_THROW_DECL(CORBA::SystemException){
return val;

}
};
Figure 4. Experiment code executed on the server machine for measuring
round-trip application delay. IIOP is used as transport.

Type Gettimeofday resolution (microseconds)
Intel i386 1.0
MVME PPC 2.3
ETrax CRIS 32

Figure 5. Measured gettimeofday resolution on the different hardware
platforms used in the testbed.

Also note that since the test objects involved are executed on the user-level, the
spikes that can be seen in Figure 6 may be due to system calls or other services
delaying the execution. Therefore, hard-RT needs both hard-RT communication
(TN in our case) and kernel-space execution (RTAI in our case).

 Sheet: 9 of 19

 Reference: IST37652/089 Deliverable D3.6
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
IIOP roundtrip delay test 1

D
el

ay
 (

m
ic

ro
se

co
nd

s)

Sample 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4 IIOP roundtrip delay test 2

D
el

ay
 (

m
ic

ro
se

co
nd

s)

Sample

0 1 2 3 4 5 6

x 10
4

1500

2000

2500

3000

3500

4000
IIOP roundtrip delay test 3

D
el

ay
 (

m
ic

ro
se

co
nd

s)

Sample 0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4 IIOP roundtrip delay test 4

D
el

ay
 (

m
ic

ro
se

co
nd

s)

Sample

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3
x 10

4 IIOP roundtrip delay test 5

D
el

ay
 (

m
ic

ro
se

co
nd

s)

Sample 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 IIOP roundtrip delay test 6

D
el

ay
 (

m
ic

ro
se

co
nd

s)

Sample

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
IIOP roundtrip delay test 7

D
el

ay
 (

m
ic

ro
se

co
nd

s)

Sample 0 1 2 3 4 5 6 7 8 9 10

x 10
4

500

600

700

800

900

1000

1100

1200

1300

1400
IIOP roundtrip delay test 8

D
el

ay
 (

m
ic

ro
se

co
nd

s)

Sample
Figure 6. Round-trip IIOP performance measurements for test 1 to 8 as
summarised in Figure 8. Note that the black areas such as in Figure 2 (upper
right) contain very frequent delay variations, which due to the number of

 Sheet: 10 of 19

 Reference: IST37652/089 Deliverable D3.6
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

samples fills the area.

 Sheet: 11 of 19

 Reference: IST37652/089 Deliverable D3.6
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.5

1

1.5

2

2.5
x 10

5 IIOP roundtrip delay test 9

D
el

ay
 (

m
ic

ro
se

co
nd

s)

Sample
0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

1000

2000

3000

4000

5000

6000
IIOP roundtrip delay test 10

D
el

ay
 (

m
ic

ro
se

co
nd

s)

Sample

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

5 IIOP roundtrip delay test 11

D
el

ay
 (

m
ic

ro
se

co
nd

s)

Sample

Figure 7. Round-trip IIOP performance measurements for tests 9 to 11. Test 11 is
using a Java implementation of the test IDL for comparison purposes.

 Sheet: 12 of 19

 Reference: IST37652/089 Deliverable D3.6
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

 Server
Client

Cris 1 PPC i386

Cris 2 test 4
samp 60000
mean 12323
std 11186
max 45000
min 26

Cris 1 test 2
samp 10000
mean 12501
std 11042
max 40490
min 5774

test 3
samp 60000
mean 1969.6
std 59.7
max 3977
min 1852

test 1
samp 10000
mean 2143.6
std 316.6
max 9995
min 1764

PPC test 5
samp 10000
mean 10002
std 8943.9
max 28948
min 3513

test 8
samp 100000
mean 608.6
std 7.7
max 1301
min 551

Test 9
samp 100000
mean 814.8
std 713.5
max 201150
min 494

i386 test 6
samp 10000
mean 10078
std 9091
max 33091
min 3452

test 7
samp 100000
mean 9764
std 35.8
max 9764
min 630

test 10
samp 100000
mean 70.8
std 31.3
max 5890
min 62

Figure 8. IIOP roundtrip delay test summary. Average, standard deviation,
maximum and minimum values for the tests are given (all measurements in
microseconds). Note the execution time asymmetry between client and server.
The high max values are often due to high initial delays or spikes.

As can be seen from the tests, IIOP is not suitable for feedback/servo control.
That also applies to the Java-based measurement (partly motivated by the on-
line connection to the virtual testbed) as shown in Figure 9.

 Sheet: 13 of 19

 Reference: IST37652/089 Deliverable D3.6
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

 Server
Client

i686

i686 test 11
samp 100000
mean 374
std 1251
max 259000
min 0

Figure 9. IIOP roundtrip delay test summary for the Java comparison test.
Average, standard deviation, maximum and minimum values for the tests are
given (all measurements in microseconds). The high max value is due to high
initial delay caused by Java.

4 TN latency and jitter test
Using TN in kernel space (RTAI) is the test case corresponding to the
communication in the servo control of the robot. Compared to other tests on our
legacy system [Mart2002], the Linux drivers appear to be less optimal for hart-
RT execution (costing some 20 to 30 microseconds extra delay per transfer). The
TN kernel-space test program is listed in Figure 10.

/***
*
* throttlenet_test_3_server.c
*
* Copyright (C) 2003 Anders Blomdell <anders.blomdell@control.lth.se>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <rtai.h>
#include <rtai_sched.h>
#include <rtai_fifos.h>
#include <throttlenet.h>

 Sheet: 14 of 19

 Reference: IST37652/089 Deliverable D3.6
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

MODULE_LICENSE("GPL");

static throttlenet_receive_socket server;
static throttlenet_transmit_socket to_client;

static RT_TASK echo_task;

static void echo(int arg)
{

server = throttlenet_open_receive_socket("test_3_server", 40, 10);
if (server) {

int receive_count, transmit_count;
char data[1500];

receive_count = throttlenet_receive(server, data, sizeof(data));
to_client = throttlenet_open_transmit_socket("test_3_client",

1500, 100);
if (to_client >= 0) {

while (1) {
transmit_count = throttlenet_transmit(to_client, data, receive_count);
receive_count = throttlenet_receive(server, data, sizeof(data));
}

}
} else {

printk("Could not create server socket\n");
}

}

static int test_3_server_init(void)
{

rt_task_init(&echo_task, echo,0,40960,10,0,NULL);
rt_task_resume(&echo_task);
return 0;

}

static void test_3_server_exit(void)
{

rt_task_delete(&echo_task);
}

module_init(test_3_server_init);
module_exit(test_3_server_exit);

Figure 10. RTAI server implementation of TN test.

/***
*
* throttlenet_test_3_client.c
*
* Copyright (C) 2003 Anders Blomdell <anders.blomdell@control.lth.se>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 Sheet: 15 of 19

 Reference: IST37652/089 Deliverable D3.6
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <rtai.h>
#include <rtai_sched.h>
#include <rtai_fifos.h>
#include <throttlenet.h>
#include <linux/proc_fs.h>
#include <rtai_proc_fs.h>

MODULE_LICENSE("GPL");

#define BUF_SIZE 10000
#define DELAY_USEC 250LL

static throttlenet_receive_socket client;
static throttlenet_transmit_socket to_server;

static RT_TASK do_experiment_task;

typedef struct {
int index;

} timing_packet_t;

static RTIME total_runtime;
static RTIME diff_buf[BUF_SIZE];
static RTIME abs_buf[BUF_SIZE];

static int test3_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)

{
PROC_PRINT_VARS;
int i;

PROC_PRINT("%c samples: %d\n", '%', BUF_SIZE);
PROC_PRINT("%c total runtime (nanosec): %lld\n", '%', total_runtime);

for (i = 0 ; i < BUF_SIZE ; i++) {
PROC_PRINT("%lld %lld\n", abs_buf[i], diff_buf[i]);

}
PROC_PRINT_DONE;

}

static void do_experiment(int arg)
{

client = throttlenet_open_receive_socket("test_3_client", 150, DELAY_USEC);
if (client) {

to_server = throttlenet_open_transmit_socket("test_3_server",
150, DELAY_USEC);

rt_sleep(nano2count(1000000000LL));
if (to_server) {

int i;

 Sheet: 16 of 19

 Reference: IST37652/089 Deliverable D3.6
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

RTIME start;
RTIME end;
RTIME tic;
RTIME tac;

printk("Starting experiment\n");
start = rt_get_time_ns();
for (i = 0 ; i < BUF_SIZE ; i++) {
RTIME diff;
int receive_count;
timing_packet_t data;

// Send
data.index = i;
tic = rt_get_time_ns();
throttlenet_transmit(to_server, (void*)&data, sizeof(data));

// Receive
receive_count = throttlenet_receive(client, (void*)&data,

sizeof(data));
tac = rt_get_time_ns();

// Elapsed time
diff = tac - tic;
diff_buf[i] = diff;
diff = tic - start;
abs_buf[i] = diff;

// Sleep
rt_sleep(nano2count(DELAY_USEC*1000LL));
}
end = rt_get_time_ns();
total_runtime = end - start;
printk("Finished experiment\n");

}
}

}

static int test_3_init(void)
{

static struct proc_dir_entry *proc_test;
proc_test = create_proc_entry("test_3",

S_IFREG|S_IRUGO|S_IWUSR,
0);

if (proc_test) { proc_test->read_proc = test3_read_proc; }
// Timers should already be started by the throttlenet layer!
rt_task_init(&do_experiment_task, do_experiment, 0,40960,10,0,NULL);
rt_task_resume(&do_experiment_task);

return 0;
}

static void test_3_exit(void)
{

remove_proc_entry("test_3", 0);
rt_task_delete(&do_experiment_task);

}

module_init(test_3_init);
module_exit(test_3_exit);

 Sheet: 17 of 19

 Reference: IST37652/089 Deliverable D3.6
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Figure 11. RTAI client implementation of TN test. Displayed test is tuned for
4kHz.

0 2 4 6 8 10 12
76

78

80

82

84

86

88

90
TN RTAI roundtrip delay test 1kHz

D
el

ay
 (

m
ic

ro
se

co
nd

s)

Time (seconds) 0 1 2 3 4 5 6
76

78

80

82

84

86

88

90

92
TN RTAI roundtrip delay test 2kHz

D
el

ay
 (

m
ic

ro
se

co
nd

s)

Time (seconds)

0 0.5 1 1.5 2 2.5 3 3.5
76

78

80

82

84

86

88

90

92
TN RTAI roundtrip delay test 4kHz

D
el

ay
 (

m
ic

ro
se

co
nd

s)

Time (seconds) 0 0.5 1 1.5 2 2.5
75

80

85

90
TN RTAI roundtrip delay test 8kHz

D
el

ay
 (

m
ic

ro
se

co
nd

s)

Time (seconds)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
76

78

80

82

84

86

88

90

92
TN RTAI roundtrip delay test 10kHz

D
el

ay
 (

m
ic

ro
se

co
nd

s)

Time (seconds) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
76

78

80

82

84

86

88

90
TN RTAI roundtrip delay test as fast as possible

D
el

ay
 (

m
ic

ro
se

co
nd

s)

Time (seconds)
Figure 12. TN roundtrip performance measurements. Spikes are of much lower
magnitude than in the IIOP case (microseconds instead of milliseconds).

Client/Server
Frequency

i386/PPC

1 kHz samp 10000
mean 78.9
std 1.5
max 89.5
min 77.4

 Sheet: 18 of 19

 Reference: IST37652/089 Deliverable D3.6
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

2 kHz samp 10000
mean 78.7
std 1.3
max 90.8
min 77.4

4 kHz samp 10000
mean 78.6
std 1.1
max 90.1
min 77.4

8 kHz samp 10000
mean 78.6
std 0.9
max 89.6
min 75.3

10 kHz samp 10000
mean 78.4
std 0.9
max 90.7
min 77.2

As fast as possible samp 10000
mean 78.6
std 0.8
max 89.4
min 77.6

Figure 13. Performance of TN from kernel space (hard-RT execution), showing
desired performance and very low jitter.

5 Videos
Videos showing the effect of network delays on servo control as well as the ball-
catching experiment are available on http://www.robot.lth.se/proj/hrtc,
where also expanded versions of the main figures above showing the measured
network delays are available. Videos should be played with sound since bad
performance is mainly perceived through audio. Vibrations caused by network
delays are typically of high frequencies of the audible spectrum. Vibrations are
hard to see on the video images, but such a vibrating/noisy robot is industrially
useless.

As shown in the networkdelay.mpg video, servo control using TCP/IP does not
work, but with fractions of the TCP/IP the robot moves but is quite shaky.
However, if the robot is started with RT communication and then IIOP delays
are introduced, the robot moves for a while (but fails to catch the thrown ball)
but then crashes as shown in the tcpcatch experiment. The normal reason for

 Sheet: 19 of 19

 Reference: IST37652/089 Deliverable D3.6
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

the robot to stop when the communication gets to bad is that the drive
electronics detects too jerky current references (resulting from the deficient
timing), but in the tcpcatch.mpg video it was the mechanical vibrations that
caused too much stress on the measurement system. That is, the vibrations due
to the network delays caused the resolver measurement hardware for joint 2 to
be partly disconnected, thereby giving wrong feedback from the joint angle.

In the tncatch.mpg video the robot moves as it should from a servo point of
view, using TN communication on the servo level. In the outer visual control
loop, however, IIOP (TCP/IP timing) is used. Together with the fact that the
cameras are not synchronized (due to FireWire and camera properties) and the
camera interface is running on Windows-2000, the result is that the visual
control is not impressive. This is according to the aim and design of the RCT,
but clearly the use of HRT CORBA/communication for the entire control would
give better control and a robot catching every (?) thrown ball. Inspired by the
accomplished properties of the RCT and the TN protocol, work towards such a
robot system will continue after the completion of the current HRTC project.
Note that due to the current results, we will be able to have Linux+RTAI+TN
inside the next generation cameras. Thus, next generation of vision sensors can
be HRT-CORBA enabled.

6 References
[CORB] Common Object Request Broker Architecture (CORBA/IIOP)
Specification 3.01, Object Management Group, Needham, MA, U.S.A.,
2002, http://www.omg.org

[RTCORB] OMG: Real-Time CORBA 1.0 Specification, http://www.omg.org

[InCORB] Mowbray, T. J. and W. A. Ruh: “Inside CORBA”, Addison Wesley,
1997.

[ETRAX] Axis Developer Board LX, Axis Communications, 2002,
http://developer.axis.com/products/devboard/index.html

[Mart2002] A. Martinsson: “Scheduling of realtime traffic in a switched Ethernet
network”, Master thesis, Dept. of Automatic Control, 2002.

