
www.hardrealtimecorba.org

IST-2001-37652
Hard Real-time CORBA

 Title D3.7
Robot Control Testbed
Documentation

 Authors Klas Nilsson (klas@cs.lth.se)
Mathias Haage (mathias@cs.lth.se)

 Reference IST37652/090 Deliverable D3.7
 Date 2003-10-23
 Release 1.0
 Status Final
 Clearance Consortium

 Partners Universidad Politécnica de Madrid
Lunds Tekniska Högskola
Technische Universität Wien
SCILabs Ingenieros

 Sheet: 2 of 18

 Reference: IST37652/090 Deliverable D3.7
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Summary Sheet

IST Project 2001-37652
HRTC
Hard Real-time CORBA

D3.7 Robot Control Testbed
Documentation

Abstract:

The Robot Control Testbed (RCT) for Hard Real-Time CORBA (HRT CORBA) was designed
and implemented to permit experiments with hard and soft real-time communication transports
with CORBA. To fully accomplish HRT CORBA, the ORB and the application would need to
execute on a RTOS. Alternatively, only the execution of the threads that have to fulfil HRT
requirements are run on an RTOS, while the establishment of object connections and the soft RT
threads can run on an ordinary OS. The developed testbed is based on this alternative
approach, using Linux for the soft RT part and the RTAI in Linux kernel space for the hard RT
parts. Other platforms are possible, but not within the scope of the efforts reported here. A
robot system, including a HRT transport in terms of the ThrottleNet RT Ethernet protocol for
the servo control, is used for illustrating the CORBA and communication techniques. In
documented application, the robot uses stereo vision to see and catch a thrown ball.

Copyright

This is an unpublished document produced by the HRTC Consortium. The copyright of this
work rests in the companies and bodies listed below. All rights reserved. The information
contained herein is the property of the identified companies and bodies, and is supplied
without liability for errors or omissions. No part may be reproduced, used or transmitted to
third parties in any form or by any means except as authorised by contract or other written
permission. The copyright and the foregoing restriction on reproduction, use and transmission
extend to all media in which this information may be embodied.

HRTC Partners:

Universidad Politécnica de Madrid
Lunds Tekniska Högskola
Technische Universität Wien
SCILabs Ingenieros.

 Sheet: 3 of 18

 Reference: IST37652/090 Deliverable D3.7
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Release Sheet (1)

Release: 0.1 Draft
Date: 2003-09-29
Scope Initial version
Sheets All

Release: 1.0 Final
Date: 2003-10-23
Scope Final version
Sheets All

 Sheet: 4 of 18

 Reference: IST37652/090 Deliverable D3.7
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Table of Contents

1 Introduction__ 5

2 Testbed experiment ___ 5
2.1 Low-level vision___6
2.2 Ball trajectory estimation__8
2.3 Trajectory generation __9

3 Testbed robot controller ____________________________________ 10

4 RCT hard real-time requirements _____________________________ 11

5 CORBA viewpoint__ 12
4.1 HRT in core CORBA__12
4.2 RT-CORBA and OCI__13

6 CORBA OCI TN transport implementation ______________________ 15

7 References ___ 18

 Sheet: 5 of 18

 Reference: IST37652/090 Deliverable D3.7
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

1 Introduction
This document describes the testbed experiment (catching a thrown ball)
together with all equipment used for the experiment. It does not describe the
software used in the experiment (HRT software D3.5, SRT software D3.4) and
the different tests and measurements that have been made on the testbed
(testing D3.6).

2 Testbed experiment
The purpose of the experiment is to catch a thrown object using a 6-DOF
industrial robot. A stereo vision system estimates the ball trajectory and a
predicted catch point. The experiment was originally developed (without
HRTC extensions) as a PhD student project at Dept. of Automatic Control by
PhD Bo Lincoln (bo.lincoln@control.lth.se) and PhD student Johan Bengtsson
(johan.bengtsson@control.lth.se).

Figure 1: Experimental setup showing the two digital cameras mounted on the wall with
the Irb-2000 robot ready to catch the thrown ball.

 Sheet: 6 of 18

 Reference: IST37652/090 Deliverable D3.7
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

The experiment setup consists of an ABB Irb-2400 industrial robot and two
digital video cameras calibrated to Cartesian space. The two cameras are placed
on a wall behind the robot in stereo configuration, facing the throwing person.
Included in the vision subsystem are three computers, each with one dedicated
task. The images from the cameras are sent through an IEEE 1394 network to
the low-level vision computer. From this computer, image feature points are
sent to the ball trajectory estimation computer, located on a TCP/IP network.
This computer in turn sends a predicted catch point to a third computer which
calculates a robot reference trajectory. Finally, the trajectory is sent to the robot
control system through a TCP/TN network bridge.

Figure 2: The vision subsystem runs on three different computers (excluding the TN bridge
which is run on a separate Linux/RTAI machine). To the right, the information flow in the
vision subsystem is shown.

2.1 Low-level vision
The low-level vision computer receives 2 separate 30 Hz streams of 320x240
pixel YUV images from two digital cameras. Green color spots of a specific size
are extracted as 2D feature points. Feature points are sent at 30 Hz rate to the
ball trajectory estimation computer using TCP/IP.

 Sheet: 7 of 18

 Reference: IST37652/090 Deliverable D3.7
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Figure 3: A typical camera image with pixels in the detection color interval (greenish) shown
in white in the right image. All patches of more than 25 pixels are considered a feature and
marked in red (in this case only the ball). The color thresholding technique is, as expected,
quite noisy. The over-exposure is intentional as the images are taken towards the window.

The feature extraction subsystem is conceptually simple, and implemented in C
on a PC computer to be able to process the images from two cameras at 30 Hz.

Features are extracted using an orthogonal color interval in the YUV color space
(which is delivered from the cameras). For the experiment, the selected color
interval is centered around green hues. This thresholding technique is usually
quite sensitive to light and noise, and therefore a wide color interval has been
chosen to ensure that the tracking object is included. The green interval is
defined as

135
120

15060

<
<

<<

V
U

Y

for Y, U, and V values between 0 and 255.

A flood-fill algorithm is applied to the thresholded image, calculating the center
points of all connected patches of “green” pixels. A patch must consist of a
minimum number of pixels to be valid (most often 25 pixels in a 320x240
image). This removes most of the noise-like outliers.

It should be mentioned that the robot lab is located in a room with highly
varying light conditions (from only artificial light to direct sun light). This is a
very tough environment for any vision system, but the vision system appears
robust. For extreme variations the aperture of the cameras need to be adjusted,
but normally the automatic gain of the cameras handle it.

 Sheet: 8 of 18

 Reference: IST37652/090 Deliverable D3.7
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

The center points of all patches in all cameras are sent to an Extended Kalman
Filter (EKF), which has a dynamical model for free-falling objects. The EKF will
determine if the image features belong to any of the tracked objects, and, if so,
use them as measurements.

2.2 Ball trajectory estimation
The ball trajectory is continuously estimated in real-time using the
accumulating number of available samples before the ball is caught. As new
estimates become available, the catch trajectory is updated accordingly. An
extended Kalman filter is applied to estimate the free-fall parabola of the ball.
The estimate is used to predict a potential ball catch point and if the catch point
is close enough to the robot gripper a robot catch trajectory is sent to the robot
controller.

The potential catch point is located in a 2D-plane in the robot workspace. The
plane is located such that mostly joints 2 and 3 in the robots are used to reach
the catch point.

Figure 4: The trajectory of throw 1 marked in blue, with prediction trajectories sent to the
robot in red. Black square marks the working area of the robot, and green circle marks the

 Sheet: 9 of 18

 Reference: IST37652/090 Deliverable D3.7
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

start of the throw (the wobbly part is when the ball is in the thrower's hand).

2.3 Trajectory generation
The robot catch trajectory is generated based on the latest predicted potential
catch point (converted to robot joint space), as well as maximum robot joint
accelerations and velocities. As the catch point is updated at 30 Hz, the
trajectory is also re-calculated at this frequency. Typically the potential catch
point converges against the real catch point as the ball approaches the cameras
and the robot. In the current setup the first prediction is usually available about
0.5s before the catch. The robot controller is fed with sub-trajectories from the
latest estimated catch trajectory. Sub-trajectories (currently consisting of 6 via-
points) is sent to the controller at the rate of the vision system (30 Hz).

Figure 5: Velocity references for joints 2 and 3 for two different throws. Blue line (starting
with negative slope) corresponds to joint 2, and green corresponds to joint 3.

Figure 4 shows a typical estimated trajectory from the tracking systems. The
estimated trajectory is shown in blue, and the predicted trajectories from

 Sheet: 10 of 18

 Reference: IST37652/090 Deliverable D3.7
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

different points in time are shown in red. As can be seen, the variance of the hit
point estimation is quite small. For this throw, the first coordinate is sent to the
robot about 14 frames before the ball hits the robot. This corresponds to about
0.47 seconds, which is most often enough for the robot to move to a hit point
within 0.5 meters. The whole ball trajectory is about 0.7 seconds long for this
throw.

3 Testbed robot controller
The ABB Irb2000 robot is controlled through an open controller (which is not
ABB original) developed at Dept. of Automatic control. The control system
consists of cascaded PID controllers with velocity feed-forward typically
running at 8 (or 4 in some tests) kHz.

The testbed robot controller is built from four computer nodes. A distributed
system is formed where three of the nodes communicate through switched
Ethernet. From a control perspective a closed loop is formed by measuring
current joint angles (resolver), calculating reference joint torques (controller)
and driving joint motors (actuator).

The resolver and actuator computer nodes consist of Etrax computers running
Linux. The controller node is implemented on two PPC MVME cards running
Linux and a proprietary RTOS called Stork (developed at Dept. of Automatic
Control). The Stork PPC card acts as slave against the Linux PPC card. Stork
PPC and Linux PPC communicates through shared memory over the VME bus.

 Sheet: 11 of 18

 Reference: IST37652/090 Deliverable D3.7
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Figure 6: The robot controller together with the vision subsystem.

From an extrinsic perspective the robot controller expects to receive trajectories
consisting of a vector of time-stamps, joint positions and joint velocities for
joints 1-6. It is possible to divide a trajectory into several subtrajectories which
are sent gradually to the controller. Thus, the end-point of the trajectory does
not need to be known at the time the trajectory is started. This fact is utilized in
the testbed experiment.

In the current setup the testbed experiment runs OCI-RT-ORBs on all nodes
except the Etrax computers. For the moment it is not possible to run the TN
driver on the Etrax:es due to Linux/RTAI problems, and therefore not the TN
OCI transport. The old RT-system is therefore still used on the Etrax:es. On the
other hand, all computer nodes connected through switched Ethernet have been
running ORBs communicating through IIOP, so there seem to be no inherent
problem with using Corba technology on Etrax:es.

4 RCT hard real-time requirements
The base frequency of the controller is adjustable up to 10 kHz, but typical
sampling rates are 4 or 8 kHz. The controller implementation assumes the
maximum latency from resolver to actuator to be one sample. This implies a
maximum latency of 250 and 125 microseconds. The TN transport consumes a
total of 100 microseconds in communication latency (resolver to controller and

 Sheet: 12 of 18

 Reference: IST37652/090 Deliverable D3.7
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

controller to actuator) leaving 150 and 25 microseconds respectively for
allowable computational delay. On the faster MVME-2400 boards, 25
microseconds is also the CPU time needed for performing the joint servo
control. Hence, the likely overhead of full CORBA would not be acceptable, but
the hybrid communication approach used permits a sufficiently fast processing.

5 CORBA viewpoint
Based on the experience and studies during the RCT implementation, this
section contains a short discussion on key concepts in CORBA, RT-CORBA and
OCI, from the viewpoint of approaches to HRT-CORBA support.

4.1 HRT in core CORBA
The philosophy behind CORBA is to provide location transparency for objects
located across a network. For small embedded systems location transparency in
itself is a problematic concept. For these systems the communication pattern is a
big part of the system design, maybe bigger than the software design itself. The
design is often based on a holistic system analysis. In essence, current CORBA
is good at scaling up for enterprise type of systems, but what about scaling
down to small distributed embedded systems.

It can be argued that HRT CORBA should be based on core CORBA or
minimum-CORBA, and not RT-CORBA. The argumentation for RT-CORBA
goes like the following from the Real-Time CORBA Specification v1.1 (p1-5):
“Interoperability may not be as important for a Real-time CORBA system as for a
CORBA system because Real-Time dictates a measure of system-wide design control to
deliver predictability and therefore also some control over which ORB to deploy.”
The system-wide design approach is understandable, and even necessary, if
distributed RT computing is based on the same models and assumptions as
non-distributed computing is. For instance, thread scheduling based on
priorities is somewhat problematic but useful within a single CPU, but simply
using the same approach for distributed RT systems creates according to our
RCT experience two types of problems:

1. Priorities are global, preventing proper modularisation. That is, the
timing of each object depends on the system globally.

2. The management of priorities (in IDL and implementation) adds
complexity and memory needs, decreasing portability to small system.

In a wider perspective, both priority and resource management as defined in
RT-CORBA can be questioned for HRT purposes. A time-triggered approach (in
design and/or communication) appears to be more appropriate.

 Sheet: 13 of 18

 Reference: IST37652/090 Deliverable D3.7
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

There is to our knowledge no conclusion on this issue, but assuming the extra
RT-CORBA features were omitted, there are some core CORBA details that
deserves some attention from an embedded systems point of view:

� Some interesting concepts exists in the Corba specification, for example
transient IORs holding location details for making direct connection to a
server, bypassing any ORB daemon process, which could potentially be
borrowed for hard-RT purposes and provide a very useful concept for
incorporating hard-RT into the specification in a graceful, minimal
change kind of way. Unfortunately (at least for transient IORs) the ORB
utilization of transient IORs is implementation specific, thereby not
providing a stable platform to base hard-RT implementation upon.

� Corba 3.0 specification section 13.6.10.1: “Other transport protocols can
be explicitly specified when they become available.”

� Corba 3.0 specification section 13.6.10.6: “New protocols can be added to
corbaloc as required. Each new protocol must implement the
<future_prot_addr> component of the URL and define a described in
Section 13.6.10.1, “corbaloc URL” on page 13-24.”

� The specification of human readable object references (corbaloc) allows
explicit definition of new transport protocols as they become available.
Still allowing for new protocols seems to be an implementation issue.

There is also the concept of Interceptors [pureCORB, p459]: “Interceptors provide
hooks into the ORB or interception points within the request/reply sequence,…” “They
are a means of structuring an ORB’s interactions with extra-ORB services.” and on
page 460 it continues “IOR Interceptors are concerned with adding service specific
information related to an object or server into tagged components of the profile in the
IOR when the IOR is created.”

RT-CORBA utilizes core CORBA to incorporate RT according to the following.
Real-Time CORBA Specification v1.1, p1-5: “Instead of specifying an RT-IOP, this
specification uses the ‘standard extension’ mechanisms provided by IIOP. These
mechanisms are GIOP ServiceContexts, IOR Profiles, and IOR Tagged Components.”
Therefore, RT-CORBA gets bigger than core CORBA which is already (in many
cases) too big for embedded systems. From this point of view, minimum-
CORBA appears to be a more appropriate basis for HRT-CORBA. To freely
explore possibilities, however, further experiments towards HRT-CORBA are
within the RCT based on (but not using all of) RT-CORBA and the Open
Communication Interface (OCI).

4.2 RT-CORBA and OCI

 Sheet: 14 of 18

 Reference: IST37652/090 Deliverable D3.7
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

RT-CORBA offers selection and configuration of transport protocols. Not to be
limited to the use of a few standardised protocols, there is support for
implementation specific communication, in terms of CORBA services and the
OCI. Some examples are:

• RT-CORBA Specification v1.1, p1-10: “New policy types are defined to
configure the following server-side RT CORBA features:

– “server-side thread propagation...”
– “priority model...”
– “protocol selection”
– “protocol configuration”

• RT-CORBA Specification v1.1, p1-11: “Real-Time CORBA defines a
number of policies that may be applied on the client-side of CORBA
applications.”

– “creation of priority-banded sets of connections between clients
and servers.”

– “the creation of a non-multiplexed connection to a server.”
– “client-side protocol selection and configuration.”

• RT-CORBA Specification v1.1, p2-30: “ProtocolProperties should be
defined for any other protocols usable with an RT-CORBA
implementation, but unless they are standardized in an OMG
specification their name and contents will be implementation specific.
ProtocolProperties for other protocols may be standardized in the
future,...”

• RT-CORBA Specification v1.1, p2-30: “The properties are provided to
allow the configuration of protocol specific configurable parameters.
Specific protocols have their own protocol configuration interface that
inherits from the RTCORBA::ProtocolProperties interface.”

• RT-CORBA defines the TCPProtocolProperties interface.

From a CORBA application implementation viewpoint RT-CORBA provides
the needed set of definitions to accomplish bounded response times for a
distributed application, and even hard-RT systems if the communication, the
RTOS scheduling, and the ORB are appropriate for hard RT, and if the complete
system is properly engineered concerning priorities and the like.

When it comes to the system and implementation specific techniques for real-
time transports, however, RT-CORBA does not help concerning the
implementation of such communication or its connection to the ORB. Here OCI
comes in by providing an API for pluggable transports as stated in the OCI
specification, p3-7: “The Open Communications Interface (OCI) defines common
interfaces for pluggable transports. It supports connection-oriented, reliable “byte-
stream” transports.”

 Sheet: 15 of 18

 Reference: IST37652/090 Deliverable D3.7
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Furthermore, according to the OCI specification, p3-7: “Non-reliable or non-
connection-oriented protocols can also be used if the transport plug-in itself takes care of
reliability and connection management.”

The OCI specification provides access to both the message layer and the stream
layer. With the Scilab ORB used in the RCT we used the stream-based OCI. This
makes it difficult to replace GIOP messages with messages more suitable for RT
communication, but the need for that was not clear until the ThrottleNet
implementation was tested.

From a RTCorba perspective the TN transport should probably be defined with
an ProtocolProperty, but since RT-CORBA does not deal with transports it is
necessary to combine it with the OCI specification.

6 CORBA OCI TN transport implementation
To accomplish ORB-aware hard-RT communication, the approach as described
in the hard-RT implementation is to let the ORB run on the user level, whereas
the hard-RT part of the application (including its TN communication) resides in
kernel space. This so called hybrid approach to HRT-CORBA, see Figure 7,
combines the features of user-space with the predictability of kernel-space. The
TN tunneling of TCP/IP gives the benefit that core CORBA using IIOP works
unchanged. In application where user-space execution, e.g. on some other OS,
gives sufficient RT properties, there is also the option to make use of TN via
OCI. This was also implemented, and also serving as an example of TN-OCI
integration for TNIOP, a part of the test application is listed in Figure 8.

 Sheet: 16 of 18

 Reference: IST37652/090 Deliverable D3.7
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Figure 7 The hybrid approach of the hard-RT RCT implementation, with hard-RT parts of
the application runningin Linux kernel space based on the RTAI.

// Get RTORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::Object_var obj = orb->resolve_initial_references("RTORB");
RTCORBA::RTORB_var rtorb = RTCORBA::RTORB::_narrow(obj.in());

// Register appropriate transports with OCI
CORBA::Object_var confact_obj =

rtorb -> resolve_initial_references("OCIConFactoryRegistry");
OCI::ConFactoryRegistry_var ConFactReg =

OCI::ConFactoryRegistry::_narrow(confact_obj.in());
// Build TNIOP transport
OCI_TNIOP::TNIOP_ConFactory* TNIOP_confactory =

new OCI_TNIOP::TNIOP_ConFactory();
ConFactReg -> add_factory(TNIOP_confactory);

 Sheet: 17 of 18

 Reference: IST37652/090 Deliverable D3.7
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

// Load Stringified Object Reference (from file for test purposes)
FILE *fIOR;
char ServerIOR[1024];
if ((fIOR = fopen("Servo.IOR", "r")) == NULL){

fprintf(stderr, "Can not open input file Servo.IOR.\n");
return -1;

}
fgets(ServerIOR, 1024, fIOR);
fclose(fIOR);

// String to object.
CORBA::Object_var object = orb->string_to_object(ServerIOR);
if(CALL_IS_NIL(obj.in()))

{
cerr << "Nil data reference" << endl;
throw 0;
}

//Narrow to Servo_var
RCT::Servo_var srv0 =RCT::Servo::_narrow(object.in());

//Apply client protocol policy
RTCORBA::ProtocolList protolist;
RTCORBA::Protocol proto;

proto.protocol_type=TAG_ID_TNIOP;//TAG_ID_IIOP if we want IIOP
proto.orb_protocol_properties = RTCORBA::ProtocolProperties::_nil();
proto.transport_protocol_properties = RTCORBA::ProtocolProperties::_nil();
protolist+=proto;

RTCORBA::ClientProtocolPolicy_ptr ClProPol=
rtorb->create_client_protocol_policy(protolist);

CORBA::PolicyList pl;
pl+=ClProPol;

CORBA::Object_var object2 =
srv0->_set_policy_overrides(pl, CORBA::SET_OVERRIDE);

RCT::Servo_var TNIOP_srv =
RCT::Servo::_narrow(object2.in());

CORBA::PolicyList plist;

TNIOP_srv->validate_connection(plist);

RCT::Servo_var srv = TNIOP_srv;

// Obtaining target joint pose q1..q6 from vision system, omitted here..

// Set Servo reference
srv->setTargetRef(q1,q2,q3,q4,q5,q6);

// etc. etc.

Figure 8 Using the TN transport in soft RT application code (user space).

 Sheet: 18 of 18

 Reference: IST37652/090 Deliverable D3.7
 Date: 2003-10-23 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

The implementations, except for the ICa ORB itself, are available on request to
any of the authors of this report. As documented in the RCT test report, the
communication performance when using TNIOP (i.e. TN via the ORB on user
space), similar to the listing in Figure 8, is not sufficient for the robot joint
control (4 or 8 kHz). Instead, the hybrid approach, as depicted in Figure 7,
provides the desired performance.

7 References
[CORB] Common Object Request Broker Architecture (CORBA/IIOP)
Specification 3.01, Object Management Group, Needham, MA, U.S.A.,
2002, http://www.omg.org

[RTCORB] OMG: Real-Time CORBA 1.0 Specification, http://www.omg.org

[minCORB] OMG: Minimum CORBA Specification, version 1.0,
http://www.omg.org/docs/formal/02-08-01.pdf

[pureCORB] Fintan Bolton: “Pure CORBA”, Sam’s Publishing, 2002.

[InCORB] Mowbray, T. J. and W. A. Ruh: “Inside CORBA”, Addison Wesley,
1997.

