
www.hardrealtimecorba.org

IST-2001-37652

Hard Real-time CORBA

 Title TrueTime and Jitterbug

 Authors Anton Cervin(LTH)
Bo Lincoln (LTH)
Dan Henriksson(LTH)
Karl-Erik Årzén (LTH)

 Reference IST37652/057

 Date 2003-02-28

 Release 1.0

 Status Final

 Clearance Consortium

 Partners Universidad Politécnica de Madrid
Lunds Tekniska Högskola
Technische Universität Wien
SCILabs Ingenieros

 Sheet: 2 of 3

Reference: IST37652/057
 Date: 2003-02-28 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Summary Sheet

IST Project 2001-37652
HRTC
Hard Real-time CORBA

TrueTime and Jitterbug

Abstract:

The present document is an additional deliverable describing the analysis
and simulation tools TrueTime and Jitterbug that will be applied to
CORBA-based networked control loops within the HRTC project.

Copyright

This is an unpublished document produced by the HRTC Consortium.
The copyright of this work rests in the companies and bodies listed below.
All rights reserved. The information contained herein is the property of
the identified companies and bodies, and is supplied without liability for
errors or omissions. No part may be reproduced, used or transmitted to
third parties in any form or by any means except as authorised by contract
or other written permission. The copyright and the foregoing restriction
on reproduction, use and transmission extend to all media in which this
information may be embodied.

HRTC Partners:

Universidad Politécnica de Madrid
Lunds Tekniska Högskola
Technische Universität Wien
SCILabs Ingenieros.

 Sheet: 3 of 3

Reference: IST37652/057
 Date: 2003-02-28 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Release Sheet (1)

Release: 1.0 Final
Date: 2003/02/28
Scope Initial version
Sheets All

www.hardrealtimecorba.org

Table of Contents
1 Introduction__ 5

2 Appendices___ 7

www.hardrealtimecorba.org

1 Introduction
Jitterbug is a new Matlab-based toolbox that makes it possible to compute a
quadratic performance criterion for a linear control system under various timing
conditions. The tool can also compute the spectral density of the signals in the
system. Using the toolbox, one can easily and quickly assert how sensitive a
control system is to delay, jitter, lost samples, etc., without resorting to simulation.
The tool is quite general and can also be used to investigate jitter-compensating
controllers, aperiodic controllers, and multi-rate controllers.

The new Matlab/Simulink-based tool TrueTime facilitates simulation of the
temporal behavior of a networked control loops consisting of nodes with
multitasking real-time kernel executing controller tasks, and communication
networks. The tasks are controlling processes that are modeled as ordinary
Simulink blocks. Different task scheduling policies may be used (e.g., priority-
based preemptive scheduling, static cyclic scheduling, and earliest-deadline-first
(EDF) scheduling) and different communication protocols can be used (e.g.,
Ethernet, CAN, and TDMA).

TrueTime makes it possible to study more general and detailed timing models of
computer-controlled systems. The toolbox offers two Simulink blocks: a Real-
Time Kernel block and a Real-Time Network block. The delays in the control
loop are captured by simulation of the execution of tasks in the kernel and the
transmission of messages over the network.

Within HRTC Jitterbug and Truetime will be used to analyze and simulate
CORBA-based networked control loops. The scenarios that will be investigated
are:

• CORBA over IIOP
• R-T CORBA over IIOP
• HRT CORBA over switched Ethernet
• HRT CORBA over TTP

This deliverable consists of three parts:

• An IEEE Control Systems Magazine article describing the two toolboxes.
• The reference manual for Jitterbug.
• The reference manual for Truetime.

www.hardrealtimecorba.org

The three parts are provided as separate appendices. The two toolboxes can be
downloaded from http://www.control.lth.se/~lincoln/jitterbug/ and from
http://www.control.lth.se/~dan/truetime/

www.hardrealtimecorba.org

2 Appendices
I. Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eker, Karl-Erik Årzén

(2003): Analysis and Simulation of Controller Timing, IEEE Control
Systems Magazine, June 2003. To appear.

II. Anton Cervin and Bo Lincoln (2003): Jitterbug Reference Manual, Dept of
Automatic Control, Lund Institute of Technology, ISSN 0280-5316, ISRN
LUTFD2/TFRT—7604—SE

III. Dan Henriksson and Anton Cervin (2002): TrueTime v1.04 – Reference
Manual, Dept of Automatic Control, Lund Institute of Technology

To appear in IEEE Control Systems Magazine, 2003.

Analysis and Simulation of Controller Timing

Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eker, Karl-Erik Årzén

Department of Automatic Control
Lund Institute of Technology

Box 118, SE-221 00 Lund, Sweden
anton@control.lth.se

Abstract

The article presents two MATLAB-based tools for analysis and simulation of real-time con-
trol systems: JITTERBUG and TRUETIME. JITTERBUG allows the user to compute a quadratic
performance criterion for a linear control system under various timing conditions. The
control system is described using a number of continuous- and discrete-time linear sys-
tems. A stochastic timing model with random delays is used to describe the execution
of the system. The tool can also be used to investigate aperiodic controllers, multi-
rate controllers, and jitter-compensating controllers. TRUETIME facilitates event-based
co-simulation of a multitasking real-time kernel containing controller tasks and the con-
tinuous dynamics of controlled plants. The simulations capture the true, timely behav-
ior of real-time controller tasks and communication networks, and dynamic control and
scheduling strategies can be evaluated from a control performance perspective. The con-
trollers can be implemented as Matlab functions, C functions, or ordinary discrete-time
Simulink blocks. A number of examples that illustrate the use of the tools are given.

Introduction

Control systems are becoming increasingly complex from the perspectives of both control
and computer science. Today, even seemingly simple embedded control systems often contain
a multitasking real-time kernel and support networking. At the same time, the market
demands that the cost of the system be kept at a minimum. For optimal use of computing
resources, the control algorithm and the control software designs need to be considered
at the same time. For this reason, new, computer-based tools for real-time and control
co-design are needed.

Many computer-controlled systems are distributed systems consisting of computer nodes
and a communication network connecting the various systems. It is not uncommon for
the sensor, the actuator, and the control calculations to reside on different nodes, as in
vehicle systems, for example. This gives rise to networked control loops (see [1]). Within
the individual nodes, the controllers are often implemented as one or several tasks on a
microprocessor with a real-time operating system. Often the microprocessor also contains
tasks for other functions (e.g., communication and user interfaces). The operating system
typically uses multiprogramming to multiplex the execution of the various tasks. The CPU
time and the communication bandwidth can hence be viewed as shared resources for which
the tasks compete.

Digital control theory normally assumes equidistant sampling intervals and a negligible
or constant control delay from sampling to actuation. However, this can seldom be achieved
in practice. Within a node, tasks interfere with each other through preemption and blocking
when waiting for common resources. The execution times of the tasks themselves may be
data-dependent or may vary due to hardware features such as caches. On the distributed
level, the communication gives rise to delays that can be more or less deterministic de-
pending on the communication protocol. Another source of temporal nondeterminism is the
increasing use of commercial off-the-shelf (COTS) hardware and software components in

1

real-time control (e.g., general-purpose operating systems such as Windows and Linux and
general-purpose network protocols such as Ethernet). These components are designed to
optimize average-case rather than worst-case performance.

The temporal nondeterminism can be reduced by the proper choice of implementation
techniques and platforms. For example, time-driven static scheduling improves the de-
terminism, but at the same time it reduces the flexibility and limits the possibilities for
dynamic modifications. Other techniques of similar nature are time-driven architectures
such as TTA [2] and synchronous programming languages such as Esterel, Lustre, and
Signal [3]. Even with these techniques, however, some level of temporal nondeterminism is
unavoidable.

The delay and jitter introduced by the computer system can lead to significant per-
formance degradation. To achieve good performance in systems with limited computer re-
sources, the constraints of the implementation platform must be taken into account at
design time. To facilitate this, software tools are needed to analyze and simulate how the
timing affects the control performance. This article describes two such tools: JITTERBUG1

and TRUETIME2.
JITTERBUG is a MATLAB-based toolbox that makes it possible to compute a quadratic

performance criterion for a linear control system under various timing conditions. The tool
can also compute the spectral density of the signals in the system. Using the toolbox, one can
easily and quickly assert how sensitive a control system is to delay, jitter, lost samples, etc.,
without resorting to simulation. The tool is quite general and can also be used to investigate
jitter-compensating controllers, aperiodic controllers, and multi-rate controllers. The main
contribution of the toolbox, which is built on well-known theory (LQG theory and jump
linear systems), is to make it easy to apply this type of stochastic analysis to a wide range
of problems.

The use of JITTERBUG assumes knowledge of sampling period and latency distributions.
This information can be difficult to obtain without access to measurements from the true
target system under implementation. Also, the analysis cannot capture all the details and
nonlinearities (especially in the real-time scheduling) of the computer system. A natural
approach is to use simulation instead. However, today’s simulation tools make it difficult to
simulate the true temporal behavior of control loops. What is normally done is to introduce
time delays in the control loop representing average-case or worst-case delays. Taking a
different approach, the MATLAB/Simulink-based tool TRUETIME facilitates simulation of the
temporal behavior of a multitasking real-time kernel executing controller tasks. The tasks
are controlling processes that are modeled as ordinary Simulink blocks. TRUETIME also
makes it possible to simulate simple models of communication networks and their influence
on networked control loops. Different scheduling policies may be used (e.g., priority-based
preemptive scheduling and earliest-deadline-first (EDF) scheduling). (For more on real-
time scheduling, see [4].)

TRUETIME can also be used as an experimental platform for research on dynamic real-
time control systems. For instance, it is possible to study compensation schemes that adjust
the control algorithm based on measurements of actual timing variations (i.e., to treat the
temporal uncertainty as a disturbance and manage it with feedforward or gain schedul-
ing). It is also easy to experiment with more flexible approaches to real-time scheduling of
controllers, such as feedback scheduling [5]. There the available CPU or network resources
are dynamically distributed according the current situation (CPU load, the performance of
the different loops, etc.) in the system.

Comparison of the Tools

JITTERBUG offers a collection of MATLAB routines that allow the user to build and analyze
simple timing models of computer-controlled systems. A control system is built by connect-
ing a number of continuous-time and discrete-time systems. For each subsystem, optional
noise and cost specifications may be given. In the simplest case, the discrete-time systems
are assumed to be updated in order during the control period. For each discrete system, a

1Available at http://www.control.lth.se/˜dan/truetime
2Available at http://www.control.lth.se/˜lincoln/jitterbug

2

random delay (described by a discrete probability density function) can be specified that
must elapse before the next system is updated. The total cost of the system (summed over all
subsystems) is computed algebraically if the timing model system is periodic or iteratively
if the timing model is aperiodic.

To make the performance analysis feasible, JITTERBUG can only handle a certain class
of system. The control system is built from linear systems driven by white noise, and the
performance criterion to be evaluated is specified as a quadratic, stationary cost function.
The timing delays in one period are assumed to be independent from the delays in the
previous period. Also, the delay probability density functions are discretized using a time-
grain that is common to the whole model.

Even though a quadratic cost function can hardly capture all aspects of a control loop,
it can still be useful when one wants to quickly judge several possible controller implemen-
tations against each other. A higher value of the cost function typically indicates that the
closed-loop system is less stable (i.e., more oscillatory), and an infinite cost means that the
control loop is unstable. The cost function can easily be evaluated for a large set of design
parameters and can be used as a basis in the control and real-time design.

The MATLAB/Simulink-based tool TRUETIME makes it possible to study more general
and detailed timing models of computer-controlled systems. The toolbox offers two Simulink
blocks: a Real-Time Kernel block and a Real-Time Network block. The delays in the control
loop are captured by simulation of the execution of tasks in the kernel and the transmission
of messages over the network.

Being a simulation tool, TRUETIME is not restricted to evaluation of a quadratic perfor-
mance criterion, but can of course be used to evaluate any time-domain behavior of the
control loop. A drawback is that if there are many random variables, very long simulations
may be needed to draw conclusions about the system.

The Simulink blocks are event-driven, so there is no need to specify a time-grain for the
model. The execution of a task can be simulated on an arbitrarily fine timescale by dividing
the code into segments. Typically, it is enough to divide a control task into a few segments
(for instance, Calculate and Update) to capture its timely behavior. The code segments
can be likened to the discrete-time subsystems in JITTERBUG. A difference is that they can
contain any user-written code (including calls to real-time primitives) and not just linear
update equations.

Finally, although JITTERBUG can only analyze the stationary behavior of a control loop,
TRUETIME can be used to investigate transient responses in conjunction with, for example,
temporary CPU overloads. It can also be used to study systems where the controller and
scheduling parameters are adapted to the current situation in the real-time control system.

Networked Control System

As a recurring example in this article (among other examples), we will study a control
loop that is closed over a communications network. Closing control loops over networks
is becoming increasingly popular in embedded applications because of its flexibility, but it
also introduces many new problems. From a control perspective, the computer system will
introduce (possibly random) delays in the control loop. There is also the potential problem of
lost measurement signals or control signals. From a real-time perspective, the first problem
is figuring out the temporal constraints (deadlines, etc.) of the different tasks in the system,
and then scheduling the CPUs and the network such that all constraints are met during
runtime.

In the example, we will study the setup shown in Fig. 1. In our control loop, the sensor,
the actuator, and the controller are distributed among different nodes in a network. The
sensor node is assumed to be time-driven, whereas the controller and actuator nodes are
assumed to be event-driven. At a fixed period h, the sensor samples the process and sends
the measurement sample over the network to the controller node. There the controller
computes a control signal and sends it over the network to the actuator node, where it
is subsequently actuated. This kind of setup was studied in [6], where an optimal, delay-
compensating LQG controller was derived. Here we are more interested in the interplay
between control and real-time design and choose to study a simple process and controller.

3

Network

Controller

Sensor

Node

Node
Actuator

Node

DC Servo

Disturbance
Node

Figure 1 The networked control system is used as a recurring example in the article.

We will assume that the process to be controlled is a DC servo and that the controller is a
simple PD controller. In the JITTERBUG section, we will study the impact of sampling period,
delay, and jitter on the control loop performance. A simple jitter-compensating controller is
introduced where the parameters of the PD controller are adjusted according to the actual
measured delay from the sensor node to the controller node. The delay model at this point
is very simple: the delay from one node to another is described by a uniformly distributed
random variable. In the TRUETIME section, a more detailed delay model is obtained by
simulating the execution of tasks in the nodes and scheduling of messages in the network.
Long random delays are caused by interfering traffic generated by a disturbance node in
the network. It will be seen that the behavior in the simulations agrees with the results
obtained by the more simplistic analysis.

Analysis Using Jitterbug

In JITTERBUG, a control system is described by two parallel models: a signal model and a
timing model. The signal model is given by a number of connected, linear, continuous- and
discrete-time systems. The timing model consists of a number of timing nodes and describes
when the different discrete-time systems should be updated during the control period.

An example of a JITTERBUG model is shown in Fig. 2, where a computer-controlled system
is modeled by four blocks. The plant is described by the continuous-time system G, and
the controller is described by the three discrete-time systems H1, H2, and H3. The system
H1 could represent a periodic sampler, H2 could represent the computation of the control
signal, and H3 could represent the actuator. The associated timing model says that, at the
beginning of each period, H1 should first be executed (updated). Then there is a random
delay τ1 until H2 is executed, and another random delay τ2 until H3 is executed. The delays
could model computational delays, scheduling delays, or network transmission delays.

Signal Model
A continuous-time system is described by

ẋc(t) = Axc(t) + Bu(t) + vc(t)
y(t) = Cxc(t),

where A, B , and C are constant matrices, and vc is a continuous-time white noise process
with covariance R1c. (In the toolbox, it is also possible to specify discrete-time measurement
noise. This will be interpreted as input noise at any connected discrete-time system.) The
cost of the system is specified as

Jc = lim
T→∞

1
T

∫ T

0

 xc(t)
u(t)

T

Qc

 xc(t)
u(t)

 dt,

4

H1(z)
H1(z)

H2(z)
H2(z)

H3(z)

H3(z)

G(s)
yu

v
1

2

3

τ1

τ2

(a) (b)

Figure 2 A simple JITTERBUG model of a computer-controlled system: (a) signal model and (b) timing
model. The process is described by the continuous-time system G(s) and the controller is described by
the three discrete-time systems H1(z), H2(z), and H3(z), representing the sampler, the control algorithm,
and the actuator. The discrete systems are executed according to the periodic timing model.

where Qc is a positive semidefinite matrix.
A discrete-time system is described by

xd(tk+1) = Φxd(tk) + Γu(tk) + vd(tk)
y(tk) = Cxd(tk) + Du(tk) + ed(tk),

where Φ, Γ, C, and D are possibly time-varying matrices (see below). The covariance of
the discrete-time white noise processes vd and ed is given by

Rd = E
 vd(tk)

ed(tk)

 vd(tk)
ed(tk)

T

.

The input signal u is sampled when the system is updated, and the state xd and the output
signal y are held between updates. The cost of the system is specified as

Jd = lim
T→∞

1
T

∫ T

0

 xd(t)
u(t)

T

Qd

 xd(t)
u(t)

 dt,

where Qd is a positive semidefinite matrix. Note that the update instants tk need not be
equidistant in time, and that the cost is defined in continuous time.

The total system is formed by appropriately connecting the inputs and outputs of a
number of continuous-time and discrete-time systems. Throughout, MIMO formulations
are allowed, and a system may collect its inputs from a number of other systems. The total
cost to be evaluated is summed over all continuous- and discrete-time systems:

J =
∑

Jc +
∑

Jd.

Timing Model
The timing model consists of a number of timing nodes. Each node can be associated with
zero or more discrete-time systems in the signal model, which should be updated when the
node becomes active. At time zero, the first node is activated. The first node can also be
declared to be periodic (indicated by an extra circle in the illustrations), which means that
the execution will restart at this node every h seconds. This is useful for modeling periodic
controllers and also greatly simplifies the cost calculations.

Each node is associated with a time delay τ , which must elapse before the next node
can become active. (If unspecified, the delay is assumed to be zero.) The delay can be used
to model computational delay, transmission delay in a network, etc. A delay is described by
a discrete-time probability density function

Pτ = [Pτ (0) Pτ (1) Pτ (2) . . .] ,

5

11

22

3

3

4

τ1τ1

τ2∑
τ < t

∑
τ ≥ t

p(2) p(3)

(a) (b)

Figure 3 Alternative execution paths in a JITTERBUG execution model: (a) random choice of path and
(b) choice of path depending on the total delay from the first node.

where Pτ (k) represents the probability of a delay of kδ seconds. The time grain δ is a
constant that is specified for the whole model.

In periodic systems, the execution is preempted if the total delay
∑

τ in the system
exceeds the period h. Any remaining timing nodes will be skipped. This models a real-time
system where hard deadlines (equal to the period) are enforced and the control task is
aborted at the deadline.

An aperiodic system can be used to model a real-time system where the task periods
are allowed to drift if there are overruns. It could also be used to model a controller that
samples “as fast as possible” instead of waiting for the next period.

Node- and Time-Dependent Execution The same discrete-time system may be updated
in several timing nodes. It is possible to specify different update equations (i.e., different
Φ, Γ, C and D matrices) in the various cases. This can be used to model a filter where
the update equations look different depending on whether or not a measurement value is
available. An example of this type is given later.

It is also possible to make the update equations depend on the time since the first node
became active. This can be used to model jitter-compensating controllers for example.

Alternative Execution Paths For some systems, it is desirable to specify alternative
execution paths (and thereby multiple next nodes). In JITTERBUG, two such cases can be
modeled (see Fig. 3):
(a) A vector n of next nodes can be specified with a probability vector p. After the delay,

execution node n(i) will be activated with probability p(i). This can be used to model
a sample being lost with some probability.

(b) A vector n of next nodes can be specified with a timevector t. If the total delay in the
system since the node exceeds t(i), node n(i) will be activated next. This can be used
to model time-outs and various compensation schemes.

Computation of Cost and Spectral Densities
The computation of the total cost is performed in three steps: First, the cost functions, the
continuous-time noise, and the continuous-time systems are sampled using the time-grain
of the model. Second, the closed-loop system is formulated as a jump linear system, where
Markov nodes are used to represent the time-steps in and between the execution nodes.
Third, the stationary variance of all states in the system is calculated.

For periodic systems, the Markov state always returns to the periodic execution node
every h/δ time steps. The stationary variance in the periodic execution node can then be
obtained by solving a linear system of equations. The cost is then calculated over the time
steps in one period. In this case, the cost calculation is fast and exact. It is also straight-
forward to compute the spectral densities of all outputs as observed in the periodic timing
node. For systems without a periodic node, the variance must be computed iteratively. In
both cases, the toolbox will return an infinite cost if the total system is not stable (in the
mean-square sense). More details about the internal workings of JITTERBUG can be found
in [7].

6

G = 1000/(s*(s+1)); Define the process
H1 = 1; Define the sampler
H2 = -K*(1+Td/h*(z-1)/z); Define the controller
H3 = 1; Define the actuator

Ptau1 = [...]; Define delay probability distribution 1
Ptau2 = [...]; Define delay probability distribution 2

N = initjitterbug(delta,h); Set time-grain and period
N = addtimingnode(N,1,Ptau1,2); Define timing node 1
N = addtimingnode(N,2,Ptau2,3); Define timing node 2
N = addtimingnode(N,3); Define timing node 3

N = addcontsys(N,1,G,4,Q,R1,R2); Add plant, specify cost and noise
N = adddiscsys(N,2,H1,1,1); Add sampler to node 1
N = adddiscsys(N,3,H2,2,2); Add controller to node 2
N = adddiscsys(N,4,H3,3,3); Add actuator to node 3

N = calcdynamics(N); Calculate internal dynamics
J = calccost(N); Calculate the total cost

Figure 4 This MATLAB script shows the commands needed to compute the performance index of the
networked control system using JITTERBUG.

The Networked Control System
The first example we will look at is the networked control system introduced earlier. We
will begin by investigating how sensitive the control loop is to slow sampling and delays,
and then we will look at delay and jitter compensation.

The JITTERBUG model of the system was shown in Fig. 2. The DC servo process is given
by the continuous-time system

G(s) = 1000
s(s+ 1) .

The process is driven by white continuous-time input noise. There is assumed to be no
measurement noise.

The process is sampled periodically with the interval h. The sampler and the actuator
are described by the trivial discrete-time systems

H1(z) = H3(z) = 1,

and the discrete-time PD controller is implemented as

H2(z) = −K
(

1+ Td

h
z− 1

z

)
,

where the controller parameters are chosen as K = 1.5 and Td = 0.035. (A real implemen-
tation would include a low-pass filter in the derivative part, but that is ignored here.)

The delays in the computer system are modeled by the two (possibly random) variables
τ1 and τ2. The total delay from sampling to actuation is thus given by τ tot = τ1 + τ2. It
is assumed that the total delay never exceeds the sampling period (otherwise JITTERBUG

would skip the remaining updates).
Finally, we need to specify the control performance criterion to be evaluated. As a cost

function, we choose the sum of the squared process input and the squared process output:

J = lim
T→∞

1
T

∫ T

0

(
y2(t) + u2(t))dt. (1)

An outline of the MATLAB commands needed to specify the model and compute the value
of the cost function are given in Fig. 4.

7

0
20

40
60

80
100

0.001

0.005

0.010
1

1.5

2

2.5

3

Total Delay (in % of h)Sampling Period h

C
os

t J

Figure 5 Example of a cost function computed using JITTERBUG. The plot shows the cost as a function
of sampling period and delay in the networked control system example.

Sampling Period and Constant Delay A control system can typically give satisfactory
performance over a range of sampling periods. In textbooks on digital control, rules of thumb
for sampling period selection are often given. One such rule suggests that the sampling
interval h should be chosen such that

0.2 < ω bh < 0.6,

where ω b is the bandwidth of the closed-loop system. In our case, a continuous-time PD
controller with the given parameters would give a bandwidth of about ω b = 80 rad/s. This
would imply a sampling period of between 2.5 and 7.5 ms. The effect of computational delay
is typically not considered in such rules of thumb, however. Using JITTERBUG, the combined
effect of sampling period and computational delay can be easily investigated. In Fig. 5,
the cost function (1) for the networked control system has been evaluated for different
sampling periods in the interval 1 to 10 milliseconds, and for constant total delay ranging
from 0 to 100% of the sampling interval. As can be seen, a one-sample delay gives negligible
performance degradation when h = 1 ms. When h = 10 ms, a one-sample delay makes the
system unstable (i.e., the cost J goes to infinity).

Random Delays and Jitter Compensation If system resources are very limited (as
they often are in embedded control applications), the control engineer may have to live with
long sampling intervals. Delay in the control loop then becomes a serious issue. Ideally, the
delay should be accounted for in the control design. In many practical cases, however, even
the mean value of the delay will be unknown at design time. The actual delay at run-time
will vary from sample to sample due to real-time scheduling, the load of the system, etc.
A simple approach is to use gain scheduling—the actual delay is measured in each sample
and the controller parameters are adjusted according to precalculated values that have
been stored in a table. Since JITTERBUG allows time-dependent controller parameters, such
delay compensation schemes can also be analyzed using the tool.

In the JITTERBUG model of the networked control system, we now assume that the delays
τ1 and τ2 are uniformly distributed random variables between 0 and τ max/2, where τ max

denotes the maximum round-trip delay in the loop. A range of PD controller parameters
(ranging from K = 1.5 and Td = 0.035 for zero delay to K = 0.78 and Td = 0.052 for 7.5
ms delay) are derived and stored in a table. When a sample arrives at the controller node,
only the delay τ1 from sensor to controller is known, however, so the remaining delay is
predicted by its expected value of τ max/4.

8

0 20 40 60 80 100
1.5

2

2.5

3

3.5

4

4.5

Maximum Total Delay (in % of h)

C
os

t J

No Delay Compensation

Dynamic Delay Compensation

Figure 6 Cost as a function of maximum delay in the networked control system example with random
delays.

Frequency (rad/s)

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

−50

0

50

e

x

Figure 7 Bode diagrams of the systems generating the good signal x and the disturbance signal e.

The sampling interval is set to h = 10 ms to make the effects of delay and jitter clearly
visible. In Fig. 6, the cost function (1) has been evaluated with and without delay compen-
sation for values of the maximum delay ranging from 0 to 100% of the sampling interval.
The cost increases much more rapidly for the uncompensated system. The same example
will be studied in more detail later using the TRUETIME simulator.

Signal Processing Application
As a second example, we will look at a signal processing application. Cleaning signals from
disturbances using notch filters is important in many control systems. In some cases, the
filters are very sensitive to lost samples due to their narrow-band frequency characteristics,
and in real-time systems lost samples are sometimes inevitable. In this example, JITTERBUG

is used to evaluate the effects of lost samples in different filters and possible compensation
techniques.

The setup is as follows. A good signal x (modeled as low-pass-filtered white noise) is to
be cleaned from an additive disturbance e (modeled as band-pass-filtered white noise). The
Bode diagrams of the signal-generating systems are shown in Figure 7. An estimate x̂ of the
good signal should be found by applying a digital filter with the sampling interval h = 0.1
to the measured signal x + e. Unfortunately, a fraction p of the measurement samples are
lost.

A JITTERBUG model of the system is shown in Fig. 8. The signals x and e are generated
by filtered continuous-time white noise through the two continuous-time systems G1 and
G2. The digital filter is represented as two discrete-time systems: Samp and Filter. The
good signal is buffered in the system Delay and is then compared to the filtered estimate

9

v1

v2

e

x

x̂ x̃
G1(s)

G2(s)

Samp

Samp

Diff

Diff

Delay

Delay

Filter(i)

1

2

34

5

1−p

p

Filter(1)Filter(2)

(a)

(b)

Figure 8 JITTERBUG model of the signal processing application: (a) signal model and (b) timing model.

in the system Diff.
In the execution model, there is a probability p that the Samp system will not be

updated. In that case, an alternate version, Filter(2), of the filter dynamics can be executed
and used to compensate for the lost sample.

Two different filters are compared. The first filter is an ordinary second-order notch filter
with two zeros on the unit circle. It is updated with the same equations even if no sample
is available. The second filter is a second-order, nonoptimal Kalman filter, which is based
on a simplified model of the signal dynamics. In the case of a lost sample, only prediction
is performed in the Kalman filter.

The performance of the filters is evaluated using the cost function

J = lim
T→∞

1
T

∫ T

0
x̃2(t) dt,

which measures the variance of the estimation error. In Fig. 9, the cost has been plotted
for different probabilities of lost samples. The figure shows that the ordinary notch filter
performs better in the case of no lost samples, but the Kalman filter performs better as
the probability of lost samples increases. This is because the Kalman filter can perform
prediction when no sample is available.

Simulation Using TrueTime

Analysis using JITTERBUG can be used to quickly determine how sensitive a control system is
to slow sampling, delay, jitter, and so on. For more detailed analysis as well as systemwide
real-time design, the more general simulation tool TRUETIME can be used.

In TRUETIME, which is based on MATLAB/Simulink, computer and network blocks are
introduced. The computer blocks are event-driven and execute user-defined tasks and inter-
rupt handlers representing, e.g., I/O tasks, control algorithms, and network interfaces. The
scheduling policy of the individual computer blocks is arbitrary and decided by the user.
Likewise, in the network, messages are sent and received according to a chosen network
model. A comparison between a TRUETIME simulation model and a traditional simulation
model of a distributed control system is shown in Fig. 10.

10

0 0.05 0.1
0

2

4

6

8

10

C
os

t J

Probability of Lost Sample p

Kalman Filter

Notch Filter

Figure 9 The variance of the estimation error in the different filters as a function of the probability of
lost samples.

DelayDelay

x’ = Ax+Bu
 y = Cx+Du

Plant

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Controller

x’ = Ax+Bu
 y = Cx+Du

Plant

Snd1

Snd2

Rcv1

Rcv2

Network

RcvSnd

Computer 2 (Controller)

A/D

Rcv

D/A

Snd

Computer 1 (Remote I/O)

Figure 10 Left: Traditional simulation model of a distributed control system. Computers and network
are modeled as simple delays. Right: TrueTime model where the execution of tasks and the transmission
of messages are simulated in parallel with the plant dynamics.

The level of simulation detail is also chosen by the user—it is often neither necessary
nor desirable to simulate code execution on instruction level or network transmissions
on bit level. TRUETIME allows the execution time of tasks and the transmission times of
messages to be modeled as constant, random, or data-dependent. Furthermore, TRUETIME

allows simulation of context switching and task synchronization using events or monitors.
TRUETIME can be used in several ways:

• to investigate the effects of timing nondeterminism, caused, for example., by preemp-
tion or transmission delays, on control performance

• to develop compensation schemes that adjust the controller dynamically based on
measurements of actual timing variations

• to experiment with new, more flexible approaches to dynamic scheduling, such as
feedback scheduling of CPU time and communication bandwidth and quality-of-service
(QoS)-based scheduling approaches

• to simulate event-driven control systems (e.g., engine controllers and distributed con-
trollers).

Simulation Environment
The interfaces to the computer and network Simulink blocks are shown in Fig. 11. Both
blocks are event-driven, with the execution determined both by internal and external events.

11

Figure 11 The TRUETIME block library. The Schedule and Monitor outputs display the allocation of
common resources (CPU, monitors, network) during the simulation.

Internal events are timely and correspond to events such as “a timer has expired,” “a task
has finished its execution,” or “a message has completed its transmission.” External events
correspond to external interrupts, such as “a message arrived on the network” or “the crank
angle passed zero degrees.”

The block inputs are assumed to be discrete-time signals, except the signals connected
to the A/D converters of the computer block, which may be continuous-time signals. All
outputs are discrete-time signals. The Schedule and Monitors outputs display the allocation
of common resources (CPU, monitors, network) during the simulation.

The blocks are variable-step, discrete, MATLAB S-functions written in C++, the Simulink
engine being used only for timing and interfacing with the rest of the model (the continuous
dynamics). It should thus be easy to port the blocks to other simulation environments,
provided these environments support event detection (zero-crossing detection).

The Computer Block

The computer block S-function simulates a computer with a simple but flexible real-time
kernel, A/D and D/A converters, a network interface, and external interrupt channels.

Internally, the kernel maintains several data structures that are commonly found in a
real-time kernel: a ready queue, a time queue, and records for tasks, interrupt handlers,
monitors and timers that have been created for the simulation.

The execution of tasks and interrupt handlers is defined by user-written code functions.
These functions can be written either in C++ (for speed) or as MATLAB m-files (for ease of
use). Control algorithms may also be defined graphically using ordinary discrete Simulink
block diagrams.

Tasks The task is the main construct in the TRUETIME simulation environment. Tasks
are used to simulate both periodic activities, such as controller and I/O tasks, and aperiodic
activities, such as communication tasks and event-driven controllers.

An arbitrary number of tasks can be created to run in the TRUETIME kernel. Each task is
defined by a set of attributes and a code function. The attributes include a name, a release
time, a worst-case execution time, an execution time budget, relative and absolute deadlines,
a priority (if fixed-priority scheduling is used), and a period (if the task is periodic). Some of
the attributes, such as the release time and the absolute deadline, are constantly updated
by the kernel during simulation. Other attributes, such as period and priority, are normally
kept constant but can be changed by calls to kernel primitives when the task is executing.

Furthermore, it is possible to associate three different interrupt handlers with each
task. A task termination handler will be triggered when the code function of the task has
executed its last segment, see below. A default termination handler is provided by the kernel
for periodic tasks. This simply updates the release and absolute deadline and puts the task
to sleep until next period. In accordance with [8] two overrun handlers may also be attached

12

to each task: a deadline overrun handler (triggered if the task misses its deadline) and an
execution time overrun handler (triggered if the task executes longer than its worst-case
execution time).

Interrupts and Interrupt Handlers Interrupts may be generated in two ways: exter-
nally or internally. An external interrupt is associated with one of the external interrupt
channels of the computer block. The interrupt is triggered when the signal of the corre-
sponding channel changes value. This type of interrupt may be used to simulate engine
controllers that are sampled against the rotation of the motor or distributed controllers
that execute when measurements arrive on the network.

Internal interrupts are associated with timers. Both periodic timers and one-shot timers
can be created. The corresponding interrupt is triggered when the timer expires. Timers
are also used internally by the kernel to implement the overrun handlers described in the
previous section.

When an external or internal interrupt occurs, a user-defined interrupt handler is sched-
uled to serve the interrupt. An interrupt handler works much the same way as a task, but
is scheduled on a higher priority level. Interrupt handlers will normally perform small, less
time-consuming tasks, such as generating an event or triggering the execution of a task. An
interrupt handler is defined by a name, a priority, and a code function. External interrupts
also have a latency during which they are insensitive to new invocations.

Priorities and Scheduling Simulated execution occurs at three distinct priority levels:
the interrupt level (highest priority), the kernel level, and the task level (lowest priority).
The execution may be preemptive or nonpreemptive; this can be specified individually for
each task and interrupt handler.

At the interrupt level, interrupt handlers are scheduled according to fixed priorities.
At the task level, dynamic-priority scheduling may be used. At each scheduling point, the
priority of a task is given by a user-defined priority function, which is a function of the task
attributes. This makes it easy to simulate different scheduling policies. For instance, a
priority function that returns a priority number implies fixed-priority scheduling, whereas
a priority function that returns a deadline implies deadline-driven scheduling. Predefined
priority functions exist for most of the commonly used scheduling schemes.

Code The code associated with tasks and interrupt handlers is scheduled and executed by
the kernel as the simulation progresses. The code is normally divided into several segments,
as shown in Fig. 12. The code can interact with other tasks and with the environment at
the beginning of each code segment. This execution model makes it possible to model input-
output delays, blocking when accessing shared resources, etc. The simulated execution time
of each segment is returned by the code function, and can be modeled as constant, random,
or even data-dependent. The kernel keeps track of the current segment and calls the code
functions with the proper argument during the simulation. Execution resumes in the next
segment when the task has been running for the time associated with the previous segment.
This means that preemption from higher-priority activities and interrupts may cause the
actual delay between the segments to be longer than the execution time.

Fig. 13 shows an example of a code function corresponding to the time line in Fig. 12.
The function implements a simple controller. In the first segment, the plant is sampled and
the control signal is computed. In the second segment, the control signal is actuated and
the controller states are updated. The third segment indicates the end of execution, which
will trigger execution of the termination handler of the task.

The functions calculateOutput and updateState are assumed to represent the imple-
mentation of an arbitrary controller. The data structure data represents the local memory
of the task and is used to store the control signal and measured variable between calls to
the different segments. A/D and D/A conversion is performed using the kernel primitives
ttAnalogIn and ttAnalogOut.

Besides A/D and D/A conversion, many other kernel primitives exist that can be called
from the code functions. These include functions to send and receive messages over the

13

1 2 3

Simulated Execution Time

Execution of User Code

Figure 12 The execution of the code associated with tasks and interrupt handlers is modeled by a
number of code segments with different execution times. Execution of user code occurs at the beginning
of each code segment.

function [exectime, data] = myController(seg, data)

switch seg,

case 1,

data.y = ttAnalogIn(1);

data.u = calculateOutput(data.y);

exectime = 0.002;

case 2,

ttAnalogOut(1, data.u);

updateState(data.y);

exectime = 0.003;

case 3,

exectime = -1; % finished

end

Figure 13 Example of a simple code function.

network, create and remove timers, perform monitor operations, and change task attributes.
Some of the kernel primitives are listed in Table 1.

Graphical Controller Representation As an alternative to textual implementation
of the controller algorithms, TRUETIME also allows for graphical representation of the con-
trollers. Controllers represented using ordinary discrete Simulink blocks may be called from
within the code functions, using the primitive ttCallBlockSystem. A block diagram of a PI
controller is shown in Fig. 14. The block system has two inputs, the reference signal and
the process output, and two outputs, the control signal and the execution time.

Table 1 Examples of kernel primitives (pseudo syntax) that can be called from code functions associated
with tasks and interrupt handlers.

ttAnalogIn(ch) Get the value of an input channel

ttAnalogOut(ch, val) Set the value of an output channel

ttSendMsg(rec,data,len) Send message over network

ttGetMsg() Get message from network input queue

ttSleepUntil(time) Wait until a specific time

ttCurrentTime() Current time in simulation

ttCreateTimer(time,ih) Trigger interrupt handler at a specific time

ttEnterMonitor(mon) Enter a monitor

ttWait(ev) Await an event

ttNotifyAll(ev) Activate all tasks waiting for an event

ttSetPriority(val) Change the priority of a task

ttSetPeriod(val) Change the period of a task

14

Figure 14 Controllers represented using ordinary discrete Simulink blocks may be called from within
the code functions. The example above shows a PI controller.

function [exectime, data] = eventController(seg, data)

switch (segment),

case 1,

ttWait(’input_event’);

exectime = 0.0;

case 2,

data.y = ttAnalogIn(1);

data.u = calculateOutput(data.y);

exectime = 0.002;

case 3,

ttAnalogOut(1, data.u);

updateState(data.y);

exectime = 0.003;

case 4,

ttSetNextSegment(1); % loop

end

Figure 15 Example of a code function implementing an event-based controller.

Synchronization Synchronization between tasks is supported by monitors and events.
Monitors are used to guarantee mutual exclusion when accessing common data. Events
can be associated with monitors to represent condition variables. Events may also be free
(i.e., not associated with a monitor). This feature can be used to obtain synchronization
between tasks where no conditions on shared data are involved. The example in Fig. 15
shows the use of a free event input_event to simulate an event-driven controller task. The
corresponding ttNotifyAll-call of the event is typically performed in an interrupt handler
associated with an external interrupt port.

Output Graphs Depending on the simulation, several different output graphs are gen-
erated by the TRUETIME blocks. Each computer block will produce two graphs, a computer
schedule and a monitor graph, and the network block will produce a network schedule.
The computer schedule will display the execution trace of each task and interrupt handler
during the course of the simulation. If context switching is simulated, the graph will also
display the execution of the kernel. An example of such an execution trace is shown in Fig.
16. If the signal is high it means that the task is running. A medium signal indicates that
the task is ready but not running (preempted), whereas a low signal means that the task is
idle. In an analogous way, the network schedule shows the transmission of messages over
the network, with the states representing sending (high), waiting (medium), and idle (low).
The monitor graph shows which tasks are holding and waiting on the different monitors
during the simulation. Generation of these execution traces is optional and can be specified

15

Figure 16 Example of an execution trace generated by a computer block during a simulation. The
example involves three tasks. The lower graph shows the execution of the kernel simulating context
switches.

Figure 17 The dialogue of the TRUETIME Network block.

individually for each task, interrupt handler, and monitor.

The Network Block
The network model is similar to the real-time kernel model, albeit simpler. The network
block is event-driven and executes when messages enter or leave the network. A message
contains information about the sending and the receiving computer node, arbitrary user
data (typically measurement signals or control signals), the length of the message, and
optional real-time attributes such as a priority or a deadline.

In the network block, it is possible to specify the transmission rate, the medium access
control protocol (CSMA/CD, CSMA/CA, round robin, FDMA, or TDMA), and a number of

16

other parameters, see Fig. 17. A long message can be split into frames that are transmitted
in sequence, each with an additional overhead. When the simulated transmission of a
message has completed, it is put in a buffer at the receiving computer node, which is
notified by a hardware interrupt.

Networked Control System

As a first example of simulation in TRUETIME, we again turn our attention to the networked
control system. Using TRUETIME, general simulation of the distributed control system is
possible wherein the effects of scheduling in the CPUs and simultaneous transmission of
messages over the network can be studied in detail. TRUETIME allows simulation of different
scheduling policies of CPU and network and experimentation with different compensation
schemes to cope with delays.

The TRUETIME simulation model of the system contains one computer block for each node
and a network block (see Fig. 18). The time-driven sensor node contains a periodic task,
which at each invocation samples the process and sends the sample to the controller node
over the network. The controller node contains an event-driven task that is triggered each
time a sample arrives over the network from the sensor node. Upon receiving a sample, the
controller computes a control signal, which is then sent to the event-driven actuator node,
where it is actuated. Finally, the interference node contains a periodic task that generates
random interfering traffic over the network.

Initialization of the Actuator Node Fig. 19 shows the complete code needed to ini-
tialize the actuator node in this particular example. The computer block contains one task
and one interrupt handler, and their execution is defined by the code functions actcode and
msgRcvHandler, respectively. The task and interrupt handler are created in the actuator_init
function together with an event (packet) used to trigger the execution of the task. The node
is “connected” to the network in the function ttInitNetwork by supplying a node identifica-
tion number and the interrupt handler to be executed when a message arrives to the node.
In the ttInitKernel function the kernel is initialized by specifying the number of A/D
and D/A channels and the scheduling policy. The built-in priority function prioFP speci-
fies fixed-priority scheduling. Other predefined scheduling policies include rate monotonic
(prioRM), earliest deadline first (prioEDF), and deadline monotonic (prioDM) scheduling.

Experiments In the following simulations, we will assume a CAN-type network where
transmission of simultaneous messages is decided based on priorities of the packages. The
PD controller executing in the controller node is designed a 10-ms sampling interval. The
same sampling interval is used in the sensor node.

In a first simulation, all execution times and transmission times are set equal to zero.
The control performance resulting from this ideal situation is shown in Fig. 20.

Next we consider a more realistic simulation where execution times in the nodes and
transmission times over the network are taken into account. The execution time of the
controller is 0.5 ms and the ideal transmission time from one node to another is 1.5 ms.
The ideal round-trip delay is thus 3.5 ms. The packages generated by the disturbance node
have high priority and occupy 50% of the network bandwidth. We further assume that an
interfering, high-priority task with a 7-ms period and a 3-ms execution time is executing
in the controller node. Colliding transmissions and preemption in the controller node will
thus cause the round-trip delay to be even longer on average and timevarying. The resulting
degraded control performance can be seen in the simulated step response in Fig. 21. The
execution of the tasks in the controller node and the transmission of messages over the
network can be studied in detail (see Fig. 22).

Finally, a simple compensation is introduced to cope with the delays. The packages sent
from the sensor node are now time-stamped, which makes it possible for the controller to
determine the actual delay from sensor to controller. The total delay is estimated by adding
the expected value of the delay from controller to actuator. The control signal is then
calculated based on linear interpolation among a set of controller parameters precalculated
for different delays. Using this compensation, better control performance is obtained, as
seen in Fig. 23.

17

Figure 18 TRUETIME simulation of the networked control system. The poor control performance is a
result of delays caused by colliding network transmissions and preemption in the controller node.

Feedback Scheduling

An a second example, we will look at a feedback scheduling application. Some controllers,
including hybrid controllers that switch between different modes, can have highly vary-
ing execution-time demands. This makes the real-time scheduling design for this type of
controller difficult. Basing the real-time design on worst-case execution time (WCET) es-
timates may lead to low utilization, slow sampling, and poor control performance. On the
other hand, basing the real-time design on average-case assumptions may lead to temporary
CPU overloads and, again, poor control performance.

One way to solve the problem is to introduce feedback in the real-time system. The CPU
overload problem can be resolved by online adjustment of the sampling frequencies of the
hybrid controllers based on feedback from execution-time measurements. The scheduler
may also use feedforward information from control tasks that are about to switch mode.
The scheme was originally presented in [9] and is illustrated in Fig. 24.

In this example, we consider feedback scheduling of a set of double-tank controllers. The

18

%% Code function for the actuator task

function [exectime, data] = actcode(seg, data)

switch seg,

case 1,

ttWait(’packet’);

exectime = 0.0;

case 2,

data.u = ttGetMsg;

exectime = 0.0005;

case 3,

ttAnalogOut(1, data.u);

ttSetNextSegment(1); % wait for new msg

exectime = 0.0;

end

%% Code function for the network interrupt handler

function [exectime, data] = msgRcvHandler(seg, data)

ttNotifyAll(’packet’);

exectime = -1;

%% Initialization function

%% creating the task, interrupt handler and event

function actuator_init

nbrOfInputs = 0;

nbrOfOutputs = 1;

ttInitKernel(nbrOfInputs, nbrOfOutputs, ’prioFP’);

priority = 5;

deadline = 0.010;

release = 0.0;

ttCreateTask(’act_task’, deadline, priority, ’actcode’);

ttCreateJob(’act_task’, release);

ttCreateInterruptHandler(’msgRcv’, 1, ’msgRcvHandler’);

ttInitNetwork(2, ’msgRcv’); % I am node 2

ttCreateEvent(’packet’);

Figure 19 Complete initialization of the actuator node in the networked control system simulation.

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.5

0

0.5

1

1.5
Reference Signal (dashed) and Measurement Signal (full)

0 0.1 0.2 0.3 0.4 0.5 0.6
−2

−1

0

1

2
Control Signal

Time [ms]

Figure 20 Control performance without time delay.

19

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.5

0

0.5

1

1.5
Reference Signal (dashed) and Measurement Signal (full)

0 0.1 0.2 0.3 0.4 0.5 0.6
−2

−1

0

1

2
Control Signal

Time [ms]

Figure 21 Control performance with interfering network messages and interfering task in the controller
node.

0 0.02 0.04 0.06 0.08 0.1

Network Schedule

Sensor
 Node

Controller
 Node

Interf.
Node

0 0.02 0.04 0.06 0.08 0.1

Computer Schedule

Time [s]

Controller
 Thread

Interf.
Thread

Figure 22 Close-up of schedules showing the allocation of common resources: network (top) and con-
troller node (bottom). A high signal means sending or executing, a medium signal means waiting, and a
low signal means idle.

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.5

0

0.5

1

1.5
Reference Signal (dashed) and Measurement Signal (full)

0 0.1 0.2 0.3 0.4 0.5 0.6
−2

−1

0

1

2
Control Signal

Time [ms]

Figure 23 Control performance with delay-compensation.

20

Usp {hi}

mode changes

jobs ci, U
Scheduler Tasks Dispatcher

Figure 24 The feedback scheduling structure.

0

0.5

1

Control Signal

0.1

0.15

Lower Tank Level

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2
Total Requested Utilization

Time [s]

Figure 25 Performance of Controller 1 under ordinary rate-monotonic scheduling. The CPU becomes
overloaded and the controller is blocked, which deteriorates the performance.

double-tank process is described by the nonlinear state-space equations of the form ẋ1

ẋ2

 =
 −α√x1 + βu

α√x1 −α√x2


The objective is to control the level of the lower tank, x2, using the pump, u. A hybrid
controller for the double-tank process was presented in [10]. The controller consisted of
two subcontrollers: a time-optimal controller for set-point changes and a PID controller for
steady-state regulation.

Measurements on the controller showed that in optimal control mode, the execution time
was about three times longer than in PID control mode. The problem becomes pronounced
when several hybrid controllers share a common computational unit. In the worst case, all
controllers will be in optimal control mode at the same time, and the CPU load can become
very high.

Experiments It is assumed that three hybrid double-tank controllers should be scheduled
on the same computer. The tanks have different time constants, (T1, T2, T3) = (210, 180, 150),
and the corresponding controllers are therefore assigned different nominal sampling peri-
ods (hnom1, hnom2, hnom3) = (21, 18, 15) ms. Each controller is implemented as a separate
TRUETIME task. The simulated execution time of a controller in PID mode is CPI D = 2 ms
and the simulated execution time of a controller in optimal control mode is COpt = 10 ms.

First, ordinary rate-monotonic scheduling is attempted. According to this scheduling
principle, the task with the longest period gets the lowest priority. In the worst case, when
all controllers are in optimal control mode, the utilization will be U =∑ Ci

hi
= 1.7 and the

lowest-priority task (Controller 1) will be blocked. Simulation results are shown in Figs. 25
and 26 displaying the control performance of the low-priority controller task and a close-up
of the computer schedule. The performance of Controller 1 is very poor due to preemption
from the higher-priority tasks.

Next a feedback scheduler is introduced. The feedback scheduler is implemented as a
task executing at the highest priority with a period of hFBS = 100 ms and an execution

21

0.4 0.5 0.6 0.7 0.8 0.9
Time [s]

Computer Schedule

Task 3

Task 2

Task 1

Figure 26 Close-up of the computer schedule during ordinary rate-monotonic scheduling. When the
system becomes overloaded, the low-priority controller is preempted during a significant amount of time.

0

0.5

1

Control Signal

0.1

0.15

Lower Tank Level

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2
Total Requested Utilization

Time [s]

Figure 27 Performance of Controller 1 under feedback scheduling. The CPU utilization is controlled
never to exceed 0.8, and the control performance is good throughout.

time of CFBS = 2 ms. It also executes an extra time whenever a task switches from PID
to optimal mode. The feedback scheduler estimates the workload of the controllers and
rescales the task periods, if necessary, to achieve a utilization level of at most Usp = 0.8.
Results from a simulation are shown in Figs. 27 and 28. The performance of Controller 1
is much better, even though it cannot always execute at its nominal period.

Conclusion

Designing a real-time control system is essentially a co-design problem. Choices made in
the real-time design will affect the control design and vice versa. For instance, deciding
on a particular network protocol will give rise to certain delay distributions that must be
taken into account in the controller design. On the other hand, bandwidth requirements
in the control loops will influence the choice of CPU and network speed. Using an analysis
tool such as JITTERBUG, one can quickly assert how sensitive the control loop is to slow
sampling rates, delay, jitter, and other timing problems. Aided by this information, the
user can proceed with more detailed, systemwide real-time and control design using a
simulation tool such as TRUETIME.

JITTERBUG allows the user to compute a quadratic performance criterion for a linear
control system under various timing conditions. The control system is described using a
number of continuous-time and discrete-time linear systems. A stochastic timing model
with random delays is used to describe the execution of the system. The tool can also
be used to investigate aperiodic controllers, multirate controllers, and jitter-compensating

22

0.4 0.5 0.6 0.7 0.8 0.9
Time [s]

Computer Schedule

FBS

Task 3

Task 2

Task 1

Figure 28 Close-up of the computer schedule during feedback scheduling. The sampling intervals of the
tasks are rescaled to avoid overload.

controllers.
TRUETIME facilitates event-based co-simulation of a multitasking real-time kernel con-

taining controller tasks and the continuous dynamics of controlled plants. The simulations
capture the true, timely behavior of real-time controller tasks and communication networks,
and dynamic control and scheduling strategies can be evaluated from a control performance
perspective. The controllers can be implemented as M-functions, C-functions, or ordinary,
discrete-time Simulink blocks.

Acknowledgments

This work has been sponsored by ARTES (A network for Real-Time research and graduate
Education in Sweden, http://www.artes.uu.se) and LUCAS (Lund University Center for
Applied Software Research, http://www.lucas.lth.se).

References

[1] IEEE Control Systems Magazine, Special Section on Networks and Control, vol. 21,
no. 1, Feb. 2001.

[2] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applica-
tions. Boston, MA: Kluwer Academic Pub., 1997.

[3] N. Halbwachs, Synchronous Programming of Reactive Systems. Boston, MA: Kluwer
Academic Pub., 1993.

[4] J.W.S. Liu, Real-Time Systems. Upper Saddle River, NJ: Prentice Hall, 2000.

[5] J. Eker, P. Hagander, and K.-E. Årzén, “A feedback scheduler for real-time control
tasks,” Control Engineering Practice, vol. 8, no. 12, 2000, pp. 1369–1378.

[6] J. Nilsson, Real-Time Control Systems with Delays. PhD thesis ISRN LUTFD2/TFRT–
1049–SE, Department of Automatic Control, Lund Institute of Technology, Sweden,
January 1998.

[7] B. Lincoln and A. Cervin, “Jitterbug: A tool for analysis of real-time control perfor-
mance,” in Proc. 41st IEEE Conf. on Decision and Control, Las Vegas, NV, 2002.

[8] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and M. Turnbull, The
Real-Time Specification for Java. Reading, MA: Addison-Wesley, 2000.

23

[9] A. Cervin and J. Eker, “Feedback scheduling of contol tasks,” in Proc. 39th IEEE Conf.
on Decision and Control, Sydney, Australia, 2000, pp. 4871–4876.

[10] J. Eker and J. Malmborg, “Design and implementation of a hybrid control strategy,”
IEEE Control Systems Magazine, vol. 19, no. 4, Aug. 1999, pp. 12–21.

24

ISSN 0280–5316
ISRN LUTFD2/TFRT--7604--SE

Jitterbug Reference Manual

Anton Cervin
Bo Lincoln

Department of Automatic Control
Lund Institute of Technology

January 2003

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden

Document name
INTERNAL REPORT

Date of issue
January 2003

Document Number
ISRN LUTFD2/TFRT--7604--SE

Author(s)

Anton Cervin, Bo Lincoln
Supervisor

Sponsoring organisation

Title and subtitle
Jitterbug Reference Manual

Abstract

The manual describes the use of Jitterbug, a Matlab toolbox for real-time control performance analysis.
The tool facilitates the computation of a quadratic performance index for a linear control system under
various timing conditions.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280–5316

ISBN

Language
English

Number of pages
37

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.lu.se

Contents

1. Introduction . 2

2. System Description . 2

2.1 Signal Model . 2

2.2 Timing Model . 4

3. Internal Workings . 6

3.1 Sampling the System 6

3.2 Timing Representation 7

3.3 Calculating Variance and Cost 8

3.4 Calculating Spectral Densities 9

4. Examples . 9

4.1 Distributed Control System 9

4.2 Notch Filter . 13

4.3 Multirate Controller . 16

4.4 Spectral Density Calculation 19

4.5 Overrun Handling Methods 21

5. Command Reference . 24

initjitterbug . 25

addtimingnode . 26

addcontsys . 27

adddiscsys . 29

adddiscexec . 31

adddisctimedep . 32

calcdynamics . 33

calccost . 34

lqgdesign . 35

6. References . 37

1. Introduction

JITTERBUG [Lincoln and Cervin, 2002] is a MATLAB-based toolbox that allows
the computation of a quadratic performance criterion for a linear control
system under various timing conditions. Using the toolbox, one can easily
and quickly assert how sensitive a control system is to delay, jitter, lost
samples, etc., without resorting to simulation. The tool is quite general and
can also be used to investigate jitter-compensating controllers, aperiodic
controllers, and multi-rate controllers. As an additional feature, it is also
possible to compute the spectral density of the signals in the control system.
The main contribution of the toolbox, which is built on well-known theory
(LQG theory and jump linear systems), is to make it easy to apply this
type of stochastic analysis to a wide range of problems.

2. System Description

In JITTERBUG, a control system is described by two parallel models: a signal
model and a timing model. The signal model is given by a number of con-
nected, linear, continuous- and discrete-time systems. The timing model
consists of a number of timing nodes and describes when the different
discrete-time systems should be updated during the control period.

An example of a JITTERBUG model is shown in Figure 1, where a computer-
controlled system is modeled by four blocks. The plant is described by the
continuous-time system G, and the controller is described by the three
discrete-time systems H1, H2, and H3. The system H1 could represent a
periodic sampler, H2 could represent the computation of the control signal,
and H3 could represent the actuator. The associated timing model says
that, at the beginning of each period, H1 should first be executed (updated).
Then there is a random delay τ1 until H2 is executed, and another random
delay τ2 until H3 is executed. The delays could model computational delays,
scheduling delays, or network transmission delays.

2.1 Signal Model
The signal model consists of a number of inter-connected continuous-time
and discrete-time linear systems driven by white noise. The cost is specified
as a stationary, continuous-time quadratic cost function.

H1(z)
H1(z)

H2(z)
H2(z)

H3(z)

H3(z)

G(s)
yu

v
1

2

3

τ1

τ2

(a) (b)

Figure 1 A simple JITTERBUG model of a computer-controlled system: (a) signal
model and (b) timing model.

2

Continuous-Time Systems A continuous-time system is described by

ẋc(t) = Axc(t) + Bu(t) + vc(t)
y0(t) = Cxc(t) (continuous output)
y(tk) = y0(tk) + ed(tk) (measured discrete output)

where A, B, and C are constant matrices, and vc is a continuous-time
white-noise process with zero mean and covariance matrix R1 (strictly
speaking, vc has the spectral density φ(ω) = 1

2π R1), and ed is a discrete-
time white-noise process with zero mean and covariance matrix R2. Note
that direct terms are not allowed (i.e., the system must be strictly proper).
Also note that there is no continuous-time output noise. The ability to spec-
ify discrete-time measurement noise in connection with the plant is only
offered as a convenience. The discrete-time output noise will be translated
to input noise at any connected discrete-time system(s).

The cost of the system is specified as

Jc = lim
T→∞

1
T

∫ T

0

 xc(t)
u(t)

T

Qc

 xc(t)
u(t)

 dt

where Qc is a positive semi-definite matrix.

The system may also be specified in transfer-function form (see the de-
scription of addcontsys on page 27).

Discrete-Time Systems A discrete-time system is described by

xd(tk+1) = Φxd(tk) + Γu(tk) + vd(tk)
y0(tk) = Cxd(tk) + Du(tk) (discrete output)
y(tk) = y0(tk) + ed(tk) (measured discrete output)

where Φ, Γ, C, and D are possibly time-varying matrices (see below). The
covariance of the discrete-time white noise processes vd and ed is given by

R = E
 v(tk)

e(tk)

 v(tk)
e(tk)

T

.

The update instants tk are determined by the timing model and are not
necessarily equidistant in time. The input signal u is sampled when the
system is updated, and the state xd and the output signal y0 are held
between updates.

The cost of the system is specified as

Jd = lim
T→∞

1
T

∫ T

0


xd(t)
y0(t)
u(t)


T

Qd


xd(t)
y0(t)
u(t)

 dt

where Qd is a positive semi-definite matrix. Note that xd(t) and y0(t) are
piecewise constant signals, while u(t) may be a continuous signal.

The system may also be specified in transfer-function form (see the de-
scription of adddiscsys on page 29).

3

Connecting Systems The total system is formed by appropriately con-
necting the inputs and outputs of a number of continuous-time and discrete-
time systems. Throughout, MIMO formulations are allowed, and a system
may collect its inputs from a number of other systems. The total cost to be
evaluated is summed over all continuous-time and discrete-time systems:

J =
∑

Jc +
∑

Jd (1)

It’s important to understand how cost and noise are handled when sys-
tems are interconnected. Three principal cases can be distinguished (see
Figure 2):

(a) The interconnection of two continuous-time systems. Note that any
discrete-time output noise ed will be ignored.

(b) The interconnection of two discrete-time systems. No surprises here.

(c) The interconnection of a continuous-time and a discrete-time system.
Note that the discrete-time output noise ed will not be included in
the input cost of the discrete-time system.

2.2 Timing Model
The timing model consists of a number of timing nodes. Each node can
be associated with zero or more discrete-time systems in the signal model,
which should be updated when the node becomes active. At time zero, the
first node is activated. The first node can also be declared to be periodic
(indicated by an extra circle in the illustrations), which means that the ex-
ecution will restart at this node every h seconds. This is useful for modeling
periodic controllers and also greatly simplifies the cost calculations.

Each node is associated with a time delay τ , which must elapse before the
next node can become active. (If unspecified, the delay is assumed to be
zero.) The delay can be used to model computational delay, transmission
delay in a network, etc. A delay is described by a discrete-time probability
density function

Pτ = [Pτ (0) Pτ (1) Pτ (2) . . .] ,

where Pτ (k) represents the probability of a delay of kδ seconds. The time
grain δ is a constant that is specified for the whole model.

In periodic systems, the execution is preempted if the total delay
∑

τ in the
system exceeds the period h. Any remaining timing nodes will be skipped.
This models a real-time system where hard deadlines (equal to the period)
are enforced and the control task is aborted at the deadline.

An aperiodic system can be used to model a real-time system where the
task periods are allowed to drift if there are overruns. It could also be used
to model a controller that samples “as fast as possible” instead of waiting
for the next period.

4

++

Continuous−time system Continuous−time system

++ ++

Discrete−time systemDiscrete−time system

+ ++ +

Continuous−time system Discrete−time system

(a)

(b)

(c)

u

u u

u u

vc

vc vc

vd

vd vd

ed ed

ed ed

G1(s) G2(s)

H1(z) H2(z)

G(s) H(z)

J J

J J

J J

y

y y

y0y0

y0 y0

y0 y0

Figure 2 Possible interconnections of continuous-time and discrete-time systems.

Node- and Time-Dependent Execution The same discrete-time sys-
tem may be updated in several timing nodes. It is possible to specify differ-
ent update equations (i.e., different Φ, Γ, C and D matrices) in the various
cases. This can be used to model a filter where the update equations look
different depending on whether or not a measurement value is available.
An example of this type is given later.

It is also possible to make the update equations depend on the time since
the first node became active. This can be used to model jitter-compensating
controllers for example.

Alternative Execution Paths For some systems, it is desirable to spec-
ify alternative execution paths (and thereby multiple next nodes). In JIT-
TERBUG, two such cases can be modeled (see Figure 3):

(a) A vector n of next nodes can be specified with a probability vector
p. After the delay, execution node n(i) will be activated with proba-

5

11

22

3

3

4

τ1τ1

τ2∑
τ < t

∑
τ ≥ t

p(2) p(3)

(a) (b)

Figure 3 Alternative execution paths in a JITTERBUG execution model: (a) ran-
dom choice of path and (b) choice of path depending on the total delay from the
first node.

bility p(i). This can be used to model a sample being lost with some
probability.

(b) A vector n of next nodes can be specified with a timevector t. If the
total delay in the system since the node exceeds t(i), node n(i) will
be activated next. This can be used to model time-outs and various
compensation schemes.

3. Internal Workings

Inside JITTERBUG, the states and the cost are considered in continuous
time. The inherently discrete-time states, e.g. in discrete-time controllers
or filters, are treated as continuous-time states with zero dynamics. This
means that the total system can be written as

ẋ(t) = Ax(t) +w(t) (2)

where x collects all the states in the system, and w is continuous-time
white noise process with covariance R̃. To model the discrete-time changes
of some states as a timing node n is activated, the state is instantaneously
transformed by

x(t+) = Enx(t) + en(t)
where en is a discrete-time white noise process with covariance Wn.

The total cost (1) for the system can be written as

J = lim
T→∞

1
T

∫ T

0
xT(t)Q̃x(t) dt (3)

where Q̃ is a positive semidefinite matrix.

3.1 Sampling the System
JITTERBUG relies on discretized time to calculate the variance of the states
and the cost. No approximations are involved, however. Sampling the sys-
tem (2) with a period of δ (the time-grain in the delay distributions) gives

x(kδ + δ) = Φx(kδ) + v(kδ) (4)

6

where the covariance of v is R, and the cost (3) becomes

J = lim
N→∞

1
Nδ

N−1∑
k=0

(
xT(kδ)Qx(kδ) + q

)
The matrices Φ, R, Q, and q are calculated as

Φ = eAδ

R =
∫ δ

0
eA(δ−τ)R̃eAT (δ−τ) dτ

Q =
∫ δ

0
eAT tQ̃eAt dt

q= tr
(

Q̃
∫ δ

0

∫ δ

0
eA(t−τ)R̃eAT(t−τ) dτ dt

)
or, equivalently, from P11 P12

P21 P22

= exp
(−AT Q̃

0 A

δ
)

and 
M11 M12 M13

M21 M22 M23

M31 M32 M33

= exp


−A I 0

0 −A R̃T

0 0 AT

δ


so that

Φ = P22

Q = PT
22P12

R = MT
33M23

q= tr
(
QMT

33 M13
)

3.2 Timing Representation
As time is discretized, we can transform the system description into a jump
linear system, where the Markov state represents the current timing state
of the system. Each timing node is represented by one Markov node. In
between timing nodes additional Markov nodes representing the delay are
inserted as illustrated in Figure 4.

Consider following one path in the Markov chain. For each node which
is not a timing node, only the continuous states of the system change.
In each time-step, they evolve as in (4), and thus the state covariance
P(kδ) = E

{
x(kδ)xT(kδ)} evolves as

P(kδ + δ) = ΦP(kδ)ΦT + R

At each timing node n, the system is additionally transformed as in (3),

P(kδ +) = EnP(kδ)ET
n + Wn

7

τ = [0 0.1 0.2 0.3 0.4]

0.4 0.3 0.2 0.1

111

1

1 2

2

Figure 4 A random delay (above) modeled as a jump linear system (below),
where the delay is represented by additional Markov nodes in between the timing
nodes.

21

Continuous dynamics

+ discrete dynamics

Figure 5 The continuous-time dynamics is active between all Markov nodes,
whereas the discrete-time dynamics is activated only before a timing node.

where Wn is the covariance of the discrete-time noise en(kδ) in node n. See
Figure 5 for an illustration. Combining the above, we define Φn as

Φn =
{

Φ if n is not a timing node

EnΦ if n is a timing node

and similarly Rn as

Rn =
{

R if n is not a timing node

EnRET
n +Wn if n is a timing node

3.3 Calculating Variance and Cost
Now consider all possible Markov states simultaneously. Let πn(kδ) be
the probability of being in Markov state n at time kδ , and let Pn(kδ) be
the covariance of the state if the system is in Markov state n at time kδ .
Furthermore, let the transition matrix of the Markov chain be σ , such that

π (kδ + δ) = σπ (kδ)

The state covariance then evolves as

Pn(kδ + δ) =
∑

i

σ niπ i(kδ)
(

ΦnPi(kδ)ΦT
n + Rn

)
(5)

and the immediate cost at time kδ is calculated as

1
δ
∑

n

πn(kδ)
(

tr
(
Pn(kδ)Q) + q

)
For systems without a periodic node, equation (5)must be iterated until the
cost and variance converge. For periodic systems, the Markov state always

8

returns to the periodic timing node every h/δ time steps. As equation (5) is
affine in P, we can find the stationary covariance P1(∞) in the periodic node
by solving a linear system of equations. The total cost is then calculated
over the timesteps in one period. The toolbox returns the cost J =∞ if the
system is not mean-square stable.

3.4 Calculating Spectral Densities
For periodic systems, the toolbox also computes the discrete-time spectral
densities of all outputs as observed in the periodic timing node. The spectral
density of an output y is defined as

φ y(ω) = 1
2π

∞∑
k=−∞

ry(k)e−ikω

The covariance function ry(k) is given by

ry(k) = E
{

y(t)yT(t+ kh)
}
= E

{
Cx(t)xT(t+ kh)CT

}
= E

{
CΦ̄hkhx(t)xT(t)CT} = CΦ̄hkhP1(∞)CT

where Φ̄ is the average transition matrix over a period, and P1(∞) is the
stationary covariance in the periodic node. The spectral density is returned
as a discrete-time linear system F(z) such that φ y(ω) = F(eiω).

4. Examples

In this section, various examples that illustrate the use of JITTERBUG are
given.

4.1 Distributed Control System
In the example, we will study the distributed control system shown in Fig-
ure 6. The setup is taken from [Nilsson, 1998]. In the control loop, the sen-

Actuator
node Process Sensor

node

Controller
node

Network

h

τ1τ2

u(t) y(t)

Figure 6 Distributed control system with communication delays τ1 and τ2.

sor, the actuator, and the controller are distributed among different nodes
in a network. The sensor node is assumed to be time-driven, whereas the
controller and actuator nodes are assumed to be event-driven. At a fixed

9

period h, the sensor samples the process and sends the measurement sam-
ple over the network to the controller node. There the controller computes
a control signal and sends it over the network to the actuator node, where
it is subsequently actuated.

The JITTERBUG model of the system was shown in Figure 1 on page 2. The
DC servo process is given by the continuous-time system

G(s) = 1000
s(s+ 1) .

The process is driven by white continuous-time input noise. There is as-
sumed to be no measurement noise.

The process is sampled periodically with the interval h. The sampler and
the actuator are described by the trivial discrete-time systems

H1(z) = H3(z) = 1,

and the discrete-time PD controller is implemented as

H2(z) = −K
(

1+ Td

h
z− 1

z

)
,

where the controller parameters are chosen as K = 1.5 and Td = 0.035. (A
real implementation would include a low-pass filter in the derivative part,
but that is ignored here.)

The delays in the computer system are modeled by the two random vari-
ables τ1 and τ2. The total delay from sampling to actuation is given by
τ tot = τ1 + τ2. It is assumed that the total delay never exceeds the sam-
pling period (otherwise JITTERBUG would skip the remaining updates).

As a cost function, we choose the sum of the squared process input and the
squared process output:

J = lim
T→∞

1
T

∫ T

0

(
y2(t) + u2(t)) dt. (6)

Sampling Period and Constant Delay A control system can typi-
cally give satisfactory performance over a range of sampling periods. In
textbooks on digital control, rules of thumb for sampling period selection
are often given. One such rule suggests that the sampling interval h should
be chosen such that

0.2 < ω bh < 0.6,

where ω b is the bandwidth of the closed-loop system. In our case, a continuous-
time PD controller with the given parameters would give a bandwidth of
about ω b = 80 rad/s. This would imply a sampling period of between 2.5
and 7.5 ms. The effect of computational delay is typically not considered
in such rules of thumb, however. Using JITTERBUG, the combined effect of
sampling period and computational delay can be easily investigated. In
Figure 7, the cost function (6) for the networked control system has been

10

0
20

40
60

80
100

0.001

0.005

0.010
1

1.5

2

2.5

3

Maximum delay (in % of h)Sampling period h

C
os

t
J

Figure 7 The cost as a function of sampling period and constant delay in the
distributed control system example.

evaluated for different sampling periods in the interval 1 to 10 millisec-
onds, and for constant total delay ranging from 0 to 100% of the sampling
interval. As can be seen, a one-sample delay gives negligible performance
degradation when h = 1 ms. When h = 10 ms, a one-sample delay makes
the system unstable (i.e., the cost J goes to infinity).

Random Delays and Jitter Compensation If system resources are
very limited (as they often are in embedded control applications), the con-
trol engineer may have to live with long sampling intervals. Delay in the
control loop then becomes a serious issue. Ideally, the delay should be ac-
counted for in the control design. In many practical cases, however, even the
mean value of the delay will be unknown at design time. The actual delay
at run-time will vary from sample to sample due to real-time scheduling,
the load of the system, etc. A simple approach is to use gain scheduling—
the actual delay is measured in each sample and the controller parameters
are adjusted according to precalculated values that have been stored in a
table. Since JITTERBUG allows time-dependent controller parameters, such
delay compensation schemes can also be analyzed using the tool.

In the JITTERBUG model of the networked control system, we now assume
that the delays τ1 and τ2 are uniformly distributed random variables be-
tween 0 and τ max/2, where τ max denotes the maximum round-trip delay in
the loop. A range of PD controller parameters (ranging from K = 1.5 and
Td = 0.035 for zero delay to K = 0.78 and Td = 0.052 for 7.5 ms delay)
are derived and stored in a table. When a sample arrives at the controller
node, only the delay τ1 from sensor to controller is known, however, so the
remaining delay is predicted by its expected value of τ max/4.

In Figure 8, the cost function (6) for the networked control system has been
evaluated for different sampling periods in the interval 1 to 10 milliseconds,
and for maximum total delay ranging from 0 to 100% of the sampling
interval. Compared to Fig 7, the cost is considerably lower.

11

0
20

40
60

80
100

0.001

0.005

0.010
1

1.5

2

2.5

3

Maximum delay (in % of h)Sampling period h

C
os

t
J

Figure 8 The cost as a function of sampling period and maximum delay with
jitter compensation in the distributed control system example.

The Matlab script for the computations is given below:

% Jitterbug example: distributed.m
% ================================
% Calculate the performance of a distributed control system with
% delays/jitter

scenario = 1; % 1 = constant delay, 2 = random delay,
% 3 = random delay + jitter compensation

s = tf(’s’);
G = 1000/(s^2+s); % The process
R1 = 1; % Input noise
R2 = 0; % Output noise
Q = diag([1 1]); % J = E(y^2 + u^2)

% Default PD parameters
K = 1.5;
Td = 0.035;

% Gain(delay)-scheduled PD parameters
tauv = [0 0.0035 0.0045 0.0055 0.0065 0.0075];
Kv = [1.5 1.2 1.1 0.98 0.86 0.78];
Tdv = [0.035 0.04 0.042 0.046 0.049 0.052];

hvec = 0.001:0.0005:0.010;
Jmat = [];
for h = hvec
dt = h/40;
taumaxvec = 0:2*dt:h;
for taumax=taumaxvec

Ptau = zeros(1,round(h/dt)+1);
if scenario == 1
Ptau(round(taumax/2/dt)+1) = 1; % constant delay

else
Ptau(1:round(taumax/2/dt)+1) = 1; % random delay

12

end
Ptau = Ptau/sum(Ptau);

H1 = 1; % Sampler
H2 = ss(0,1,K*Td/h,-K*(Td/h+1),-1); % Controller
H3 = 1; % Actuator

N = initjitterbug(dt,h); % Initialize Jitterbug

N = addtimingnode(N,1,Ptau,2); % Add node 1
N = addtimingnode(N,2,Ptau,3); % Add node 2
N = addtimingnode(N,3); % Add node 3

N = addcontsys(N,1,G,4,Q,R1,R2); % Add sys 1 (G)
N = adddiscsys(N,2,H1,1,1); % Add sys 2 (H1) to node 1
N = adddiscsys(N,3,H2,2,2); % Add sys 3 (H2) to node 2
N = adddiscsys(N,4,H3,3,3); % Add sys 4 (H3) to node 3

if scenario == 3 % jitter compensation
for k=1:round(taumax/2/dt)

tau1 = dt*k; % known delay
tau2 = taumax/4; % predicted remaining delay
t = tau1 + tau2;
Kt = interp1(tauv,Kv,t,’linear’,’extrap’);
Tdt = interp1(tauv,Tdv,t,’linear’,’extrap’);
H2 = ss(0,1,Kt*Tdt/h,-Kt*(Tdt/h+1),-1);
N = adddisctimedep(N,3,H2,k); % Make sys 3 (H2) time-dependent

end
end

N = calcdynamics(N); % Calculate the internal dynamics
J = calccost(N) % Calculate the cost
Jmat(find(h==hvec),find(taumax==taumaxvec)) = J;

end
end

Jmat=Jmat/Jmat(1,1); % scale plot to 1 in (0,0)
figure
surf(0:5:100,hvec,Jmat)
axis([0 100 hvec(1) hvec(end) 1 3])
caxis([0.7 3])
xlabel(’Maximum Delay (in % of h)’)
ylabel(’Sampling Period h’)
zlabel(’Cost J’)

4.2 Notch Filter
Cleaning signals from disturbances using e.g. notch filters is important in
many applications. In some cases these filters are very sensitive to lost
samples due to the very narrow-band characteristics, and in real-time sys-
tems lost samples are sometimes inevitable. In this example JITTERBUG is
used to evaluate the effects of this problem on different filters.

The setup is as follows. A good signal x (modeled as low-pass filtered noise)
is to be cleaned from an additive disturbance e (modeled as band-pass
filtered noise). An estimate x̂ of the good signal should be found by applying

13

v1

v2

e

x

x̂ x̃
G1(s)

G2(s)

Samp

Samp

Diff

Diff

Delay

Delay

Filter(i)

1

2

34

5

1−p

p

Filter(1)Filter(2)

(a)

(b)

Figure 9 JITTERBUG model of the notch filter: (a) signal model and (b) timing
model.

a digital notch filter with the sampling interval h = 0.1 to the measured
signal x + e. Unfortunately, a fraction p of the measurements are lost.

A JITTERBUG model of the system is shown in Figure 9. The signals x and
e are generated by white noise being filtered through the continuous-time
systems G1 and G2. The digital filter is represented as two discrete-time
systems: Samp and Filter. The good signal is buffered in the system Delay
and is compared to the filtered estimate in the system Diff. In the timing
model, there is a probability p that the Samp system will not be updated.
In that case, it is possible to execute an alternate version, Filter(2), of the
filter dynamics.

Two different filters are compared. The first filter is an ordinary second-
order notch filter with two zeros on the unit circle. The same update equa-
tions are used regardless if a sample is available or not. The second filter
is a second-order Kalman filter based on a simple model of the signal dy-
namics. In the case of lost samples, only prediction is performed in the
filter.

The spectral density of the estimation error x̃ = x − x̂ in the two filter
cases is shown in Figure 10. It has been assumed that p = 10% of the
samples are lost. It is seen that the ordinary notch filter performs well
around the disturbance frequency while the lost samples introduce a large
error at lower frequencies. The time-varying Kalman filter is less sensitive
towards lost samples and has a more even error spectrum. Overall, the
variance of the estimation error is about 40% lower in the Kalman filter
case.

14

Frequency (rad/sec)

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

−5

0

5

10

15

20

25

30

Figure 10 The spectral density of the error output x̃ when 10% of the samples
are lost, using a notch filter (full) or a time-varying Kalman filter (dashed).

The Matlab script for the computations is given below:

% Jitterbug example: notch.m
% ==========================
% Calculate the performance of a notch filter with lost samples.

scenario = 1; % 1=no filter, 2=notch filter, 3=Kalman filter
p = 0.1; % Probability of lost sample

s = tf(’s’);
z = tf(’z’);

h = 0.1; % Sampling period

% System generating the good signal
G1 = 100/(s+1)^2;
R1 = 2*pi; % Input noise variance

% System generating the disturbance
omega = 20; % Resonance frequency
zeta = 0.001; % Damping
G2 = 50/(s^2+2*zeta*omega*s+omega^2);
R2 = 2*pi; % Input noise variance

Samp = [1 1]; % Discrete-time system that samples x + e
Diff = [1 -1]; % Discrete-time system that computes x - xhat

switch scenario,
case 1,
% No filter
Filter1 = 1;
Filter2 = []; % same dynamics (i.e., none)
Delay = 1;

case 2,
% Zero-phase notch filter
a = -0.5/cos(omega*h);
Filter1 = ss(tf([a 1 a],[1 0 0],h));
Filter1 = Filter1/dcgain(Filter1);

15

Filter2 = []; % same dynamics
Delay = 1/z; % The notch filter has a delay of one sample

case 3,
% Kalman filter based on simple model of G1 (integrator)
[a1,g1,c1] = ssdata(ss(-0.00001,15,1,0));
[a2,g2,c2] = ssdata(G2);
a = blkdiag(a1,a2);
g = eye(size(a,1));
c = [c1 c2];
r1 = blkdiag(g1*g1’,g2*g2’);
r2 = 0;
phi = ssdata(c2d(ss(a,g,c,0),h));
kf = lqed(a,g,c,r1/h,r2,h);
k = phi*kf;
phio = (phi-k*c);
gammao = k;
co = [c1 0*c2]*(eye(size(a,1))-kf*c);
do = [c1 0*c2]*kf;
Filter1 = ss(phio,gammao,co,do,h); % Prediction and correction
Filter2 = ss(phi,zeros(size(a,1),1),[c1 0*c2],0,-1); % Prediction only
Delay = 1;

end

delta = h; % Time-grain = sampling interval
Ptau = [1]; % Zero delay between timing nodes
Q = diag([1 0 0]); % J = xtilde^2

N = initjitterbug(delta,h); % Initialize Jitterbug

N = addtimingnode(N,1,Ptau,[2 4],[1-p p]); % Add node 1
N = addtimingnode(N,2,Ptau,3); % Add node 2
N = addtimingnode(N,3,Ptau,5); % Add node 3
N = addtimingnode(N,4,Ptau,5); % Add node 4
N = addtimingnode(N,5); % Add node 5

N = addcontsys(N,1,G1,0,[],R1); % Add sys 1 (G1)
N = addcontsys(N,2,G2,0,[],R2); % Add sys 2 (G2)
N = adddiscsys(N,3,Samp,[1 2],2); % Add sys 3 (Samp) to node 2
N = adddiscsys(N,4,Filter1,3,3); % Add sys 4 (Filter) to node 3
N = adddiscexec(N,4,Filter2,3,4); % Add execution of sys 4 to node 4
N = adddiscsys(N,5,Delay,1,1); % Add sys 5 (Delay) to node 1
N = adddiscsys(N,6,Diff,[5 4],5,Q); % Add sys 6 (Diff) to node 5

N = calcdynamics(N); % Calculate internal dynamics
[J,P,F] = calccost(N); % Calculate cost and spectral densities
J

figure
bodemag(F{1},F{2},F{4},F{6}) % Plot spectra of outputs 1,2,4,6
axis([0.1 pi/h -20 100]);
legend(’Good Signal’,’Disturbance’,’Filter Output’,’Error’);
title(’Spectral Densities’)

4.3 Multirate Controller
In this example we will show how to compute the performance of a multi-

16

PID1 PID2 Gφ (s) Gx(s)

v

φ x
Σ

Figure 11 The ball & beam cascaded controller.

rate controller. This is illustrated on a cascade controller for the ball and
beam process, see Figure 11. In this control structure, the inner controller,
PID2, is responsible for controlling the beam dynamics,

Gφ (s) = 4.4
s

,

while the outer controller, PID1, controls the ball on beam dynamics,

Gx(s) = −9.0
s2 .

Since the inner loop is typically designed to be much faster than the outer
loop, it can be a good idea to execute the inner loop at a higher frequency,
especially if CPU resources are scarce. We will compare the performance of
an ordinary cascade controller with a multirate cascade controller where
the inner controller executes at twice the frequency of the outer controller.

The JITTERBUG timing model in the multirate case is shown in Figure 12.
The sampling interval of the outer controller is denoted h. The sampling
interval of the inner controller is thus h/2. The execution time of the control
algorithm is ignored in this simple model. At the beginning of each period,
PID1 is executed, immediately followed by PID2, which uses the control
signal produced by PID1 as a reference value. Then, half a period later,
the PID2 is executed again, using the same reference value as in the first
invocation but a new measurement value.

Assume that the process is disturbed by white input noise v with unit
variance, and that the performance is measured by the cost function

J = lim
T→∞

1
T

∫ T

0

(
φ2(t) + x2(t)) dt

PID1

PID2

PID2

1

2

3

0

h/2

Figure 12 Timing model for the multirate ball & beam controller.

17

Assuming certain PID parameters, the performance in the different cases
becomes

Jordinary = 3.40, Jmultirate = 1.99.

(Running both controllers at the fast rate gives J = 1.93, i.e. only a small
further improvement.)
The Matlab script comparing the two cases is shown below:

% Jitterbug example: multirate.m
% ==============================
% Calculate the performance of ordinary/multirate ball & beam controller

s = tf(’s’);

Gphi = 4.4/s;
Gx = -9.0/s^2;

Q = diag([1 0]);
R1 = 1;
R2 = 0;

h = 0.1;
delta = h/2;

K1 = -0.2;
Ti = 10;
Td = 1;
N = 10;
PID1c = -K1*(1+1/Ti/s+s*Td/(1+s*Td/N)); % PID controller
PID1 = c2d(PID1c,h,’matched’);

K2 = 4;
PID2 = K2*[1 -1]; % P controller

%% Case 1: ordinary cascade controller
N = initjitterbug(delta,h);
N = addtimingnode(N,1,[1],2); % Add node 1
N = addtimingnode(N,2); % Add node 2
N = addcontsys(N,1,Gphi,4,Q,R1); % Add sys 1 (Gphi)
N = addcontsys(N,2,Gx,1,Q); % Add sys 2 (Gx)
N = adddiscsys(N,3,PID1,2,1); % Add sys 3 (PID1) to node 1
N = adddiscsys(N,4,PID2,[3 1],2); % Add sys 4 (PID2) to node 2
N = calcdynamics(N); % Calculate internal dynamics
J = calccost(N) % Calculate cost

%% Case 2: multirate cascade controller
N = initjitterbug(delta,h);
N = addtimingnode(N,1,[1],2); % Add node 1
N = addtimingnode(N,2,[0 1],3); % Add node 2
N = addtimingnode(N,3); % Add node 3
N = addcontsys(N,1,Gphi,4,Q,R1); % Add sys 1 (Gphi)
N = addcontsys(N,2,Gx,1,Q); % Add sys 2 (Gx)
N = adddiscsys(N,3,PID1,2,1); % Add sys 3 (PID1) to node 1
N = adddiscsys(N,4,PID2,[3 1],2); % Add sys 4 (PID2) to node 2
N = adddiscexec(N,4,[],[3 1],3); % Add exec of sys 4 (PID2) to node 3

18

C(z) G(s) Samp

ed

y

−1

Σ

Figure 13 The signal model to calculate the sensitivity spectral density (i.e., the
spectral density of y when ed is white noise).

C(z)

Samp1

2

τ

Figure 14 The timing model of the spectral density example.

N = calcdynamics(N); % Calculate internal dynamics
J = calccost(N) % Calculate cost

4.4 Spectral Density Calculation
The following example computes the influence of jitter on the sensitivity
function for a control system. The sensitivity function for a control system
with a plant G and a controller C is defined as S = 1

1+CG . For a randomly
time-varying system, though, this definition cannot be used.

The idea in this example is to form a system which is driven by white noise
ed at the output of the process G (see Figure 13). The spectral density of
the output y may then be interpreted as a kind of sensitivity function for
the stochastic system.

The example system is a continuous G(s) = 1
s2 which is controlled by a

LQG-designed controller C(z). The process is sampled periodically, but
there is a random delay τ between the process and the controller (see Fig-
ure 14). The delay is uniformly distributed between zero and τmax. The sen-
sitivity spectral density for τmax between zero and h (for different amounts
of jitter) is plotted in Figure 15.

The Matlab script for the computations is given below:

% Jitterbug example: spectdens.m
% ==============================
% Compute the sensitivity power spectral density with jitter

s = tf(’s’);
G = 1/s^2; % The process is a double integrator

h = 0.25;
delta = h/10;

19

−2
−1

0
1

2

0

0.5

1
−25

−20

−15

−10

−5

0

Log frequency

Sensitivity power spectral density with jitter

Maximum delay in % of h

P
S

D
 o

f s
en

si
tib

ity
 o

ut
pu

t [
dB

]

Figure 15 The sensitivity spectral density from the example.

Mvec = [];
delays = (1:round(h/delta))/round(h/delta);
for delay = delays
Ptau1 = ones(1,delay*round(h/delta)+1); % Uniform delay
Ptau1 = Ptau1/sum(Ptau1);

Q = diag([1 1]);
R1 = 1;
R2 = 1;

Samp = 1; % Sampler system
C = lqgdesign(G,Q,R1,R2,h,h*delay/2); % Design an LQG controller

N = initjitterbug(delta,h); % Initialize Jitterbug
N = addtimingnode(N,1,Ptau1,2); % Add node 1
N = addtimingnode(N,2); % Add node 2
N = addcontsys(N,1,G,3,Q,[],1); % Add sys 1 (G) with output noise
N = adddiscsys(N,2,Samp,1,1); % Add sys 2 (Samp) to node 1
N = adddiscsys(N,3,C,2,2); % Add sys 3 (C) to node 2

N = calcdynamics(N); % Calculate internal dynamics
[J,P,F] = calccost(N); % Calculate spectral densities
H = F{2}; % y is the second output (sys 2)
w = logspace(-2,log10(pi/h),50);
M = bode(H,w);
M = squeeze(M);
Mvec = [Mvec M];

end
figure
surfl(log10(w),delays,10*log10(Mvec)’)
title(’Sensitivity power spectral density with jitter’);
xlabel(’Log frequency’);
ylabel(’Maximum delay in % of \ith’);
zlabel(’PSD of sensitibity output [dB]’)

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.5

2

2.5

3

3.5

4

Maximum delay relative to h

C
os

t

Skip sample
Update controller without sample
Extend period

Figure 16 The costs in the overrun example.

4.5 Overrun Handling Methods
This example presentes (a rather long) script that compares three ways
of handling long delays in a control system. The problem is what to do if
the controller does not get a process sample in time. Three approaches are
tested:

a) Do not update the controller, and use the old control signal.

b) Update the controller state and control signal based on no input. This
is not done by feeding zeros to the observer, but rather by disconnect-
ing the input part of the observer.

c) Extend the sample period until the sample does arrive. This creates
an aperiodic system, and an iterative solver has to be used.

This kind of problem can also be interpreted as a computation time prob-
lem, where the computation of some control signal may take long enough
time to miss a deadline.

The set-up is as follows. A plant G(s) = 1
s(s2+2ζ ω s+ω 2) with ζ = 0.2 and

ω = 1 is to be controlled by an LQG regulator. The controller is calculated
for the mean time delay using the function lqgdesign(). As for the delay,
it is uniformly distributed between 0 and τmax, where τmax is swept from 0
to 2h (i.e. two sample periods).

The three cases are compared in Figure 16. As expected, using the old
control signal gives the worst performance, while extending the control
period until the control signal is produced gives the best results.

The Matlab script for the computations is given below. Note that the itera-
tive solver is very much slower than the algebraic solver, and is only used
when the system is aperiodic.

21

% Jitterbug example: overrun.m
% ============================
% Compare three overrun handling methods for a control system with
% delayed samples. The plant to be controlled is an integrator with a
% resonance (a third order system). The controller is an LQG
% controller, designed for the mean time delay. The delay for the
% sample from the plant is uniformly distributed between 0 and
% tau_max, which varies between 0 and 2h.
%
% When a sample is delayed more than one period,
% the controller will:
% Case 1) Not be updated at all
% Case 2) Let its observer run without input
% Case 3) Extend the period until the sample arrives (aperiodic system).
%
% The last case is very computationally intensive as it requires an
% iterative solver.

s = tf(’s’);

zeta = 0.2;
omega = 1;
G = 1/s/(s^2+2*zeta*omega*s+omega^2); % The process
Samp = 1;

h = 0.25;
delta = h/20;

Q = diag([1 1]);
R1 = 1;
R2 = 0.001;

clf;
hold on;
for mode = 1:3
slots = round(h/delta);
if mode == 1

delays = (0:2*slots)/slots;
else

delays = (slots:2*slots)/slots;
end
Jvec = [];

for delay = delays
% All three modes do the same thing for delay < 1.
if (mode < 2 | delay >= 1)
Ptau = ones(1,round(delay*slots)+1); % Uniform delay
Ptau = Ptau/sum(Ptau);
if (mode == 2)

if (size(Ptau,2) > slots+1)
Ptau = [Ptau(1:slots) sum(Ptau(1,slots+1:end))];

end
end
Pwait = zeros(round(slots*delay)+1,slots+1);
for d = 1:(slots*delay+1)

if (d > slots+1)

22

Pwait(d,1) = 1;
else
Pwait(d,slots-d+2) = 1;

end
end

% Create optimal controller based on mean delay
[C,L,Obs,K,Kbar,Gd] = lqgdesign(G,Q,R1,R2,h,delay*h/2);
% Create optimal controller based on observer with no input
Cnodata = ss(Gd.A-Gd.B*L,Gd.B*0,-L,Gd.D*0,h);

% Add different timing nodes depending on mode.
if (mode == 3)

N = initjitterbug(delta,0); % Aperiodic system
else

N = initjitterbug(delta,h); % Periodic system
end
if (mode == 2)

N = addtimingnode(N,1,Ptau,[2*ones(1,round(h/delta)) 3]);
else

N = addtimingnode(N,1,Ptau,2);
end
if (mode == 3)

N = addtimingnode(N,2,Pwait,1);
else

N = addtimingnode(N,2);
end
if (mode == 2)

N = addtimingnode(N,3);
end

N = addcontsys(N,1,G,3,Q,R1,R2); % Add sys 1 (G)
N = adddiscsys(N,2,Samp,1,1); % Add sys 2 (Samp) to node 1
N = adddiscsys(N,3,C,2,2); % Add sys 3 (C) to node 2
if (mode == 2)

N = adddiscexec(N,3,Cnodata,2,3); % Add exec of sys 3 (C) to node 3
end
N = calcdynamics(N); % Calculate internal dynamics
J = calccost(N) % Calculate cost
Jvec = [Jvec J];
if J == Inf

delays = delays(1:find(delays==delay));
break; % Skip remaining delays

end
end

end
if (mode == 1)

plot(delays,Jvec,’b’);
Jvec1 = Jvec;

elseif (mode == 2)
plot(delays(find(delays >= 1)),Jvec,’g’);
Jvec2 = Jvec;

else
plot(delays(find(delays >= 1)),Jvec,’r’);
Jvec3 = Jvec;

end

23

Jvec = [];
pause(0);

end
hold off;
legend(’Skip sample’, ’Update controller without sample’, ’Extend period’);
xlabel(’Maximum delay relative to h’);
ylabel(’Cost’);
axis([0 2 1.5 4])

5. Command Reference

A summary of the available JITTERBUG commands are given in Table 1.

Command Description

initjitterbug Initialize a new JITTERBUG system.

addtimingnode Add a timing node.

addcontsys Add a continuous-time system.

adddiscsys Add a discrete-time system to a timing node.

adddiscexec Add an execution of a previously defined
discrete-time system.

adddisctimedep Add time-dependence to a previously defined
discrete-time system.

calcdynamics Calculate the internal dynamics of a JITTERBUG

system.

calccost Calculate the total cost of a JITTERBUG system and,
for periodic systems, calculate the spectral densities
of the outputs.

lqgdesign Design a discrete-time LQG controller for a
continuous-time plant with a constant time delay
and a continuous-time cost function.

Table 1 Summary of the JITTERBUG commands.

24

initjitterbug

Purpose
Initialize a new JITTERBUG system.

Syntax
N = initjitterbug(delta,h)

Description
Initialize a new JITTERBUG system with a given time-grain and period.

Arguments

delta The time grain (in seconds). The computations in JITTERBUG

are completely based on this discretization. Computation times
and memory scale inversely proportionally to delta.

h The period of the system (in seconds). Specify 0 if the system
should be aperiodic.

Return Values

N The JITTERBUG system which must be passed to all other functions.

25

addtimingnode

Purpose
Add a timing node to a JITTERBUG system.

Syntax
N = addtimingnode(N,nodeid)
N = addtimingnode(N,nodeid,Ptau,nextnode)
N = addtimingnode(N,nodeid,Ptau,nextnodes,nextprobs)
N = addtimingnode(N,nodeid,Ptau,timedepnextnodes)

Description
Add a timing node to the JITTERBUG system N. The delay in the node is given
by the discrete probability distribution Ptau. The next node to be visited
can be either deterministic, random, or dependent on the total delay since
the first node.

Note 1: The JITTERBUG system must have a node with ID 1. If the system
is periodic, this will be the periodic node.

Note 2: If the total delay exceeds the period, the execution will restart in
the periodic node (if the system is periodic).

Arguments

N The JITTERBUG system to add this timing node to.

nodeid The ID of this timing node (a positive integer).
Ptau The delay probability vector. Ptau(1) is the

probability of a delay of 0*delta seconds, Ptau(2)
is the probability of a delay of 1*delta seconds,
etc. If omitted, the system will stay in this node
until the next period.

nextnode The next node to be visisited, after the delay in
this node has elapsed.

nextnodes A vector of possible next nodes to be visited.

nextprobs A vector specifying the probabilities for each of the
nodes in nextnodes to be visited next.

timedepnextnodes A vector of next nodes to be visited depending on
the total delay since the first node (including the
delay in this node).

26

addcontsys

Purpose
Add a continuous-time system to a JITTERBUG system.

Syntax
N = addcontsys(N,sysid,sys,inputid)
N = addcontsys(N,sysid,sys,inputid,Q,R1,R2)

Description
The continuous-time system can be given in state-space form or in transfer-
function (or zero-pole-gain) form.

In state-space form, the system is described by

ẋ(t) = Ax(t) + Bu(t) + v(t)
y0(t) = Cx(t) (continuous output)
y(tk) = y0(tk) + e(tk) (measured discrete output)

where v is a continuous-time white-noise process with zero mean and co-
variance1 R1, and e is a discrete-time white-noise process with zero mean
and covariance R2. The cost of the system is specified as

J = lim
T→∞

1
T

∫ T

0

 x(t)
u(t)

T

Q
 x(t)

u(t)

 dt

where Q is a positive semi-definite matrix.

In transfer-function form, the system is described by

y0(t) = G(p)(u(t) + v(t)) (continuous output)
y(tk) = y0(tk) + e(tk) (measured discrete output)

where G(p) is a strictly proper transfer function, v is a continuous-time
white-noise process with zero mean and covariance R1, and e is a discrete-
time white-noise process with zero mean and covariance R2. The cost of
the system is specified as

J = lim
T→∞

1
T

∫ T

0

 y0(t)
u(t)

T

Q
 y0(t)

u(t)

 dt

where Q is a positive semi-definite matrix.

Note that the measured discrete output is only used when the system is
connected to a discrete-time system.

1By this we mean that v has the spectral density φ (ω) = 1
2π R1.

27

Arguments

N The JITTERBUG system to add this continuous-time system to.

sysid A unique ID number for this system (pick any). Used when
referred to from other systems.

sys A strictly proper continuous-time LTI system in state-space,
transfer function, or pole-zero-gain form. Internally, the
system will be converted to state-space form.

inputid A vector of system IDs. The outputs of the corresponding
systems will be used as inputs to this system. The number of
inputs in this system must equal the total number of
outputs in the input systems. A negative input ID specifies
that the corresponding system’s state should be used instead
of its output. An input ID of zero specifies that the input
should be taken from the null system (which has a scalar
output equal to zero).

Optional Arguments

Q The cost matrix (default is zero).
R1 The state or input noise covariance matrix (default is zero).
R2 The measurement noise covariance matrix (default is zero). Note

that measurement noise will only be added when the system is
sampled by a discrete-time system. The measurement noise will
not be included in the input cost of the connected discrete-time
system. Also, the measurement nosie will not affect any connected
continuous-time systems (see Figure 2).

Any optional arguments can be left as [] for default values.

Limitations
To avoid problems with algebraic loops and infinite variances, continuous-
time systems with direct terms are not supported. Also, continuous-time
output noise is not supported.

28

adddiscsys

Purpose
Add a discrete-time system to a JITTERBUG system.

Syntax
N = adddiscsys(N,sysid,sys,inputid,nodeid)
N = adddiscsys(N,sysid,sys,inputid,nodeid,Q,R)

Description
The discrete-time system can be given in state-space form or in transfer-
function form.

In state-space form, the system is described by

x(tk+1) = Ax(tk) + Bu(tk) + v(tk)
y0(tk) = Cx(tk) + Du(tk) (discrete output)
y(tk) = y0(tk) + e(tk) (measured discrete output)

where v and e are discrete-time white-noise processs with zero mean and
covariance

R = E
 v(tk)

e(tk)

 v(tk)
e(tk)

T

.

The cost of the system is specified as

J = lim
T→∞

1
T

∫ T

0


x(t)
y0(t)
u(t)


T

Q


x(t)
y0(t)
u(t)

 dt

where Q is a positive semi-definite matrix. Note that x(t) and y0(t) are
piecewise constant signals, while u(t) may be a continuous signal.

In transfer-function form, the system is described by

y0(tk) = H(q)(u(tk) + v(tk)
) (discrete output)

y(tk) = y0(tk) + e(tk) (measured discrete output)
where H(q) is a proper transfer function, and v and e are discrete-time
white-noise processs with zero mean and covariance

R = E
 v(tk)

e(tk)

 v(tk)
e(tk)

T

.

The cost of the system is specified as

J = lim
T→∞

1
T

∫ T

0

 y0(t)
u(t)

T

Q
 y0(t)

u(t)

 dt

where Q is a positive semi-definite matrix. Again, note that y0(t) is a
piecewise constant signal, while u(t) may be a continuous signal.

29

Arguments

N The JITTERBUG system to add this discrete-time system to.

sysid A unique ID number of this system (pick any). Used when
referred to from other systems.

sys A discrete-time LTI system in state-space or transfer
function form, or a double/matrix (interpreted as a static
gain transfer function). Internally, the system will be
converted to state-space form.

inputid A vector of system IDs. The outputs of the corresponding
systems will be used as inputs to this system. The number of
inputs in this system must equal the total number of
outputs in the input systems. A negative input ID specifies
that the corresponding system’s state should be used instead
of its output. An input ID of zero specifies that the input
should be taken from the null system (which has a scalar
output equal to zero).

nodeid The timing node where this discrete-time system should be
executed. If you want the same system to be executed in
further nodes, use adddiscexec.

Optional Arguments

Q The cost matrix (default is zero).
R The noise covariance matrix (default is zero). Added each time the

system is updated. Note that noise may also enter the system from
the output nose of another system.

Any optional arguments can be left as [] for default values.

Remark
The input cost is really defined on whatever signal is used as input. If
the input signal is continuous, the continuous cost (not sampled) will be
calculated. If you really want the sampled cost, insert a sampling discrete-
time system in between.

See Also
adddiscexec, adddisctimedep

30

adddiscexec

Purpose
Add an execution of a previously defined discrete-time system.

Syntax
N = adddiscexec(N,sysid,sys,inputid,nodeid)

Arguments

N The JITTERBUG system.

sysid The ID of the discrete-time system.

sys A discrete-time LTI system or [] for the same dynamics as
before. To ensure that the same state vector is used
internally, both this and the original system should be given
in state-space form.

inputid A vector of system IDs. The outputs of the corresponding
systems will be used as inputs to this system. The number of
inputs in this system must equal the total number of
outputs in the input systems. A negative input ID specifies
that the corresponding system’s state should be used instead
of its output. An input ID of zero specifies that the input
should be taken from the null system (which has a scalar
output equal to zero).

nodeid The ID of the timing node where this discrete-time system
should be executed again.

Remark
It is not possible to change the cost or the noise of the system.

See Also
adddiscsys, adddisctimedep

31

adddisctimedep

Purpose
Add time-dependence to a previously defined discrete-time system.

Syntax
N = adddisctimedep(N,sysid,sys,timestep)

Description
Makes the dynamics of the discrete-time system with ID sysid time-dependent.
The system model sys will be used for all delays greater than or equal to
timestep*delta seconds since the first timing node (unless another defi-
nition overrides for longer delays).

Arguments

N The JITTERBUG system.

sysid The ID of the discrete-time system.

sys A discrete-time LTI system describing the new dynamics.
To ensure that the same state vector is used internally,
both this and the original system should be given in
state-space form.

timestep The system model sys will be used for all delays greater
than or equal to timestep*delta seconds since the first
timing node.

Remark
It is not possible to change the cost or the noise of the system.

See Also
adddiscexec, adddiscsys

32

calcdynamics

Purpose
Calculate the internal dynamics of a JITTERBUG system.

Syntax
N = calcdynamics(N)

Description
Calculate the total system dynamics for the JITTERBUG system N. The
continuous-time noise, the continuous-time cost functions, and the continuous-
time systems are sampled with the time grain delta. The resulting system
description is stored in N.nodes.

This function must be called before calccost.

Arguments

N The JITTERBUG system.

See Also
calccost

33

calccost

Purpose
Calculate stationary variance, cost, and output spectral densities of a JIT-
TERBUG system.

Syntax
[J,P,F] = calccost(N)
[J,P,F] = calccost(N,options)

Description
Calculate the stationary variance and cost of the JITTERBUG system N. For
periodic systems, also compute the (discrete-time) spectral densities of all
outputs in the periodic node.

If the system is periodic, the solution is calculated algebraically, by solving
a linear system of equations. If the system is aperiodic, an iterative solver
is used.

This function must be called after calcdynamics.

Arguments

N The JITTERBUG system.

options For aperiodic systems, options is a struct with any of the
following fields:
accuracy The iterative solver will quit whenever the rel-

ative cost change for one time step is less than
this. Default is 1e-7.

horizon The horizon over which the cost is averaged. May
be Inf. Default is the maximum system period.

print Enable printouts. Default is 1 (on).

Return Values
J The cost (Inf if unstable).
P The stationary variance in the periodic node (Inf if unstable).
F The spectral densities of the outputs (in the order they were

defined). The spectral density of each output is returned as a
discrete-time system F(z) such that φ(ω) = F(eiω h). Use e.g.
bodemag(F{1}) to plot the spectral density of the output of the first
defined system.

See Also
calcdynamics

34

lqgdesign

Purpose
Design a discrete-time LQG controller for a continuous-time plant with a
constant time delay and a continuous-time cost function.

Syntax
[ctrl,L,obs,K,Kf,sysd] = lqgdesign(sys,Q,R1,R2,h,tau)

Description
Design a discrete-time LQG controller with direct term for the continuous-
time system sys assuming a constant sampling interval h and a constant
time delay tau. The system can be given in state-space form or in transfer-
function (or zero-pole-gain) form.

In state-space form, the system is described by

ẋ(t) = Ax(t) + Bu(t− τ) + v(t)
y(tk) = Cx(tk) + e(tk)

where τ is a constant time delay, v is a continuous-time Gaussian white-
noise process with zero mean and covariance R1, and e is a discrete-time
Gaussian white-noise process with zero mean and covariance R2. The noise
processes v and e are assumed to be independent. The sampling instants
are given by tk = kh. The cost function to be minimized by the controller
is specified as

J = lim
T→∞

1
T

∫ T

0

 x(t)
u(t)

T

Q
 x(t)

u(t)

 dt

where Q is a positive semi-definite matrix.

In transfer-function form, the system is described by

y0(t) = G(p)(u(t−τ) + v(t))
y(tk) = y0(tk) + e(tk)

where τ is a constant time delay, G(p) is a strictly proper transfer function,
v is a continuous-time white-noise process with zero mean and covariance
R1, and e is a discrete-time white-noise process with zero mean and co-
variance R2. The cost of the system is specified as

J = lim
T→∞

1
T

∫ T

0

 y0(t)
u(t)

T

Q
 y0(t)

u(t)

 dt

where Q is a positive semi-definite matrix.

The resulting controller has the form

u(k) = −Lx̂e(k h k)
x̂e(k h k) = x̂e(k h k− 1) + Kf

(
y(k) − Ce x̂e(k h k− 1))

x̂e(k+ 1 h k) = Φe x̂e(k h k− 1) + Γe u(k) + K
(

y(k) − Ce x̂e(k h k− 1))
35

where x̂e(k) =
 x̂(k)

u(k− 1)

.

Arguments

sys A strictly proper continuous-time LTI system in state-space,
transfer function, or pole-zero-gain form. Any delay specified in
this system will be ignored. Use the tau argument instead.

Q The cost matrix.

R1 The state or input noise covariance matrix.

R2 The measurement noise covariance matrix.

h The sampling period of the controller (in seconds).
tau The time delay (in seconds), 0 ≤ tau ≤ h.

Return Values
ctrl The complete LQG controller as a discrete-time LTI system.

L The state feedback gain vector.

obs The observer as a discrete-time LTI system.

K, Kf The observer gains.

sysd The sampled delayed plant, sysd = ss(Phie,Gammae,Ce,0,h).

36

6. References

Lincoln, B. and A. Cervin (2002): “Jitterbug: A tool for analysis of real-time
control performance.” In Proceedings of the 41st IEEE Conference on
Decision and Control.

Nilsson, J. (1998): Real-Time Control Systems with Delays. PhD thesis
ISRN LUTFD2/TFRT--1049--SE, Department of Automatic Control,
Lund Institute of Technology, Sweden.

37

TrueTime v 1.04 – Reference Manual
November 11, 2002

Dan Henriksson, Anton Cervin

Department of Automatic Control
Lund Institute of Technology

Box 118, SE 221 00 Lund, Sweden
{dan,anton}@control.lth.se

1. Introduction

This manual describes the use of the MATLAB/Simulink-based simulator TRUETIME,
which facilitates co-simulation of controller task execution in real-time kernels, net-
work transmissions, and continuous plant dynamics. The simulator was presented
in [Henriksson et al., 2002; Cervin et al., 2002], but several differences from these
papers exist.

The manual describes the fundamental steps in the creation of a TRUETIME simula-
tion together with a reference section for all the functions provided by the simulator.
The final version of this manual will also contain a number of tutorial examples and
a description of the internal workings of the simulator, including the data structures
and program flow.

Please direct questions and bug reports to

truetime@control.lth.se

2. Getting started

If not done already, download the compressed files (truetime-1.04.zip) available at:

http://www.control.lth.se/∼dan/truetime/
Extract the files to any suitable directory $DIR and start MATLAB. In MATLAB, run
the Matlab-script init_truetime.m located in the directory $DIR/truetime/kernel:

>> cd $DIR/truetime/kernel;
>> init_truetime;

This will set up the necessary paths needed to run the simulator.

1

Issuing the command

>> truetime

from the MATLAB prompt will then open the TRUETIME block library, see Figure 1.

Figure 1 The TRUETIME block library.

3. Using the simulator

The TRUETIME blocks are connected with ordinary Simulink blocks to form a real-
time control system, see Figure 2. Before a simulation can be run, however, it is
necessary to initialize computer blocks and the network block, and to create tasks,
interrupt handlers, timers, events, monitors, etc for the simulation.

we

A/D

Interrupts

Rcv

D/A

Snd

Schedule

Monitors

TrueTime Kernel

Schedule

1

s +−12

Pendulum

Figure 2 A TRUETIME computer block connected to a continuous pendulum process.

The initialization code as well as the code that is executed during simulation may be
written either as C++ code or as MATLAB M-files. The former is faster but the latter
is probably more convenient. How the code functions are defined and what must be
provided during initialization will be described below. It will also be described how
the code is compiled to executable MATLAB code.

2

4. Writing Code Functions

The execution of tasks and interrupt handlers is defined by code functions. A code
function is further divided into code segments according to the execution model in
Figure 3. All execution of user code is done in the beginning of each code segment.
The execution time of each segment should be returned by the code function.

1 2 3

Simulated execution time

Execution of user code

Figure 3 The execution of user-code is modeled by a sequence of segments executed in order
by the kernel.

4.1 Writing a Matlab code function
The syntax of a MATLAB code function is given by the following code implementing
a simple P-controller:

function [exectime, data] = Pcontroller(segment, data)

switch (segment),
case 1,

r = ttAnalogIn(1);
y = ttAnalogIn(2);
data.u = data.K*(r-y);
exectime = 0.002;

case 2,
ttAnalogOut(1, data.u);
exectime = -1; % finished

end

The variable segment indicates which segment that should be executed, while data
is a user-defined data structure that has been associated with the task during
initialization. The data is updated and returned by the code function.

The execution time of the first segment is 2 ms. This means that the delay from
input to output for this task will be at least 2 ms. However, preemption from higher
priority tasks may cause the delay to be longer. The second segment returns a
negative execution time. This is used to indicate end of execution, i.e. that there
are no more segments to execute.

ttAnalogIn and ttAnalogOut are real-time primitives used to read and write sig-
nals. A complete reference for all functions provided by the simulator is given at
the end of this manual.

3

Note: The directory $DIR/truetime/kernel/matlab contains the MEX-interfaces for
all the functions provided by the simulator. These functions must be compiled in
order to be called from MATLAB functions, e.g.

>> mex ttAnalogIn.cpp

Since the compiled MEX-files become rather large, it is recommended to only com-
pile the functions that are used in the simulation.

4.2 Writing a C++ code function
The C++ syntax for the code function in the previous section is given below. We
here assume the definition of a structure Task_Data that contains the control signal
u and the controller gain, K .

double Pcontroller(int segment, void* data) {

Task_Data* d = (Task_Data*) data;

switch (segment) {
case 1:

double r = ttAnalogIn(1);
double y = ttAnalogIn(2);
d->u = d->K*(r-y);
return 0.002;

case 2:
ttAnalogOut(1, d->u);
return FINISHED;

}
}

4.3 Calling Simulink block diagrams
Whether implemented as C++ code or as M-files, it is possible to call Simulink block
diagrams from within the code functions. This is a convenient way to implement
controllers. Below follows an example where the discrete PID-controller in Figure 4
is used in a code function:

function [exectime, data] = PIcontroller(segment, data)

switch (segment),
case 1,

inp(1) = ttAnalogIn(1);
inp(2) = ttAnalogIn(2);
outp = ttCallBlockSystem(2, inp, ’controller’);
data.u = outp(1);
exectime = outp(2);

case 2,
ttAnalogOut(1, data.u);
exectime = -1; % finished

end

See the function reference at the end of this manual for further explanation of the
command ttCallBlockSystem.

4

Figure 4 Controllers represented using ordinary discrete Simulink blocks may be called
from within the code functions. The only requirement is that the blocks are discrete with the
sample time set to one.

5. Initialization

Initialization involves specifying the number of inputs and outputs of the computer
block, defining the scheduling policy, and creating tasks, interrupt handlers, events,
monitors, etc for the simulation. This is done in a initialization function for each
computer block.

5.1 Writing a Matlab initialization function
The initialization code below shows the minimum of initialization needed to run
a simulation. The kernel is initialized by providing the number of inputs and out-
puts and the scheduling policy using the function ttInitKernel. A periodic task
is created by the function ttCreatePeriodicTask. This task uses the code function
Pcontroller defined in Section 4.1. See the function reference for further explana-
tion of the functions.

function example_init

ttInitKernel(2, 1, ’prioFP’);

data.u = 0;
data.K = 2;
ttCreatePeriodicTask(’example_task’, 0.0, 0.005, 2, ’Pcontroller’,

data);

5.2 Writing a C++ initialization script
An initialization script in C++ must follow a certain format given by the template
below:

#define S_FUNCTION_NAME filename

#include "$DIR/truetime/kernel/ttkernel.cpp"

// include code functions

void init() {

5

// perform the initialization
}

void cleanup() {
// free dynamic memory allocated in the script
}

filename is the name of the file, e.g. example_init.cpp. The actual initialization
is performed in the init()-function, which is called by the kernel at the start of
simulation. Any dynamic memory allocated in the script can be deallocated in the
cleanup()-function, which is called by the kernel at the end of simulation.

The C++ version of the initialization from the previous section is given below

#define S_FUNCTION_NAME example_init

#include "$DIR/truetime/kernel/ttkernel.cpp"

#include "Pcontroller.cpp"

class Task_Data {
public:

double u;
double K;

};

Task_Data* data;

void init() {

ttInitKernel(2, 1, FP);

data = new Task_Data;
data->u = 0.0;
data->K = 2.0;

ttCreatePeriodicTask("example_task", 0.0, 0.005, 2, Pcontroller,
data);

}

void cleanup() {

delete data;
}

6

6. Compilation

In the MATLAB case, you will have to compile the file ttkernelMATLAB.cpp in the
directory $DIR/truetime/kernel:

>> mex ttkernelMATLAB.cpp

You will also need to compile the kernel primitives that you use in your code func-
tions, e.g. ttInitKernel and ttAnalogIn. These files are located in $DIR/truetime/ker-
nel/matlab. This compilation only has to be done once, and no further compilation
is required if code functions or initialization scripts are changed.

However, you may experience that nothing changes in the simulations, although
changes are being made to the code functions or the initialization script. If that is
the case, type the following at the MATLAB prompt

>> clear functions

To force MATLAB to reload all functions at the start of each simulation, issue the
command (assuming that the model is named servo)

>> set_param(’servo’, ’StartFcn’, ’clear functions’)

In the C++ case the initialization script (example_init.cpp in the example above)
must be compiled before running a simulation

>> mex example_init.cpp

This file also needs to be recompiled each time changes are made to the code func-
tions or in the initialization.

In both the MATLAB and the C++ case, the name of the initialization script with-
out extension (e.g. example_init) must be provided in the parameter field of the
TRUETIME computer block.

See the examples located in the directory $DIR/truetime/examples for further ref-
erence. Read the README-files in the examples directories for instructions on how
to compile the respective simulations.

7. The Network Block

The network block is compiled once and for all (>> mex ttnetwork.cpp) and is config-
ured through the block mask dialogue, see Figure 5. Five simple models of network
protocols are supported: CSMA/CD (e.g. Ethernet), CSMA/CA (e.g. CAN), Round
Robin (e.g. Token Bus), FDMA, and TDMA (e.g. TTP). The propagation delay is
ignored, since it is typically very small in a local area network. In all protocols, a
long message may be split into a number of frames which are transmitted in se-
quence. Minimum and maximum frame sizes can be specified, and each frame can
carry an overhead.

The following network parameters are common to all models:

7

Figure 5 The dialogue of the TrueTime Network block.

Number of Nodes The number of nodes that are connected to the network. This
number will determine the size of the Snd, Rcv and Schedule input and outputs
of the block.

Data rate (bits/s) The speed of the network.

Proprocessing delay (s) The time a message is delayed by the network interface
on the sending end. This can be used to model e.g. a slow serial connection
between the computer and the network interface.

Postprocessing delay (s) The time a message is delayed by the network interface
on the receiving end.

Minimum frame size (bytes) A message or frame shorter than this will be padded
to give the minimum length. Denotes the minimum payload, before the over-
head is added. E.g., the minimum Ethernet payload is 46 bytes.

Maximum frame size (bytes) A message longer than this size will be split into
several frames. Again, denotes the maximum payload, before the overhead is
added. E.g., the maximum Ethernet payload is 1500 bytes. To avoid splitting
into frames, specify a very large maximum frame size.

Frame overhead (bytes) Each frame will be extended with this number of bytes
before transmission. This number should include any inter-frame gap. E.g.,

8

the Ethernet frame overhead is 38 bytes.

7.1 CSMA/CD
CSMA/CD stands for Carrier Sense Multiple Access with Collision Detection. If the
network is busy, the sender will wait until it occurs to be free. A collision will occur
if a message is transmitted within 1 microsecond of another (this corresponds to
the propagation delay in a 200 m cable; the actual number is not very important
since collisions are only likely to occur when two or more nodes are waiting for the
cable to be idle). When a collision occurs, the sender will back off for a time defined
by

(minimum frame size + frame overhead) / data rate � R

where R = rand(0, 2K − 1) (discrete uniform distribution) and K is the number
of collisions in a row (but maximum 10—there is no upper limit on the number of
retransmissions, however). Note that for CSMA/CD, both minimum frame size and
frame overhead cannot be 0.

After waiting, the node will attempt to retransmit. In an example where two nodes
are waiting for a third node to finish its transmission, they will first collide with
probability 1, then with probability 1/2 (K = 1), then 1/4 (K = 2), and so on.

7.2 CSMA/CA
CSMA/CD stands for Carrier Sense Multiple Access with Collision Avoidance. If the
network is busy, the sender will wait until it occurs to be free. If a collision occurs
(again, if two transmissions are being started within 1 microsecond), the message
with the highest priority (the lowest priority number) will continue to be transmit-
ted. If two messages with the same priority seek transmission simultaneously, an
arbitrary choice is made as to which is transmitted first. (In real CAN applications,
all sending nodes have a unique identifier, which serves as the message priority.)
7.3 Round Robin
The nodes in the network take turn (from lowest to highest node number) to trans-
mit one frame each. Between turns, the network is idle for (minimum frame size +
frame overhead)/(date rate) seconds, representing the time to pass a token to the
next node.

7.4 FDMA
FDMA stands for Frequency Division Multiple Access. The transmissions of the
different nodes are completely independent and no collisions can occur. In this
mode, there is an extra attribute

Bandwidth allocations a vector of shares for the sender nodes which must sum
to at most one.

The actual bit rate of a sender is computed as (allocated bandwidth � data rate).
7.5 TDMA
TDMA stands for time division multiple access. Works similar to FDMA, except
each node has 100 % of the bandwidth but only in its scheduled slots. If a full
frame cannot be transmitted in a slot, the transmission will continue in the next
scheduled slot, without any extra penalty. Note that overhead is added to each
frame just as in the other protocols. The extra attributes are

9

Slot size (bytes) the slot time is hence given by (slot size)/(data rate).
Schedule A vector of sender node ID’s (1 . . . nbrOfNodes) specifying a cyclic send

schedule.

8. Timing Implementation Details

To support external interrupts and arbitrary time steps, the blocks have a con-
tinuous sample time. Discrete (i.e., piecewise constant) outputs are obtained by
specifying FIXED_IN_MINOR_STEP_OFFSET:

static void mdlInitializeSampleTimes(SimStruct *S)
{

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetOffsetTime(S, 0, FIXED_IN_MINOR_STEP_OFFSET);

}

The timing of the block is implemented using a zero-crossing function. The next
time the kernel should wake up is denoted nextHit. If there is no known wake-up
time, this variable is set to infinity. The basic structure of the zero-crossing function
is

static void mdlZeroCrossings(SimStruct *S)
{

store all inputs;
if (any interrupt input has changed value) {

nextHit = ssGetT(S);
}
ssGetNonsampledZCs(S)[0] = nextHit - ssGetT(S);

}

This will ensure that mdlOutputs executes every time an internal or external event
occur.

Since several kernel and network blocks may be connected in a circular fashion, di-
rect feedthrough is not allowed. We exploit the fact that, when an input changes as a
step, mdlOutputs is called, followed by mdlZeroCrossings. Since direct feedthrough
is not allowed, the inputs may only be checked for changes in mdlZeroCrossings.
There, the zero-crossing function is changed so that the next major step occurs at
the current time. This scheme will introduce a small timing error (< 10−10).
The kernel function is only called from mdlOutputs since this is where the outputs
(D/A, schedule, network) can be changed.

User Implications For the user, the timing implementation has the following
implications:

• Zero-crossing detection must be turned on (default, can be changed under
Simulation Parameters/Advanced).

10

• The model must contain at least one block with a continuous state. This is usu-
ally not a problem, since a model typically contains some continuous process
dynamics. Otherwise, inserting for instance a Clock block solves the problem.

9. References

Cervin, A., D. Henriksson, B. Lincoln, and K.-E. Årzén (2002): “Jitterbug and
Truetime: Analysis tools for real-time control systems.” In Proceedings of the
2nd Workshop on Real-time Tools. Copenhagen, Denmark.

Henriksson, D., A. Cervin, and K.-E. Årzén (2002): “Truetime: Simulation of control
loops under shared computer resources.” In Proceedings of the 15th IFAC World
Congress on Automatic Control. Barcelona, Spain.

11

ttInitKernel

Purpose
Initialize the TRUETIME kernel.

Matlab syntax
ttInitKernel(nbrInp, nbrOutp, prioFcn)
ttInitKernel(nbrInp, nbrOutp, prioFcn, csoh)

C++ syntax
void ttInitKernel(int nbrInp, int nbrOutp, int prioFcn)
void ttInitKernel(int nbrInp, int nbrOutp, int prioFcn, double csoh)

Arguments

nbrInp Number of input channels, i.e. the size of the A/D port of the
computer block.

nbrOutp Number of output channels, i.e. the size of the D/A port of the
computer block.

prioFcn The scheduling policy used by the kernel.
csoh Time for a full context switch. Unless specified, zero overhead will be

associated with context switches.

Description
This function performs necessary initializations of the computer block and must be
called first of all in the initialization script. The priority function should be any
of the following in the MATLAB case; ’prioFP’, ’prioRM’, ’prioDM’, or ’prioEDF’.
The corresponding identifiers in the C++ case are; FP, RM, DM, and EDF. To define
an arbitrary priority function, see ttAttachPrioFcn.

See Also
ttAttachPrioFcn

12

ttCreateTask

Purpose
Create a TRUETIME task.

Matlab syntax
ttCreateTask(name, deadline, priority, codeFcn)
ttCreateTask(name, deadline, priority, codeFcn, data)

C++ syntax
bool ttCreateTask(char* name, double deadline, double priority,

double (*codeFcn)(int, void*))
bool ttCreateTask(char *name, double deadline, double priority,

double (*codeFcn)(int, void*), void* data)

Arguments

name Name of the task. Must be a unique, non-empty string.
deadline Deadline of the task.
priority Priority of the task.
codeFcn The code function of the task, where codeFcn is a string (name of an

m-file) in the MATLAB version and a function pointer in the C++
case.

data An arbitrary data structure representing the local memory of the
task.

Description
This function is used to create a task to run in the TRUETIME kernel. The function
returns true if successful and false otherwise. Note that no task instance (job) is
created by this function. This is done by the primitive ttCreateJob.

See Also
ttCreatePeriodicTask, ttCreateJob, ttSetX

13

ttCreatePeriodicTask

Purpose
Create a periodic TRUETIME task.

Matlab syntax
ttCreatePeriodicTask(name, release, period, priority, codeFcn)
ttCreatePeriodicTask(name, release, period, priority, codeFcn, data)

C++ syntax
bool ttCreatePeriodicTask(char* name, double release, double period,

double priority, double (*codeFcn)(int, void*))
bool ttCreatePeriodicTask(char *name, double release, double period,

double priority, double (*codeFcn)(int, void*), void* data)

Arguments

name Name of the task. Must be a unique, non-empty string.
release Release of the first instance of the periodic task.
period Period of the task.
priority Priority of the task.
codeFcn The code function of the task, where codeFcn is a string (name of an

m-file) in the MATLAB version and a function pointer in the C++
case.

data An arbitrary data structure representing the local memory of the
task.

Description
This function is used to create a periodic task to run in the TRUETIME kernel.
The function returns true if successful and false otherwise. The periodicity is
implemented by a periodic timer, generating task instances. The deadline and worst-
case execution time of the task are by default put equal to the task period. This
may be changed by a suitable set-function.

See Also
ttCreateTask, ttSetX

14

ttCreateInterruptHandler

Purpose
Create a TRUETIME interrupt handler.

Matlab syntax
ttCreateInterruptHandler(name, priority, codeFcn)
ttCreateInterruptHandler(name, priority, codeFcn, data)

C++ syntax
bool ttCreateInterruptHandler(char *name, double priority,

double (*codeFcn)(int, void*))
bool ttCreateInterruptHandler(char *name, double priority,

double (*codeFcn)(int, void*), void* data)

Arguments

name Name of the handler. Must be a unique, non-empty string.
priority Priority of the handler.
codeFcn The code function of the handler, where codeFcn is a string (name

of an m-file) in the MATLAB version and a function pointer in the
C++ case.

data An arbitrary data structure representing the local memory of the
handler.

Description
This function is used to create an interrupt handler to run in the TRUETIME kernel.
The function returns true if successful and false otherwise. Interrupt handlers
may be associated with external interrupts, timers, or attached to tasks as overrun
handlers.

See Also
ttCreateTimer, ttCreateExternalTrigger, ttAttachDLHandler,
ttAttachWCETHandler

15

ttCreateMonitor

Purpose
Create a TRUETIME monitor.

Matlab syntax
ttCreateMonitor(name, display)

C++ syntax
bool ttCreateMonitor(char *name, bool display)

Arguments

name Name of the monitor. Must be a unique, non-empty string.
display To indicate if the monitor should be included in the monitor graph

generated by the simulation.

Description
This function is used to create a monitor in the TRUETIME kernel. The function
returns true if successful and false otherwise.

See Also
ttEnterMonitor, ttExitMonitor

16

ttCreateEvent

Purpose
Create a TRUETIME event.

Matlab syntax
ttCreateEvent(eventname, monitorname)

C++ syntax
bool ttCreateEvent(char *eventname, char *monitorname)

Arguments

eventname Name of the event. Must be a unique, non-empty string.
monitorname Name of an already created monitor to which the event is to be

associated. monitor.

Description
This function is used to create an event in the TRUETIME kernel. The function
returns true if successful and false otherwise. To create a free event, i.e. an event
not associated with a monitor, put the monitorname to FREE_EVENT in C++ mode
or an empty string in MATLAB mode.

See Also
ttWait, ttNotifyAll

17

ttCreateExternalTrigger

Purpose
Associate a TRUETIME interrupt handler with an external interrupt channel.

Matlab syntax
ttCreateExternalTrigger(handlername, latency)

C++ syntax
bool ttCreateExternalTrigger(char *nameOfHandler, double latency)

Arguments

handlername Name of the handler to be associated with the external interrupt.
latency The time interval during which the interrupt is insensitive to

new invocations.

Description
This function is used to associate an interrupt handler with an external interrupt
channel. The function returns true if successful and false otherwise. The size of
the external interrupt port will be decided depending on the number of created
triggers.

See Also
ttCreateInterruptHandler

18

ttNoSchedule

Purpose
Switch off the schedule generation for a specific task or interrupt handler.

Matlab syntax
ttNoSchedule(name)

C++ syntax
void ttNoSchedule(char* name)

Arguments

name Name of a task or interrupt handler.

Description
This function is used to switch off the schedule generation for a specific task or
interrupt handler. The schedule is generated by default and this function must be
called to turn it off.

19

ttNonPreemptive

Purpose
To make a task non-preemptive.

Matlab syntax
ttNonPreemptive(taskname)

C++ syntax
void ttNonPreemptive(char* taskname)

Arguments

taskname Name of a task.

Description
Tasks are by default preemptive. Use this function to make certain tasks non-
preemptive.

20

ttAttachDLHandler

Purpose
Attach a deadline overrun handler to a task.

Matlab syntax
ttAttachDLHandler(taskname, handlername)

C++ syntax
void ttAttachDLHandler(char* taskname, char* handlername)

Arguments

taskname Name of a task.
handlername Name of an interrupt handler.

Description
This function is used to attach a deadline overrun handler to a task. The interrupt
handler is activated if the task executes past its deadline.

See Also
ttAttachWCETHandler, ttSetDeadline

21

ttAttachWCETHandler

Purpose
Attach a worst-case execution time overrun handler to a task.

Matlab syntax
ttAttachWCETHandler(taskname, handlername)

C++ syntax
void ttAttachWCETHandler(char* taskname, char* handlername)

Arguments

taskname Name of a task.
handlername Name of an interrupt handler.

Description
This function is used to attach a worst-case execution time overrun handler to a
task. The interrupt handler is activated if the task executes longer than its associ-
ated worst-case execution time.

See Also
ttAttachDLHandler, ttSetWCET

22

ttAttachPrioFcn (C++ only)

Purpose
Attach an arbitrary priority function to be used by the TRUETIME kernel.

C++ syntax
void ttAttachPrioFcn(double (*prioFcn)(Task*))

Arguments

prioFcn The priority function to be attached.

Description
This function is used to attach an arbitrary priority function to the TRUETIME

kernel. The input to the priority function is a pointer to a Task structure, see
$DIR/truetime/kernel/task.h for the definition. The output from the priority func-
tion should be a number that gives the (possibly dynamic) priority of the task. As
an example, the simple priority function implementing fixed-priority scheduling is
given below:

double prioFP(Task* task) {

return task->priority;
}

23

ttAttachHook (C++ only)

Purpose
Attach a run-time hook to a task.

C++ syntax
void ttAttachHook(char* taskname, int ID, void (*hook)(Task*))

Arguments

taskname Name of a task.
ID An identifier telling when the hook should be called during

simulation. Possible values are RELEASE, START, SUSPEND, RESUME,
and FINISH.

hook The hook to be attached.

Description
This function is used to attach a run-time hook to a specific task. When the hook
will be called is determined by the identifier ID. It is possible to attach hooks that
are called when the task is released, when the task starts to execute, when the
task is suspended, when the task resumes after being suspended, and when the
task finishes execution.

The input to the hook is a pointer to the Task structure of the specific task, see
$DIR/truetime/kernel/task.h for the definition.

24

ttAnalogIn

Purpose
Read a value from an analog input channel.

Matlab syntax
ttAnalogIn(inpChan)

C++ syntax
double ttAnalogIn(int inpChan)

Arguments

inpChan The input channel to read from.

Description
This function is used to read an analog input from the environment. The input chan-
nel must be between 1 and the number of input channels specified in ttInitKernel.

See Also
ttAnalogOut

25

ttAnalogOut

Purpose
Write a value to an analog output channel.

Matlab syntax
ttAnalogOut(outpChan, value)

C++ syntax
ttAnalogOut(int outpChan, double value)

Arguments

outpChan The output channel to write to.
value The value to write.

Description
This function is used to write an analog output to the environment. The out-
put channel must be between 1 and the number of output channels specified in
ttInitKernel.

See Also
ttAnalogIn

26

ttCreateJob

Purpose
Create a job of a specific task.

Matlab syntax
ttCreateJob(taskname, release)

C++ syntax
void ttCreateJob(char *taskname, double release)

Arguments

taskname Name of a task.
release Release time of the job.

Description
This function is used to create job instances of tasks. If there already exist pending
jobs for the task, the job is queued and served as soon as possible. This function
must be called to activate non-periodic tasks, i.e. tasks created using ttCreateTask.

See Also
ttCreateTask, ttKillJob

27

ttKillJob

Purpose
Kill the running job of a specific task.

Matlab syntax
ttKillJob(taskname)

C++ syntax
void ttKillJob(char *taskname)

Arguments

taskname Name of a task.

Description
This function is used to kill the running job instance of a task. If there exist queued
jobs for the task, the first job in the queue will be scheduled for execution.

See Also
ttCreateJob

28

ttCreateTimer

Purpose
Create a one-shot timer and associate an interrupt handler with the timer.

Matlab syntax
ttCreateTimer(time, timername, handlername)

C++ syntax
bool ttCreateTimer(double time, char *timername, char *handlername)

Arguments

time The time when the timer is set to expire.
timername Name of the timer. Must be unique, non-empty string.
handlername Name of interrupt handler associated with the timer.

Description
This function is used to create a one-shot timer. When the timer expires the as-
sociated interrupt handler is activated and scheduled for execution. The function
returns true if successful and false otherwise.

See Also
ttCreateInterruptHandler, ttCreatePeriodicTimer, ttRemoveTimer

29

ttCreatePeriodicTimer

Purpose
Create a periodic timer and associate an interrupt handler with the timer.

Matlab syntax
ttCreatePeriodicTimer(start, period, timername, handlername)

C++ syntax
bool ttCreatePeriodicTimer(double start, double period,

char *timername, char *handlername)

Arguments

start The time for the first expiry of the timer.
period The period of the timer.
timername Name of the timer. Must be unique, non-empty string.
handlername Name of interrupt handler associated with the timer.

Description
This function is used to create a periodic timer. Each time the timer expires the
associated interrupt handler is activated and scheduled for execution. The function
returns true if successful and false otherwise.

See Also
ttCreateInterruptHandler, ttCreateTimer, ttRemoveTimer

30

ttRemoveTimer

Purpose
Remove a specific timer.

Matlab syntax
ttRemoveTimer(timername)

C++ syntax
bool ttRemoveTimer(char *timername)

Arguments

timername Name of the timer to be removed.

Description
This function is used to remove timers. Both one-shot and periodic timers can
be removed by this function. The function returns true if successful and false
otherwise.

See Also
ttCreateTimer, ttCreatePeriodicTimer

31

ttCurrentTime

Purpose
Get the current time.

Matlab syntax
ttCurrentTime

C++ syntax
double ttCurrentTime(void)

Description
This function returns the current time in the simulation, in seconds.

32

ttSleepUntil

Purpose
Put a task to sleep until a certain point in time.

Matlab syntax
ttSleepUntil(time)
ttSleepUntil(time, taskname)

C++ syntax
void ttSleepUntil(double time)
void ttSleepUntil(double time, char *taskname)

Arguments

time The time when the task should wake up.
taskname Name of a task.

Description
This function is used to make a task sleep until a specified point in time. If the
argument taskname is not specified, the call will affect the currently running task.

See Also
ttSleep

33

ttSleep

Purpose
Put a task to sleep for a certain time.

Matlab syntax
ttSleep(duration)
ttSleep(duration, taskname)

C++ syntax
void ttSleep(double duration)
void ttSleep(double duration, char *taskname)

Arguments

duration The time that the task should sleep.
taskname Name of a task.

Description
This function is used to make a task sleep for a specified amount of time. If the
argument taskname is not specified, the call will affect the currently running task.
This function is equivalent to ttSleepUntil(duration + ttCurrentTime()).

See Also
ttSleepUntil

34

ttSetNextSegment

Purpose
Set the next segment to be executed.

Matlab syntax
ttSetNextSegment(segment)

C++ syntax
void ttSetNextSegment(int segment)

Arguments

segment Number of the segment.

Description
This function is used to set the next segment to be executed, overriding the normal
execution order. This can be used to implement conditional branching and loops
(see ttWait below). The segment number should be between 1 and the number of
segments defined in the code function.

35

ttInvokingTask

Purpose
Get the name of the task that invoked an interrupt handler.

Matlab syntax
ttInvokingTask

C++ syntax
char *ttInvokingTask(void)

Description
This function returns the name of the task that has invoked an interrupt handler.
Used in interrupt handlers associated with task overruns (deadline, WCET) to
determine which task that caused the interrupt. In the cases when the interrupt
was generated externally or by the expiry of a timer, this function returns an empty
string.

See Also
ttAttachDLHandler, ttAttachWCETHandler

36

ttEnterMonitor

Purpose
Attempt to enter a monitor.

Matlab syntax
ttEnterMonitor(monitorname)

C++ syntax
bool ttEnterMonitor(char *monitorname)

Arguments

monitorname Name of a monitor.

Description
This function is used to attempt to enter a monitor. If the attempt fails, the task will
be removed from the ready queue and be inserted in the waiting queue of the mon-
itor on a FIFO basis. When the task currently holding the monitor exits, the first
task in the waiting queue will be moved to the ready queue now holding the mon-
itor. Execution will then resume in the segment after the call to ttEnterMonitor.
The function returns true if successful, false otherwise.

Example:

function [exectime, data] = ctrl(seg, data)

switch seg,

case 1,
ttEnterMonitor(’mutex’);
exectime = 0.0;

case 2,
criticalOperation();
exectime = 0.001;

case 3,
ttExitMonitor(’mutex’);
exectime = -1;

end

See Also
ttCreateMonitor, ttExitMonitor

37

ttExitMonitor

Purpose
Exit a monitor.

Matlab syntax
ttExitMonitor(monitorname)

C++ syntax
void ttExitMonitor(char *monitorname)

Arguments

monitorname Name of a monitor.

Description
This function is used to exit a monitor. The function can only be called by the task
currently holding the monitor. The call will cause the first task in the waiting queue
of the monitor to be moved to the ready queue.

See Also
ttCreateMonitor, ttEnterMonitor

38

ttWait

Purpose
Wait for an event.

Matlab syntax
ttWait(eventname)

C++ syntax
void ttWait(char *eventname)

Arguments

eventname Name of an event.

Description
This function is used to wait for an event. If the event is associated with a monitor,
the call must be performed inside a ttEnterMonitor-ttExitMonitor construct. The
call will cause the task to be moved from the ready queue to the waiting queue of
the event. When the task is later notified, it will be moved to the waiting queue of
the associated monitor, or to the ready queue if it is a free event.

Example of an event-driven code function:

function [exectime, data] = ctrl(seg, data)

switch seg,

case 1,
ttWait(’Event1’);
exectime = 0.0;

case 2,
performCalculations;
exectime = 0.001;

case 3,
ttSetNextSegment(1); % loop
exectime = 0.0;

end

See Also
ttCreateEvent, ttNotifyAll

39

ttNotifyAll

Purpose
Notify all tasks waiting for an event.

Matlab syntax
ttNotifyAll(eventname)

C++ syntax
void ttNotifyAll(char *eventname)

Arguments

eventname Name of an event.

Description
This function is used to notify all tasks waiting for an event. If the event is associ-
ated with a monitor, the call must be performed inside a ttEnterMonitor-ttExitMoni-
tor construct. The call will cause all tasks waiting for the event to be moved to the
waiting queue of the associated monitor, or to the ready queue if it is a free event.

See Also
ttCreateEvent, ttWait

40

ttCallBlockSystem

Purpose
Call a Simulink block diagram from within a code function.

Matlab syntax
outp = ttCallBlockSystem(nbroutp, inp, blockname)

C++ syntax
bool ttCallBlockSystem(int nbroutp, double *outp, int nbrinp,

double *inp, char *blockname)

Arguments

nbrinp Number of inputs to the block diagram.
nbroutp Number of outputs from the block diagram.
inp Vector of input values.
outp Vector of output values.
blockname The name of the Simulink block diagram.

Description
This function is used to call a Simulink block diagram from within a code function.
The states of the block diagram are stored in the kernel between calls. The block
diagrams may only contain discrete blocks and the sampling times should be set
to one. The C++ function returns true if successful, and false otherwise. The
MATLAB function returns zero if unsuccessful. The inputs and outputs are defined
by Simulink inports and outports, see the figure below. Here follows an example
using this Simulink diagram:

function [exectime, data] = PIcontroller(segment, data)

switch (segment),
case 1,

inp(1) = ttAnalogIn(1);
inp(2) = ttAnalogIn(2);
outp = ttCallBlockSystem(2, inp, ’PI_controller’);
data.u = outp(1);
exectime = outp(2);

case 2,
ttAnalogOut(1, data.u);
exectime = -1;

end

41

ttSetX

Purpose
Set a task attribute.

Matlab syntax
ttSetX(value)
ttSetX(value, taskname)

C++ syntax
void ttSetX(double value)
void ttSetX(double value, char *taskname)

Arguments

value Value to be set.
taskname Name of a task.

Description
These functions are used to manipulate task attributes. There exist functions for
the following attributes (with the true function name in parenthesis):

• release (ttSetRelease)
• deadline (ttSetDeadline)
• absolute deadline (ttSetAbsDeadline)
• priority (ttSetPriority)
• period (ttSetPeriod)
• execution time budget (ttSetBudget)
• worst-case execution time (ttSetWCET)

All these functions except ttSetRelease exist in overloaded versions as shown by
the syntax above. If the argument taskname is not specified, the call will affect
the currently running task. ttSetRelease can only be called for tasks in the time
queue, i.e. not by the currently running task.

Depending on the scheduling policy used, a call to ttSetX may lead to a context
switch or a re-ordering of the ready queue. For example, if rate-monotonic schedul-
ing (’prioRM’) is used, a call to ttSetPeriod will change the priority of the affected
task.

A call to ttSetBudget will only have effect if there is a worst-case execution time
overrun handler attached to the task.

Use ttSetX functions to set other attributes than the default attributes set by
ttCreateTask and ttCreatePeriodicTask.

See Also
ttCreateTask, ttCreatePeriodicTask, ttGetX

42

ttGetX

Purpose
Get a task attribute.

Matlab syntax
value = ttGetX
value = ttGetX(taskname)

C++ syntax
double ttGetX(void)
double ttGetX(char *taskname)

Arguments

taskname Name of a task.

Description
These functions are used to retrieve values of task attributes. There exist functions
for the following attributes (with the true function name in parenthesis):

• release (ttGetRelease)
• deadline (ttGetDeadline)
• absolute deadline (ttGetAbsDeadline)
• priority (ttGetPriority)
• period (ttGetPeriod)
• execution time budget (ttGetBudget)
• worst-case execution time (ttGetWCET)

All these functions exist in overloaded versions as shown by the syntax above. If
the argument taskname is not specified, the call will affect the currently running
task.

To be able to retrieve a dynamic attribute (release, absolute deadline, and budget)
it is required that there exist a job instance of the task.

See Also
ttSetX

43

ttInitNetwork

Purpose
Initialize the network interface.

Matlab syntax
ttInitNetwork(nodenumber, handlername)

C++ syntax
void ttInitNetwork(int nodenumber, char *handlername)

Arguments

nodenumber The address of the node in the network. Must be a number
between 1 and the number of nodes as specified in dialogue in
the TrueTime Network block.

handlername The name of an interrupt handler that should be called when a
message arrives over the network.

Description
The network interface must be initialized using this command before any mes-
sages can be sent or received. The initialization will fail if there is not exactly one
TrueTime Network block in the Simulink model.

See Also
ttSendMsg, ttGetMsg

44

ttSendMsg

Purpose
Send a message over the network.

Matlab syntax
ttSendMsg(receiver, data, length)
ttSendMsg(receiver, data, length, priority)

C++ syntax
void ttSendMsg(int receiver, void *data, int length)
void ttSendMsg(int receiver, void *data, int length, int priority)

Arguments

receiver The number of the receiving node (a number between 1 and the
number of nodes). It is allowed to send messages to oneself.

data An arbitrary data structure representing the contents of the
message

length The length of the message, in bytes. Determines the time it will
take to transmit the message.

priority The priority of the message (relevant only for CSMA/CA networks).
If not specified, the priority will be given by the number of the
sending node, i.e., messages sent from node 1 will have the highest
priority by default.

Description
The network interface must have been initialized using ttInitNetwork before any
messages can be sent.

See Also
ttInitNetwork, ttGetMsg

45

ttGetMsg

Purpose
Get a message that has been received over the network.

Matlab syntax
ttGetMsg

C++ syntax
void *ttGetMsg()

Description
This function is used to retrieve a message that has been received over the network.
Typically, you have been notified that a message exists in the network interface
input queue by an interrupt, but it is also possible to poll for new messages. If no
message exists, the function will return NULL (C++) or an empty struct (Matlab).
The network interface must have been initialized using ttInitNetwork before any
messages can be received.

C++ example of an event-driven receiver:

/* Thread that waits for and reads messages */
double receiver_thread(int seg, void *data) {

MyMsgType *msg;
switch (seg) {
case 1:

ttWait("message");
return 0.0;

case 2:
// Get all messages (may be more than one!)
while ((msg = (MyMsgType *)ttGetMsg()) != NULL) {
printf("I got a message!\n");
delete msg; // don’t forget to free memory

}
ttSetNextSegment(1); // loop
return 0.0;

}
}

/* Interrupt handler that is called by the network interface */
double msgRcvhandler(int seg, void *data)
{

ttNotifyAll("message");
return FINISHED;

}

See Also
ttInitNetwork, ttSendMsg

46

