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1  Introduction 

1.1  Objectives 
The objective of this document is to investigate the usage of CORBA 
technologies in an industrial control system setting. We believe that the 
potential benefits from using CORBA, which is a mature, well spread, and 
standardized technology, are enormous with respect to increased design 
flexibility and better system integration. The introduction of CORBA 
would enable independence from both  hardware/software 
manufacturers and implementation languages. Using CORBA throughout 
a whole factory would allow integration between systems at all levels; 
from high-level administrative and business systems down to individual 
control loops. 
 
The Common Object Request Broker Architecture (CORBA) is a 
middleware specification for the development of interoperable, 
distributed object systems.  This report provides a general overview of the 
topics in distributed object systems, focusing on CORBA aspects that are 
critical for control systems engineering. Object Management Group 
(OMG) technology is summarized and some sample applications are 
presented. CORBA was originally created as an object-oriented 
component technology for non real-time systems. The main objectives 
were to create a framework that was flexible and powerful, rather than 
predictable and light-weight. This makes CORBA a less appropriate tool 
for time-critical systems, and as a remedy for this, a real-time extension, 
called RT-CORBA, was introduced in the late 1990s. RT-CORBA addresses 
the problems pertaining to priority inversions and unpredictability in 
resource allocations, such as memory reservation and thread mapping. 
However, RT-CORBA does not address the major source of non-
determinism in CORBA, the transport. 
 
Control systems are a wide area. This report and the entire HRTC project 
focuses on three different types of control systems: 
 

• The basic control loop. The basic control loop consists of a single-
input, single-output (SISO) loop containing a sensor, a controller, 
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and an actuator. These three parts are assumed to be distributed 
over a communications network. Hence, the control loop is 
networked. This type of control loop is at the heart of all types of 
distributed control systems. There is also a large amount of theory 
available for analyzing the effects of communication delays on the 
control performance. 

 
• Industrial automation systems. By this we mean the large, 

distributed, and hierarchical control systems typically used in 
process and manufacturing automation. Other names for this type 
of system are PLC (Programmable Logic System) or DCS 
(Distributed Control System). The control loop is central also in 
these systems, but they also contain support for a large amount of 
additional functionality, e.g., discrete logic control, operator 
interface, supervisory control and monitoring applications, 
database access, production planning and scheduling, etc. These 
systems are typically also programmable, i.e., the user can program 
different control applications using domain-specific programming 
languages, as defined by IEC 61131-3. The resulting programs are 
typically compiled, and the generated code is downloaded to 
different distributed control systems. The use of CORBA in this 
type of systems will be illustrated in the Process Control Testbed 
(PCT). 

 
• Robotics control systems. Control systems for industrial robotics 

must combine flexibility (with respect to new tasks and unforeseen 
application demands) and high performance (to accomplish 
productivity and profitability). The control of the manipulator 
motions has demanding real-time requirements and is typically 
distributed in nature. At the end-user level special robot 
programming languages are used or the robot programs are 
generated directly from CAD data. On this level the real-time 
requirements are less hard. The use of CORBA in robotics control 
will be illustrated by the Robot Control Testbed (RCT). 

 
This report studies the following topics: 
 

• What are the potential uses for real time distributed object and 
component technology in automation and automatic control 
applications? Engineering control systems on a systematic, sound 
way means addressing not only the limited scope of a single 
controller but also considering a whole family of controllers.  A 
particular control system may be seen just as a single element of a 
stream of control products.  
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• Identifying the shortcomings of the current CORBA standards. The 
fact that RT-CORBA does not guarantee any hard deadlines makes 
it, possibly, not a very suitable platform for low level feedback 
loops. However, it is not clear that 100% determinism is needed in 
order to achieve good control performance. This report shows a few 
simulations of networked control systems with stochastic timing 
variations, i.e. jitter and latency. 

 

1.2  The role of object technology 
The very nature of control systems is object-oriented (OO) because a 
control system couples virtual entities with real ones. A controller 
correlates control design issues and software implementations, which are 
very conceptual in its nature with sensors, actuators and external world 
entities, which are very physical objects. 
 
Control software makes a continuous mapping between external and 
internal entities and hence, object-oriented software is a natural way to 
build these systems. During the last decade OO technology was relegated 
from mainstream real-time software because OO implementations 
introduce computational overhead to support some aspects of OO 
computation (for example, dynamic binding). While this is usually the 
case, the computational power of today reduces the influence of this 
overhead, and OO technology is becoming the technology of choice for 
building complex real-time systems because it provides better mechanisms for 
complexity handling. An example of grave importance for us is the case of 
real-time distributed systems, where OO technology is a clear winner 
[Sho00]. 
 
Industrial plants are Seas of Objects and software-intensive controllers for 
them reflect this nature. The natural plant-modeling mechanisms are 
object-oriented and dealing with preexisting software systems, for 
example legacy controllers, is best done using object wrapping. Advanced 
controllers are designed using clear responsibility distribution between 
control objects. 

 

1.3  Scope 
The process of incorporation of information technology (IT) into industrial 
processes is making profound modifications to production systems. 
Control and monitoring technology is leaving the islands-of-automation 
phase, entering a new phase of complete systems integration. While 
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enterprise integration architectures (EAI) are hot topics in advanced 
business engineering, at the production level where controllers live, the 
incorporation of new technology and designs is confronting difficult 
problems. 
 
In most cases the problems are mainly due to classical barriers posed to 
innovation in production systems: lack of predictability, need for non-stop 
operation, lack of reliability and availability, less than ideal market 
maturity, exploitation manager’s resilience, etc. 
 
Two main objectives are being pursued in this effort, namely Complete 
Horizontal Integration (CHI) and Complete Vertical Integration (CVI). 
CHI deals with the integration of business units, business-to-business 
integration or supply chain integration. 
 
In this report we will address more the topic of CVI. It is time to start 
thinking in plant-wide integration reaching even the lowest levels in 
production plants: sensors, actuators and basic controllers. 
 
Complete vertical integration means that integration paths are available 
from sensors to management information systems (and back). This 
eliminates some of the limitations that the underlying information 
technology poses to the design space for monitoring and control systems.  
 
Distributed object computing (DOC) is gaining an increased audience in 
the IT sector and is the technology of choice for new system 
implementation. From global experience in last years, it is pretty clear that 
– besides other advantages -   DOC technology enhances systems 
integrability, simplifying the construction of complex information 
applications. We will see in this report how a DOC technology, namely 
CORBA, can supply us with some tools needed for better development of 
complex, integrated control systems. 
 

1.4  Control engineering processes 
Control systems complexity is increasing at a very fast pace in this days. 
New needs and new capabilities (nobody knows what came first) are 
driving control systems development into mainstream systems 
engineering. Integration capabilities are getting progressively critical as 
system size increments, because modular development is the only known 
practical way for complex systems engineering. 
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From this perspective it is surprising, to some extent, the limited role that 
software technologies play in control engineering journals and symposia. 
It looks like this technology does not have relevance enough to be 
considered a research discipline for control engineers (only small-scoped 
real-time topics are addressed in control engineering places). 
 
The typical development process of a control system can be decomposed, 
like any other engineering process, in a series of phases that go from the 
identification of the need to the decommission of the control system. 
 
An example of phasing can be: 
 
1.  Problem identification 
2.  Plant Modeling 
3.  Control design 
4.  Control implementation 
5.  Commissioning 
6.  Operation 
7.  Decommissioning 
 
Research in control systems has been mainly focused in the second and 
third phases, because the first is considered an a priori for control 
engineering (i.e. it is always given) and from fourth to seventh they can be 
left to implementers (i.e. to raw work force). The separation between the 
control laboratory and the real plant is too wide for real engineering. 
 
The basic technology used today to implement control systems is software 
technology. But, beyond a classical view of digital implementation of 
controllers [Ast97], software technologies are the basis of modern complex 
control systems, from SCADA:s and DCS:s to intelligent controllers based 
on soft computing [Gup96]. 
 
Control engineering is about systems performance; this means that the 
knowledge of the controlled system must involve not only the target 
system but the controller itself, and when controllers are software-based, 
giving a guarantee on global performance means a clear analysis and deep 
understanding of software issues. When controller complexity increases 
there are no available formal methods to guarantee behavior. Only good 
development processes can provide predictable quality. Good 
development processes involve all parts of the controller life-cycle; from 
the problem identification phase to the operation phase and even 
decommission. 
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When complexity increases due to software flexibility the probability of 
failure increases. Systems that were manually operated are now operated 
by computers and this leads to a critical computer dependence of many 
artificial systems. The case of the USS Yorktown is paradigmatical. The 
ship had to go back to the harbor due to a software failure. 
 
While software is becoming a real problem, it is also providing some 
solutions. For example, advanced research topics on systems fault-
tolerance are strongly based in information processing capabilities that are 
used to detect the fault, isolate it, and devise alternative control strategies 
that can overcome the fault [Bla00]. 
 

1.5 Complex Software for Control 
Software systems can range from a small shoe shop database to Star Trek's 
USSS Enterprise control software. In a quick effort we can make a quick 
and dirty classification of software systems based on factors that induce 
systems complexity: 
 

• Conventional: the shoe shop database. 
• Real-time: meeting deadlines. 
• Embedded: run within limited resources. 
• Fault Tolerant: good behavior under faults. 
• Distributed: run on several interacting computers. 
• Intelligent: solving ill-posed problems. 
• Large: millions of lines of code. 
• Integrated: interoperate with alien systems. 
• Heterogeneous: run on heterogeneous platforms. 

 
Complexity factors affect negatively the system development process. 
Development effort grows with complexity much more than linearly and 
there are even systems we cannot build; examples are 24x365 systems 
(total availability), one-shot systems (should work at the first try) or HP-
LC (High Performance and Low Cost). 
 
Software engineers have always been “raiders of the silver bullet” looking 
to solutions to software development problems. Complex software 
engineering is just an emerging discipline, introduced in frontier areas 
between those complexity topics mentioned before. 
 



  Sheet: 13 of 83 
 
Reference: IST37652/050 
 Date: 2003-02-11  /  1.1  /  Final 
 

 
 

©  HRTC Consortium / Clearance: Consortium 

1.6 Complex control systems 
A typical control system in a modern plant is composed by a 
heterogeneous collection of hardware and software entities scattered over 
a set of heterogeneous platforms (operator stations, remote units, process 
computers, programmable controllers, intelligent devices) and 
communication systems (analog cabling, serial lines, fieldbuses, LANs or 
even satellite communications). This HW/SW heterogeneity is a source of 
extreme complexity in the control system regarded as a whole. 
 
Apart from the platforms that provide support to the different control 
system components, the technologies used in control system 
implementation are quite heterogeneous and provide functionalities that 
go well beyond the classical sensing-calculating-acting triad. 
 
Examples of this heterogeneity is the use of software systems for controller 
auto-tuning, advanced monitoring, filtering and estimation, adaptation 
and learning, plant-wide optimization, or real-time, in-the-loop 
simulation. Interception software systems are playing a wide collection of 
intelligent roles in complex controllers fitting as interfaces between pre-
existent systems (plants, controllers and humans). Examples of these roles 
are data/action filters and monitors. 
 
Classical hierarchical layering overcomes some of the difficulties of 
complex systems construction. A example of layering is shown in Figure 1 

Strategic Control

Complex Loops

Advanced Control

Operational Control

Tactical Control

Sensors & Actuators

Simple Loops

MIS

Continuous Process Plant

Optimization
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Reactivity
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U
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r 
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Figure 1: A classical layering of control entities in a complex continuous process 
control system. Layer quantity and labeling is somewhat field-dependent, but 
layer roles can be easily mapped from domain to domain. 
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where some intelligent layers are added atop classical control layers in 
process control systems. 
 
While hierarchies encapsulate low level behavior, simplifying the 
deployment of higher level controllers, they do not necessarily solve the 
problem of the conceptual integrity of the system. Layers can be difficult to 
match if they lack a common view of structure and responsibility 
distribution. 
 
Conceptual integrity — an elusive, difficult to define property — is seen as 
the core factor affecting systems constructability. Conceptual integrity 
manifests in several system properties (some of them functional and some 
non-functional) that are considered extremely important in systems 
construction. These properties are the basic design principles of systems 
architecture [Sha96] (See table). 
 
 

Table1: Architecture design principles 
Conforming Scalable 

Suitable Simple 
Composable Standard 

Modular Proven 
Extensible Performing 

Fast Efficient 
 
We will see in the next section how object technology can provide us with 
some ideas and tools to approximate this ideal of system conceptual 
integrity. 

1.6.1 Outline 
Chapter 2 gives an overview of component technologies and CORBA. 
Chapter 3 discusses the current state of automation software and how it 
could benefit from component design. Introducing distributed component 
technology in a partly time-critical setting will create new demands on 
both the component technology as such and the design of the application, 
which in our scenario is the controller. The main complication with the 
controller design is how to deal with jitter and latency that may be 
introduced and in Chapter 4 we address these issues from a control 
theoretic angle. Finally, in Chapter 5 our requirement analysis of Hard 
Real-Time CORBA is summarized. 
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2  Distributed Objects and 
CORBA  

2.1  Distributed Object Computing 
Distributed Object Computing (DOC) or Object-Oriented Distributed 
Processing (OODP) is a software model based in the use of services 
provided by objects that are running in different hosts. Distribution means 
true concurrence even when most distributed applications serialize 
behavior of the application using some form of centralized controller. 
 
DOC can be considered a generalization of the client/server model. In 
DOC, client and server roles are relative to a specific request and not to the 
whole life-cycle of the object (an object can be the client in a request and 
the server in the next one). 
 
DOC is a “natural” way of modeling distributed systems because it hides 
implementation details (OS, protocols, languages) behind “interfaces”. 
Encapsulation, abstraction and inheritance are valid and very useful 
concepts to model distributed control systems. 
 
There are many benefits of using DOC for control systems engineering. In 
many cases they are the same as for any other type of system, but in most 
situations they are of critical importance for control software due to the 
special requirements posed to control systems. Examples of these benefits 
are: 
 

• Object collaboration through connectivity and interworking. 
• Performance through parallel processing. 
• Reliability and availability through replication. 
• Scalability and portability through modularity. 
• Extensibility through dynamic configuration and reconfiguration. 
• Cost effectiveness through resource sharing and open systems. 
• Maintainability through hot swapping. 
• Design flexibility through transparency. 
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2.2  Integration 
DOC technology addresses particularly well one of the main problems of 
complex systems construction: integration. 
 
If we consider the interaction between two pieces of code (the client and 
the server) we can identify four relative positions (i.e. four coarse types of 
integration mechanisms (see Table 2)): 
 

Table 2: Coarse types of integration mechanisms 
In-Thread Client and server are parts of the same thread.   Interaction 

is done by method call. This means serialization (no 
concurrence) and a simple integration vehicle 
(programming language routine invocations). This is easy 
to use, extremely fast and reliable.  

In-Process Client and server are parts of the same process but in 
different threads. We have inter-thread requests usually 
based on ITC (Inter-Thread Communication) mechanisms 
provided by the operating system. This is relatively 
complex but very fast and reliable. 

In-Host This situation is similar to the previous, but in this case 
client and server are in different processes. Inter-process 
requests are based on operating systems IPC (Inter-Process 
Communication). This is also a fast and reliable mechanism. 

In-Net Client and server are in different hosts. The   basic 
integration mechanism is some form of remote procedure 
call   (RPC). Lower level mechanisms can also be used but 
in most   cases it is not worth the effort. Inter hosts requests 
rank   lower in speed and reliability because it is easier to 
have different host states in the client, the server or even in 
the communication channel. Distribution means in many 
cases unpredictability and unreliability, but also balancing 
computational load and fault tolerance through redundant 
servers. 

 
Middleware is a generic name used to refer to a class of software whose 
sole purpose is to serve as glue between separately built systems. Object-
oriented middleware is used to simplify the development and use of 
ubiquitous objects. Middleware tries to simplify the implementation of 
clients and servers for different relative locations; for example making 
possible the implementation of clients that are unaware of server 
locations. 
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A large simplification is achieved by using the same interface to be used 
by client and servers independently of the underlying integration 
mechanism; i.e. the same interface is used to wrap an IPC and an RPC. 
However, the really large step is when this interface is independent of the 
relative location of the other object, i.e., location transparency.  
 
Brokering middleware is based on the use of an intermediary entity 
between the client and the server: the broker (See Figure 2). The process of 
remote invocation is decomposed in eight steps: 
 

1. The client makes a call to the client stub (the client plug to the 
broker). 

2. The client stub packs the call parameters into a request message and 
invokes a wire protocol. 

3. The wire protocol delivers the message to the server side stub (the 
server plug to the broker). 

4. The server side stub then unpacks the message and calls the actual 
method on the object. 

5. [6,7,8] The response - if any - uses the same process to reach the 
client. 

 

 
There are many contenders in the object-oriented middleware arena. The 
three main technologies are Microsoft's COM+, Sun Microsystems' Java 
RMI and Object Management Group. 

ServerServerClientClient

ServerServer

ClientClient

ServerServerClientClient

BrokerBrokerBrokerBroker  

 
Figure 2: Brokering middleware is based on the use of an ``intelligent'' 
intermediary between clients and servers. 
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2.3  CORBA 
CORBA is the acronym for Common Object Request Broker Architecture, 
OMG's open, vendor-independent architecture and infrastructure that 
computer applications use to work together over networks. Using special 
protocols, a CORBA-based program from any vendor, on almost any 
computer, operating system, programming language, and network, can 
interoperate with a CORBA-based program from the same or another 
vendor, on almost any other computer, operating system, programming 
language, and network.  
 
CORBA is designed with the following goals in mind: 
 

• Object-orientation: Remote operations are grouped into interfaces, 
similar to classes in object-oriented programming languages. An 
instance of an interface is known as a CORBA object. Objects reside 
in servers and are invoked by clients. Objects can be active or 
passive. An object can also simultaneously play the client and the 
server role. 

• Location transparency: A client does not need to know the location 
of the object (local or remote). Operations are always invoked with 
the same syntax.  

• Programming language neutrality: CORBA, in contrast to, e.g., 
Java RMI, is not dependent on any single programming language. 
Clients and servers can be implemented in a large number of 
different programming languages. 

• Support for bridge interoperability: The core specification of 
CORBA contains an internetworking architecture that allows 
CORBA to operate in conjunction with other distributed computing 
technologies, e.g., DCE Remote Procedure Calls and Microsoft’s 
DCOM. 

 
The CORBA technology consists of three main parts: the CORBA 
distributed object model, CORBA services and facilities, and the CORBA 
component model. 
 

2.3.1 CORBA Distributed Object Model 
The distributed object model enables the implementation of distributed 
object-oriented client-server applications. The Distributed Object Model is 
based on the following parts: 
 

• The Interface Definition Language (IDL). The Interface Definition 
Language is used to define the interface of a CORBA object. The 
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interface is the syntax part of the contract that the server object 
offers to the clients that invoke it. Any client that wants to invoke 
an operation on the object must use this IDL interface to specify the 
operation it wants to perform, and to marshal the arguments that it 
sends. When the invocation reaches the target object, the same 
interface definition is used there to unmarshal the arguments so 
that the object can perform the requested operation with them. The 
interface definition is then used to marshal the results for the reply, 
and to unmarshal them when they reach their destination. The IDL 
interface definition is independent of programming language, but 
maps to all of the popular programming languages via OMG 
standards. OMG has standardized mappings from IDL to C, C++, 
Java, COBOL, Smalltalk, Ada, Lisp, Python, and IDLscript. CORBA 
interfaces are strongly typed, support multiple inheritance, but 
does not allow overloading, 

 
• Object Request Broker (ORB). The ORB contains the necessary 

infrastructure that enables clients to invoke operations on CORBA 
objects. It typically contains client stub code and server skeleton 
code obtained when the IDLs are compiled, and linked with the 
application. It also contains mechanisms for locating and activating 
remote servers. 

 
• Object references. Object references are the basic entity for 

encapsulating the type and location of a CORBA object. Object 
references are represented as runtime objects. They contain 
information about the interface type of the CORBA object and 
thereby also of all supported operations for that object. They also 
contain information about the location of the object. This typically 
includes the host address and port number of the relevant server 
and a server-specific object key. Object references can also be 
passed between clients and servers, e.g., as a part of a remote 
invocation. For this purpose the interoperable object reference 
(IOR) has been defined.  

 
• Object adapters. The object adapter is the part of the ORB that is 

responsible for providing the necessary mechanisms for associating 
a CORBA object implementation with a particular IDL interface. 
When an object adapter receives a request message, it identifies the 
target object implementation using the object key and invokes the 
corresponding operation on behalf of the client. The object 
implementation is known as a servant. The object adapter is also 
responsible for managing the life-cycle of the CORBA objects, e.g., 
object activation and deactivation. The Portable Object Adapter 
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(POA) is the object adapter version used in the current CORBA 
standard. 

 
• Inter-ORB protocols. CORBA Inter-ORB Protocols (IOP)s define 

interoperability between ORB end-systems. The IOP:s are normally 
mapped down onto reliable full-duplex connection-oriented 
transport protocols such as TCP that are implemented as octet 
(byte) streams. The General Inter-ORB Protocol (GIOP) is the basis 
for all IOP:s. GIOP defines three core elements: a Common Data 
Representation (CDR), message formats, and the transport 
assumptions described above. The CDR defines how data should be 
represented during transport (byte ordering, byte alignment, 
serialization ordering, etc). Eight different message formats are 
defined for handling communication between ORBs. These include 
request and reply messages. The mapping of GIOP onto TCP/IP is 
known as the Internet Inter-ORB Protocol (IIOP). This is the default 
protocol used by commercial ORBs. 

 
• CORBA Messaging. CORBA 2 supported three communication 

models: synchronous two-way communication where the client 
blocks until the reply from the server is received (the most 
commonly used CORBA model), one-way communication without 
any reply implemented on top of TCP or UDP, and deferred 
synchronous communication in which the client is not blocked, but 
can itself chose to poll to see if the reply has been received or do a 
blocking wait for the reply. However, both the one-way 
communication and the deferred synchronous communication had 
certain drawbacks. For example, the deferred synchronous 
invocation mode could only be used if the request is invoked using 
the Dynamic Invocation Interface (DII), as opposed to the normal 
Static Invocation Interface (SII). To alleviate this, CORBA 3.0 
introduced Messaging that supports asynchronous method 
invocation (AMI), time-independent invocation (TII), and 
messaging quality-of-service policies. Using AMI, operations can be 
invoked asynchronously using the static invocation interface. Two 
communication models are supported. In the polling model each 
asynchronous two-way communication returns a Poller object that 
the client can use to check whether the reply has arrived or not. In 
the callback model server responses are dispatched to special 
ReplyHandler objects. Time-independent invocations is a 
specialization of AMI that supports “store-and-forward” semantics, 
where requests may outlive clients and the response may be 
handled by a completely different client. The inclusion of AMI and 
TII into CORBA can be seen as OMG’s response to the strong 
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industrial interest for Message-Oriented Middleware (MOM). 
CORBA 3.0 also supports messaging quality-of-service (QoS) 
properties. All QoS properties are defined as interfaces. 
Applications can define QoS properties at multiple client- and 
server-side levels, e.g., the ORB level, thread level, and object 
reference level. The client-side policies give control over things like 
request and reply timeouts, priorities and ordering, routing 
semantics, etc. CORBA Messaging can partly be viewed as a 
replacement for the CORBA Event Service and Notification Service. 
 

The CORBA architecture is summarized by Figure 3. 
 

 
 

Figure 3. The CORBA architecture (from [Sch02]). 
 

2.3.2 CORBA Services and Facilities 
CORBA Services provide pre-built functionality for the construction of 
applications from CORBA building blocks. A large number of services 
have been defined, e.g., Collection Service, Concurrency Service, 
Enhanced View of Time, Event Service, Externalization Service, Licensing 
Service, Life Cycle Service, Naming Service, Notification Service, 
Persistent State Service , Property Service, Query Service, Relationship 
Service, Security Service, Telecom Log Service, Time Service, Trading 
Object Service, and Transaction Service. CORBA Facilities are similar to 
services (but coarser). They include facilities for Internationalization and 
Time, and Mobile Agents. Two of the services that are of particular 
relevance to real-time communication are the Event Service and the 
Notification Service. 
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• CORBA Event Service. The CORBA Event Service decouples the 

communication between objects. Two roles for objects are defined: 
the supplier role and the consumer role. Suppliers produce event 
data and consumers process event data. Events are sent 
asynchronously between suppliers and consumers. This is achieved 
using event channel objects that implements the Mediator pattern 
to implement asynchronous communication between multiple 
suppliers and multiple consumers. Two communication models are 
supported. In the push model it is the supplier of events that 
initiates the transfer of event data, whereas in the pull model it is 
the consumer that is taking the initiative. 

• CORBA Notification Service. The Notification Service enhances 
the Event Service by providing QoS support, event filtering, 
structured events, and event subscription. 
 

2.3.3 The CORBA Component Model  
The traditional CORBA object model has several limitations when viewed 
as a component model. For example, it has no standard way to deploy 
object implementations, a fairly restricted interface model, no standard 
object life cycle management, the availability of CORBA Services cannot 
be guaranteed, and a very high degree of flexibility which requires the 
designer to do a large number of design choices and specify a large 
number details. To address the limitations the OMG in 1999 adopted the 
CORBA Component Model (CCM) to extend and subsume the CORBA 
object model. CCM is an distributed component model with close 
similarities to Enterprise Java Beans (EJB). The model contains an 
architecture for defining components and their interactions, a packaging 
technology for deploying binary multi-lingual executables, and a 
container framework for injecting lifecycle, (de)activation, security, 
transactions, persistence, and events. Components are created and 
managed by homes, execute in containers that manage system services, and 
are hosted by application component servers. They have several input and 
output interfaces, and support both synchronous and asynchronous 
operations. Components are defined using a number of extensions to 
CORBA IDL 2. For example IDL 3.0 is used to define component-oriented 
collaborations (component types, event types), OMG Persistent State 
Definition Language (PSDL) defines storage types and homes, and OMG 
Component Implementation Description Language (CIDL) defines 
compositions and segments. The CCM specification is quite large and 
complex. Therefore it has not yet been fully accepted among ORB 
providers. For these reasons, we will primarily focus on the CORBA object 
model rather than the component model in HRTC. 
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2.4  CORBA for Real-time and Embedded Systems 
Apart from the importance of having a platform for integration and 
development of modularized controllers, there are some new issues in 
CORBA that are especially relevant for distributed control systems 
engineering. These issues are: predictable behavior, fault tolerance and 
execution in an embedded environment.  
 
The Real-time platform task Force is addressing all these topics and 
focuses their activities on real-time systems, which often also are 
embedded and have fault tolerance requirements. 
 
The Real-time PSIG goal is the recommendation of adoption of 
technologies that can ensure that OMG specifications enable the 
development of real-time ORBs and applications. To achieve this goal, the 
Real-time PSIG gathers real-time requirements from industry, organizes 
workshops and other activities and involves real-time technology 
manufactures to elaborate Requests For Information and Requests For 
Proposals for these technologies. 
 
The main results of this work can be organized in the three categories: 
 

• Real-time CORBA: The Real-Time CORBA (RT-CORBA) 
specification (in addition to the Messaging specification) provides 
mechanisms for controlling resource usage to enhance application 
predictability. 

• Fault-tolerant CORBA: The specification provides mechanisms for 
fault tolerance based on entity redundancy. 

• Minimum CORBA: Minimum CORBA addresses the construction 
of CORBA applications on systems with scarce resources like 
embedded computers, where small memory footprint is important. 
This specification eliminates most dynamical interfaces that are not 
necessary in static applications (most embedded applications are 
ROM-ed applications). 

2.4.1 Real-time CORBA 
RT-CORBA standardizes the mechanisms for resource control (memory, 
processes, priorities, threads, protocols, bandwidth, etc.) and handling of 
priorities in a distributed sense (for example forwarding client priorities to 
the server). 
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The RT-CORBA 1.0 specification defines standard features that support 
end-to-end predictability for fixed priority CORBA applications. Standard 
interfaces and QoS policies are defined that allow applications to 
configure and control (1) processor resources via thread pools, priority 
mechanisms, intra-process mutexes, and global scheduling, (2) 
communication resources via protocol properties and explicit bindings, 
and (3) memory resources via buffering requests in queues and bounding 
the size of thread pools. 
 
The following are the most import parts of RT-CORBA [Sch00]: 
 

• Priority type systems. Two types of priorities are defined: CORBA 
priorities and native priorities, as well as the mapping in-between. 
This allows consistent global priorities in distributed applications 
with heterogeneous nodes with different priority bands. 

• Priority Models. Two priority models are defined. Using server-
declared priorities it is the server that decides the priority at which an 
object invocation should execute on the server-side. The client is 
made aware of the priority at which the object invocation will 
execute through a tagged component in the object reference and can 
take use this information internally. With client-propagated priorities 
it is the client that declares the invocation priorities which the 
server then must honor. The invocation priority is transferred to the 
server in the service context part of the GIOP request message. 

• Priority transforms. A server is permitted to define priority 
transforms that sets the priority at which a particular invocation is 
performed based on e.g., external factors. This can be used to define 
different types of priority ceiling protocols. Inbound 
transformations are applied on incoming invocations after 
reception by the ORB core, but before dispatching to the servant. 
Outbound transformations are performed when a servant invokes 
an operation on an object. 

• Thread pools. The thread pool model allows pre-allocation of 
thread pools and the setting of thread attributes, e.g., default 
priorities. Each POA must be associated with one thread pool, but a 
thread pool can be associated with multiple POAs. Thread pools 
without lanes is created with a fixed number of statically allocated 
threads which the ORB uses for executing client invocations. To 
handle request bursts the number of threads is allowed to grow 
through the creation of dynamic threads. The thread pool can also 
be pre-configured for a maximum buffer size or number of 
requests. Using thread pools with lanes the threads in a thread pool 
are partitioned into subsets, each with different priorities or priority 
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bands. Lanes with higher priorities are allowed to borrow threads 
from lower priority lane. 

• Mutex. In order to avoid priority inversion and ensure consistency 
between the synchronization mechanisms used within the ORB and 
the synchronization mechanisms used in the application part of the 
code RT-CORBA defines a mutex. 

• Global scheduling service. The global scheduling service allows 
application developers to express QoS requirements using a higher 
level of abstraction than what is provided by traditional OS 
mechanisms. The service is provided in the form of a CORBA object 
that is responsible for allocating system requirements in order to 
meet the QoS requirements. Using the scheduling service it is 
possible to specify the processing requirements of the operations in 
terms of, e.g., worst-case execution time or period. The scheduling 
service is, however, only an optional part of RT-CORBA 1.0. 

• Protocol properties. An interface is defined that allows applications 
to specify ORB- and transport-specific protocol properties that 
control various communication protocol features. The protocol 
property structures reside in a protocol list that is part of the object 
references. The order in which the protocols appear indicates the 
order of preference in the case when parallel protocols are 
available. Servers can export protocol preferences to clients through 
object references. Clients can use protocol policies to select which 
protocol to use when acquiring a binding to an object. 

• Explicit binding. In standard CORBA connections (bindings) 
between a client and a server are established on-demand. The 
connections are normally persistent and it is allowed for an ORB to 
multiplex multiple invocations to the same server on the same 
connection. RT-CORBA allows an explicit binding model that allow 
pre-establishment of connections to servers, and makes it possible 
to associate priorities with the connections. Using priority-banded 
connections it is possible for clients to specify explicit priorities or 
priority bands for each connection or to select an appropriate 
connection at run-time based on the CORBA priority of the thread. 
Using private connections a connection may not be reused for other 
invocations until the reply for the previous request has been 
received. 

• Leveraged CORBA 3.0 features. RT-CORBA also leverages a 
number of real-time relevant features in ordinary CORBA. CORBA 
Messaging provides policies to control roundtrip timeouts. It also 
supports reliable one-way communications and type-safe 
asynchronous method invocation. The Enhanced Views of Time 
Service defines interfaces to control and access clocks. The RT 
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Notification Service is a planned rt-extended notification service. 
Work on a dynamic scheduling addition to RT-CORBA has been 
started. 

2.4.2 Fault-tolerant CORBA 
Fault-tolerant CORBA tries to enhance application fault tolerance reducing 
to a minimum the impact to the application (computing overheads and 
increase of complexity). Fault tolerance is increased by means of entity 
replication: cold passive replication, warm passive replication, active 
replication or active replication and majority voting. 

2.4.3 Minimum CORBA 
Embedded CORBA applications reduce memory footprint by means of 
elimination of some features (dynamic interfaces and repositories), the use 
of standardized operating system services or special transports. The 
elimination of a specific service from the specification does not mean that 
the application cannot use it, only that it will not be necessarily provided 
by a compliant CORBA implementation. 

2.5  Bridging Domains 
While the Minimum CORBA specification reduces the requirements posed 
to the ORB, the Real-time CORBA and Fault Tolerant CORBA specifications 
can increase the size and complexity of the application. 
 
Thanks to interoperability, it is not necessary at all to have all the 
application running atop the same ORB. It is possible to have the critical 
part of an application running over a Real-time ORB and the rest over a 
more conventional one. It is possible to use a CORBA gateway to bridge 
between two different worlds in a control application. 

2.6  State and Future of the Technology 
CORBA technology is impressive but perhaps too impressive for normal 
control systems developers. It suffers what is called a second system effect, 
trying to address all possible functionality or requirement. We must 
identify our own needs and determine if the CORBA way fits our needs. If 
not, we are still in time to modify it. 
 
Perhaps the main question is why we need integration? Beyond many 
obvious answers (to build complete plants, to achieve total safety, to be 
the first in the market, to spend less money, etc.), the authors would like to 
stress one door that this approach opens for us: The modular approach 
fostered by CORBA will let us develop true modular control systems.   
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The second point we want to mention is design freedom. Design freedom is 
necessary in the complex control systems domain to explore alternative 
controller designs. Excessively restrictive technologies will collapse, 
unnecessarily, dimensions of the controller design space [Sha96]. This is, 
for example, the case of some fieldbus technologies that support several 
slaves but only one master. While design restrictions, in the form of 
prerequisite design decisions, simplify development, they sacrifice 
flexibility. 
 
Can we get both, simple development and flexibility? The key are no-
compromises frameworks, i.e. frameworks where design dimensions are 
still open even when pre-built designs are available. To continue the 
example of the fieldbus, the one-master/several-slaves approach is one 
type of pre-built, directly usable, designs; but the underlying fieldbus 
mechanism should allow for alternative, multi-master designs. This can be 
done by means of the development of agent libraries that provide 
predefined partial designs in the form of design patterns [San99], and a 
transparent object-oriented real-time middleware. 
 

2.7  What should Hard Real-time CORBA be? 
CORBA and RT-CORBA contain a number of features that are useful also 
for hard real-time applications, e.g. timeouts, asynchronous invocations, 
one-way invocations, private and pre-allocated connections, avoidance of 
priority inversion within ORBs, and consistent global priorities. However, 
several important issues are not addressed or are lacking. 
 

• Deterministic transports. 
The major source of non-determinism in current CORBA/RT-
CORBA is the transport protocol. The IIOP (GIOP over TCP) 
transport does not give any end-to-end timing guarantees. 
Although CORBA allows the use of other transports, which also 
may be pluggable, most ORB manufacturers only support IIOP, or 
only support additional transports that have similar timing 
characteristics as IIOP/TCP, e.g., the ATM transport protocol, or 
which are intended for communication within a node using, e.g., 
shared memory, Unix sockets, or VME-bus. An exception to this is 
the support for the unreliable, connection-free communication 
provided by UDP, which is provided by certain ORBs, in particular 
for multicast messages.  
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In order for CORBA to be applicable to hard real-time applications 
it is necessary to support transport protocols with higher levels of 
determinism. The minimal requirement on a deterministic transport 
is an upper bound on the end-to-end latency. If the transport also 
can guarantee a lower bound on the latency the level of 
determinism increases. The less conservative (tighter) the bounds 
are the smaller will the jitter in the latency be. 
 

• Periodic activities 
CORBA was originally based on a client-server communication 
model. In later CORBA versions support has also been added for 
message-passing. For real-time communication a sender-receiver 
model is more appropriate, where a sender periodically transmits 
messages to one or multiple receivers. Using the client-server model 
this would typically correspond to a client thread located in one 
node that periodically invokes an operation on a server object 
located in another node. IDL is focused on describing the interface 
of the CORBA objects residing on the server side. In order to 
support periodic real-time communication CORBA also needs to 
support the description of periodic invocations from a client to a 
server, i.e., it must be possible to model information that concerns 
both the client and the server object as a single entity, and to 
associate information to this entity, e.g., the period, the amount of 
data that will transferred, and what the maximum allowed 
communication latency is. 
 
RT-CORBA briefly defines the concept of an activity. However, an 
activity is primarily used to describe a sequence of, possibly nested, 
operation invocations. Hence, it only concerns the client-side of the 
communication. 

 
• Scheduling 

A communication network is a shared resource. In order to be able 
to guarantee any communication timing constraints it is necessary 
to schedule the access to the network. Scheduling requires global 
knowledge of all network accesses. Depending on the type of 
communication protocol that is used and the degree of determinism 
that is desired the scheduling requires different amount of prior 
information. The output of the scheduling is also dependent on the 
type of scheduling used. For example, the output of a static time-
triggered scheduling approach would be the time slot allocation for 
the different nodes. In a worst-case scheduled switched Ethernet 
the output would instead be the maximum send rates for the 
different nodes. 
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The need for global information about distributed object 
invocations does not fit into CORBA very well. One approach is to 
simply say that the scheduling is something that is external to HRT-
CORBA.  In this approach one would then simply assume that all 
clients generate distributed invocations according to some pre-
defined schedule. However, this would rule out all more dynamic 
scheduling approaches. In order to dynamically decide whether a 
new periodic communication request should be allowed or not 
(admission control) it is necessary to have some global source of the 
scheduling information. Where and how this information should be 
provided is an open issue. One possibility could be to have a special 
CORBA scheduling object that resides within some node and that is 
defined using IDL. Another possibility would be to introduce the 
scheduling support as a CORBA service. 
 
RT-CORBA again mentions global scheduling. However, not in a 
way that fits the demands for scheduling of communication traffic. 
The RT-CORBA scheduling service is only assumed to apply to RT-
CORBA activities. Also, the scheduling service is only an optional 
part of RT-CORBA 1.1. To our knowledge it has not been 
implemented in any commercial ORB. 
 

• Small footprint 
CORBA has a reputation of being resource-intensive. RT-CORBA 
increases complexity rather than decreases it. In order for HRT-
CORBA to be applicable to embedded systems, e.g., used in 
sensors, actuators, and intelligent controllers it must have a small 
footprint. Hence, it is necessary for HRT-CORBA to build upon the 
Minimum CORBA specification rather than the RT-CORBA 
specification. Several of the features of RT-CORBA, e.g., the 
multiple thread lanes, dynamic thread creation, and thread 
borrowing are probably not necessary in embedded HRT-CORBA 
applications. 
 

2.8  Competing Technologies 
Two major advantages of CORBA are the language independency and the 
platform and vendor independency. The two main competitors to 
CORBA, Java technology and Microsoft technology do not share these 
advantages. However, the strong position that Java has within Web-
computing and the strong position that Microsoft has within industrial 
automation in general, make the competition fierce. 
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The Microsoft based technologies can be divided into two groups: pre-
.NET and .NET technologies. The pre-.NET technologies include COM, 
Microsoft’s component framework, DCOM, the distributed version of 
COM, and MTS which adds persistency and transaction services. Together 
they constitute COM+. COM relies on binary interoperability conventions 
and on interfaces. A COM interface can be seen as a C++ virtual class. 
COM provides a simple protocol that COM objects can use to dynamically 
discover or create objects and interfaces. From an implementation point of 
view a COM object is a piece of binary code that can be packaged in 
executables or DLL dynamic libraries. DCOM extends COM with 
distribution based on the DCE Remote Procedure Call (RPC) mechanism. 
 
The .NET component model relies on language interoperability and 
introspection rather than binary interoperability. In order to enable this 
.NET is based on an internal byte-code language called Microsoft 
Intermediate Language (MSIL), very similar to Java byte-code. The 
interpreter for this language is called the Common Language Runtime 
(CLR), which is very similar to the Java virtual machine. A number of 
languages can be compiled to MSIL. .NET represents the programming 
language approach to component programming. The program contains 
the information related to the relationships with other components, and 
the compiler is responsible for generating the information needed at 
execution. 
 
Microsoft’s drastic change of technology has partly upset the automation 
industry. Traditionally they have been using COM technology, which no 
longer is the main approach pursued by Microsoft. However, the interface 
and bridge support between .NET and COM is good.  
 
Another Microsoft technology of importance to the automation industry is 
OPC (OLE for Process Control). OPC is designed to bridge Windows-
based applications and process control hardware. OPC is based on OLE 
(Object Linking and Embedding), a part of Active-X that provides object 
plug-and-play functionality within Windows, and on COM/DCOM. 
 
OPC software are either OPC-clients or OPC-servers. An OPC-client is 
typically a data-sink, e.g., a GUI or SCADA system that needs on-line 
process data. An OPC-server is a data source – a device-specific program 
that collects process data from a field device and then makes it available to 
an OPC-client. Due to the relatively large memory footprint of OPC-
servers they are rarely embedded in the field devices per se. Instead the 
OPC-server is typically part of the control system, either in the control 
stations or at some supervisory level. Used in this way the OPC-server 
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encapsulates the underlying process and control data and makes it 
available to clients. OPC provides a number of different services, e.g., 
online data access, alarm and event handling, and historical data access. 
The main difference between OPC and CORBA is that OPC is based on 
signals whereas CORBA is object-oriented. However, part of the 
functionality that hard RT-CORBA will provide will clearly overlap with 
OPC. One possibility for handling this problem would be to either 
encapsulate an OPC-server as a CORBA object or to provide a completely 
CORBA-based implementation of OPC. 
 
The Java environment provides its own solutions both to distributed 
object computing and to component technologies. The Java distributed 
object model is Java RMI (Remote Method Invocation). Java RMI shares 
many of the features of CORBA and during recent years Sun has strived to 
unite them even further. For example, RMI over IIOP enables the 
programmer to develop CORBA compliant distributed Java applications 
using the RMI framework. To develop CORBA applications in other 
languages IDL models can be automatically generated from Java 
programming language interfaces. RMI over IIOP includes the full 
functionality of a CORBA ORB and is a part of both the Java Standard 
Edition and the Java Enterprise Edition. Java also directly supports 
CORBA through Java IDL. Using Java IDL the distributed object interfaces 
are programmed directly in IDL, rather than in RMI. 
 
The Java component technology is known as Enterprise Java Beans (EJB). 
The EJB server-side component model simplifies development of 
middleware components that are transactional, scalable, and portable. EJB 
servers reduce the complexity of developing middleware by providing 
automatic support for middleware services such as transactions, security, 
database connectivity, and more. EJBs use the RMI/IDL CORBA subset 
for their distributed object model, and use the Java Transaction Service 
(JTS) for their distributed transaction model. When Enterprise JavaBeans 
are implemented using the RMI-IIOP protocol for EJB interoperability in 
heterogeneous server environments, the standard mapping of the EJB 
architecture to CORBA enables the following interoperability:  

• A client using an ORB from one vendor can access enterprise beans 
residing on an EJB server provided by another vendor.  

• Enterprise beans in one EJB server can access enterprise beans in 
another EJB server.  

• A non-Java platform CORBA client can access any enterprise bean 
object.  
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3  Components in Control 
Systems 
 

3.1  Introduction 
The primary market drivers in the automation industry today are 
increased productivity and flexibility, increased quality and yield, reduced 
life-cycle costs, safeguarding investments, and environmental and safety 
management. A key goal is to provide vertical integration, i.e. to make 
real-time information available across the enterprise, allowing users and 
applications to make informed production decisions. The real-time 
information also needs to be shared between multiple automation 
platforms, including control systems, transmission networks, PLCs, safety 
systems, SCADA systems and maintenance systems. The goal which all 
process and manufacturing enterprises are striving for today is a seamless 
integration of plant and enterprise systems. In order to achieve this it is 
necessary to build the system on a strong architectural foundation. A 
common distributed object and component model is a key element of this. 

3.2  Industrial Control Systems 
Modern industrial control systems of the DCS (Distributed Control 
System) or PLC (Programmable Logic Controller) type are complex, 
distributed, heterogeneous systems. The majority of the complexity is due 
to software issues rather than hardware issues. The systems are 
hierarchically organized and are often depicted in the form of a triangle or 
pyramid, see Figure 5. Traditionally the information flow between the 
layers has been small, compared to the information flow within the layers. 
However, the trend towards vertical integration in process control systems 
is beginning to change this. The refinement level of the information is also 
different between the layers. At the layers close to the process the 
information primarily consists of signal data, e.g., measurement signals 
and control signals. Higher up in the hierarchy the information content is 
of the same nature as what is found in general enterprise systems. In a 
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similar way the real-time characteristics are different between the layers. 
Close to the process the information is updated periodically with high 
frequency and the real-time requirements are of hard or “semi”-hard 
nature, whereas at higher layers the traffic is of a more aperiodic nature 
with softer real-time requirements. 
 
An example of the network architecture of modern control systems is 
found in Figure 4. The figure shows ABB’s new Control IT system. The 
solutions provided by the other four largest control companies (Emerson, 
Honeywell, Invensys and Yokogawa) are presented in deliverable D4.1. 
Control IT is the controller part of ABB’s new Industrial IT concept. The 
system contains several communication networks. At the bottom level 
there is one or several fieldbuses for connecting remote field devices (e.g., 
sensors and actuators) with the control system. Examples of fieldbuses 
that currently are wide-spread are Foundation Fieldbus, Profibus, 
LonWorks, and HART. The majority of the communication concerned 
with networked control loops takes place at the fieldbus level.  
 
The control network is used to connect the individual controllers with 
each others, with the Connectivity Server and with the Control Builder 
Server. The Connectivity Server is an OPC server that publishes the 
control system information to higher level applications. The Control 
Builder Server is responsible for the downloading of the control 
application code to the individual controllers. Although it is possible to 
close control loops over the control network it is not so common. The 
control networks have traditionally been based on vendor-specific 
communication protocols, but this is gradually changing towards the use 
of more standard protocols. The Control IT system uses the ISO 
Manufacturing Message Specification (MMS) application protocol layered 
on top of the TCP stack. MMS has been defined by experts from process 
control and manufacturing. It allows definition of abstract virtual devices 
in terms of data and services. Originally MMS was developed to run on 
top of the MAP communication stack. MAP support interoperability 
between heterogeneous shop-floor devices, PLCs, robots, sensors, and 
actuators. However, despite large investments MAP never became a real 
success.  
 
For security and efficiency reasons the control network is split up into two 
parts, the part that connects the controllers and the part that connects the 
different user workplaces, e.g., Operator Stations or Engineering Stations, 
and the application servers. The latter network is typically a standard 
TCP/IP client-server network. The control network is then connected 
through a bridge to the plant intranet, which in turn is connected to the 
ordinary Internet.  
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Figure 4. The network architecture of the ABB Control IT system. 
 
 
Object models are important architectural cornerstones in modern 
automation systems. An example of this can again be collected from ABB. 
The ABB Industrial IT concept is based on the Aspect Object model, a 
multi-view object model where each object is described from several 
different views or aspects. The objects themselves can be physical process 
objects such as valves or motors, or they can represent products, materials, 
orders, et cetera. Aspects can include human machine interface, 
configuration, simulation, quality report, production reports, maintenance 
records, electrical diagram, control diagram, and many more. The aim of 
the Aspect Object model is to model one aspect of an object at a time, 
rather than to create a complete single object. The Aspect object can be 
seen as a container of references to different “ordinary” objects that 
implement the individual aspects. The aspects are implemented by 
different software systems, so called aspect system, which store, manage, 
and present information in an aspect-specific way. The result is a system 
of loosely integrated independent software systems held together by a 
special aspect directory service. Aspect objects allow reuse of knowledge 
and components and facilitate one-time entry of information. The Aspect 
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Object model implementation is based on COM. The Aspect Object model 
is quite advanced and contains several features which cannot be found in 
conventional software object models, such as CORBA and COM. 
 

3.3  General characteristics of control systems 
There are two fundamental characteristics that a control system must have 
to be able to perform effectively: 
 

• Dependability, 
• Maintainability 

 
Other required or typical characteristics are: 
 

• Scalability 
• Configurability 

 
Finally, its distributed architecture is considered. 

3.3.1 Dependability 
 
A system is a dependable if it is operative when it is needed. The major 
factors that contribute to dependability are availability, security, and ease 
of use. 
 

• Availability is the proportion of time the system performs to 
specifications. Superior system availability is provided by the 
following factors: 
o Integrity. In addition to the architecture, integrity is achieved 

by self-checking failure detection, fault containment, and the 
inherent safety designed into the system to ensure correct 
operation. Errors that do persist should be tolerated with 
little or no degradation of system performance, affecting 
only the device or module in which they occur. If one of 
these devices fails, some capacity, throughput, or functions 
may be lost, but the system continues to operate. 

o Redundancy. Multiple elements can produce correct output 
when one or more of the elements is not functioning 
correctly. The most critical system elements are usually fully 
redundant with automatic switchover. 
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o Maintenance. It is the activity that keeps the equipment in 
satisfactory working order, including tests, diagnoses, 
measurements, replacements, adjustments, and repairs. 

• Security. If unqualified users of a system are able to make 
improper changes to the process or control information stored in 
the system, it will reduce the user's level of confidence that the 
available information is correct. Furthermore, improper changes 
might cause damage to the process or plant, and injury to 
people. To keep this from happening, the different levels of 
access have to be provided. 

• Ease of use. Time spent in finding how to do something with the 
system or in retrying an operating procedure is unproductive. 

 

3.3.2 Maintainability 
 
Maintainability is achieved by: 
 

• Standardization of hardware and software. 
• Automatic diagnostics where the system records and analyzes 

both hardware and software errors and makes 
recommendations to replace devices it suspects of impending 
failure.  

• Off-line tests when self-diagnostics cannot pinpoint a problem. 
• Hot-replaceability For maintenance or repairs, any module can 

be removed from service and returned to service while the 
remainder of the system is on-line.  

 

3.3.3 Scalability 
 
Another key design objective for automation systems is scalability. The 
same automation system family should support the full range of 
applications from small PLC-type applications involving, e.g. only a single 
standalone PC to large enterprise-wide control systems with replica-
determinism to achieve fault-tolerance. 
 

3.3.4 Configurability 
 
A characteristic feature that distinguishes industrial control systems from 
most real-time software systems is the fact that the systems are end-user 
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programmable. From a software point of view the systems consists of two 
layers: the system level and the application level. The system level 
provides configuration support, run-time support, and a communication 
infrastructure. The control applications are typically programmed by the 
customer using a domain-specific programming language. Many times, 
the user does not write custom software, but enters the information that 
the standard software uses. This entry process is known as “system 
configuration”. 
 
The domain-specific languages are often graphical in nature and are based 
on quite simple computational models, e.g., signal or activity flows. The 
most common example are the five languages in the IEC 61131-3 standard. 
Although these languages are not object-oriented in the strict sense, they 
contain structuring elements that can be compared to objects. There is also 
a strong interest in extending these languages with more powerful object 
constructs.  The fact that the system contains two separate layers further 
increases the potential for using component technology in their 
programming. 

3.3.5 Distributed architecture 
 
Data acquisition and control functions are distributed throughout the 
plant, using a variety of process-connected devices to meet a plant’s needs, 
as it was shown in the ABB’s Control IT example in the previous section. 
 
In other industrial control systems, similar four network levels are 
encountered: 
 

1. Information network. It is a network that is capable of sharing 
information with the operation network. 

 
2. Operation network. It links operator stations, processing modules, 

and gateways/interface modules. New systems implement an 
Ethernet TCP/IP network. 
 
On this networks are the modules: 

a. Human machine interfaces (operator stations, etc). 
b. History database 
c. Advanced control (MBPC, statistical, etc.) 
d. Gateways and interfaces to: 

i. Control networks 
ii. Other process control subsystems like PLCs 

iii. Information networks 
iv. Other operation networks 
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e. Safety instrumented systems controllers 
 

3. Control network. It links process-connected devices with each other 
and with the operation network (through the gateway). The devices 
connected are process controllers.  

 
4. Fieldbus. Fieldbus is a digital, two-way, multi-drop communication 

link among intelligent control devices. The main benefits are: 
 

a. Higher accuracy and data reliability 
b. Multi variable access 
c. Remote configuration and diagnostics 
d. Wiring cost savings 
e. Reduce commissioning time (due to the diagnostic and 

configuration information available) 
f. Benefits of moving control functions to the field devices 

improves the control. 
It links process controllers  (through an I/O unit) with instruments. 
There are other I/O units in the process control modules: analog, 
digital, serial, etc.  

 
The communication advances is what is making possible the use of  smart 
sensors and. There has been an evolution from the traditional analog 
transport (where a 4-20mA was transmitted indicating the percentage of 
the process variable measured or the percentage to act on the valve) to the 
current digital fieldbuses where different “standard” protocols are 
competing to rule in the field level. 

 
In between there is an hybrid solution, the HART (Highway 
Addressable Remote Transducer)  protocol which superimpose a 
digital signal to the classical analog one. This enables the use of the 
existing devices and take the advantages of digital communication. 
Although this has been widely used in the process industry it seems 
that the digital fieldbuses will take over finally in the coming years. 

 
Some control strategies at high levels require calculations that may 
require, for example extensive file handling or computation (optimization, 
simulation) that generally do not need to be synchronized with control 
algorithm execution. In addition, collection, storage, and manipulation of 
exceptionally large quantities of historical data may be required. Via the 
information network such computer programs can access and write 
information anywhere in the system. This makes it feasible to establish a 
system-wide information network to make timely data available at all 
levels of decision-making within the organization. 
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The gateway between the operation and control network passes event and 
alarm information from the control network to the other and responds to 
requests from the modules in the operation network for information about 
the process. It also passes configuration files to the control network 
modules. On the control network, the gateway validates existence of 
requested points, checks for device status, and checks for device and 
parameter error conditions. 
 
As it was said above, control systems implement redundancy in networks 
and equipment. Regarding the network, either of the two redundant 
cables can be designated as the active one; the other is then the backup. If 
the active cable fails or has an excessive error rate, the roles of the cables 
are automatically switched (the cables can also be manually switched).  
Additional security can be achieved by running each cable over a different 
route. 
 
The HRTC project is focused on distributed hard real-time CORBA 
applications. It is therefore of interest to investigate the types of network 
communication that takes place in a typical control system and their real-
time characteristics. Some examples are: 
 

• Sensor data and control signals 
Sensor data that is being sent from remote field devices to the 
controllers and control signals that are sent in the opposite direction 
are perhaps the most important network traffic. The real-time 
characteristics depend on the control application and the type of 
control being performed. For example, in many cases a discrete 
logic controller has harder real-time characteristics than a 
continuous control loops. In the latter case it often acceptable with 
an occasionally long delay or lost sample. Raw sensor data or 
filtered sensor data is also transmitted to the supervisory layers, 
e.g., to the HMI and to different supervisory control applications. In 
general, this type of traffic has less hard real-time constraints. The 
data transfer is in many cases based on OPC. 

• Events and Commands 
Events or alarms are typically generated from the controllers when, 
e.g. some abnormal situation has been detected that require 
operator invention. Hence, the real-time requirements are typically 
quite high. Commands correspond to discrete operations that are 
performed from the supervisory control levels, including the HMI, 
and that affect the operation of the controllers. Also, here the 
severity of the real-time constraints is application-dependent. 

• Binary Code 
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Binary code is typically downloaded from the configuration and 
engineering workstations to the controllers when the control system 
is installed or updated. The possibility to perform the updates on-
line (hot-swap) is important. This implies that the real-time 
requirements can be quite high also for this type of traffic. 

• Internet traffic 
The use of web server techniques is becoming increasingly common 
also at the lower layers of the control system hierarchy. A typical 
application is equipment diagnosis. The traffic is typical of 
traditional HTTP nature. 

 

3.4 Common functions in industrial control systems 

3.4.1 Data acquisition 
 
In a typical scheme, the control system acquires data from process 
connected devices distributed on networks. Each device scans its 
associated process instrument(s) at regular intervals, checks the input 
signals, and converts them to a form suitable for storage in its own process 
database. 
 
All of the information about the process that the system collects or 
produces must be structured in some way for easy retrieval, e.g., a 
collection of closely related data values (such as all parameters associated 
with a control loop) and instructions for their processing. At the scheduled 
time, standard software within each kind of device or module 
automatically collects process variables, stores them, performs any 
calculations or other manipulations, and sends outputs to designated 
locations.  
 
 

3.4.2 Alarms 
 
Alarm states are detected by comparing values against limits, ranges, or 
other conditions. Changes in the state of alarms are events to other 
modules. There are alarms for process variables and for deviations of 
process variables from setpoints.  Alarms can be in one of several 
detection modes ranging from the no-action level, which totally ignores 
the occurrence of the alarm (used, e.g., to filter out nuisance alarms during 
startup and shutdown), to the emergency level, which immediately brings 
the alarm to the attention of the operator in several ways: audible signal, 
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red text on the screen, flashing text, flashing lights, printed messages, etc. 
Alarms have to be acknowledged by the operator. 
 

3.4.3 Control 
 
The basic control functions of control systems can be classified in two 
types: 
 

• Continuous 
• Discontinuous 

 
For every unit, a set of continuous control functions (loops) are defined.  
Also, sequences are defined. Each sequence is divided into phases 
containing several steps (statements of the programming language). As 
these sequential statements control the sequence of operations being 
performed, they also initiate any continuous or logic operations required, 
such as setting setpoints or checking that a valve is closed before 
admitting fluid into a tank. These sequences can run in different modes, 
automatically or under the operator intervention. The engineer can specify 
whether the operator or the system can change the mode and the system 
has provision for automatically performs all the functions necessary to 
prevent "bumps" in the process, including initialization, ramping, and 
antiwindup whenever a mode is changed. 
 

3.4.4 Safety functions 
 
In response to abnormal conditions, usually detected using logic 
functions, safety sequences can be triggered that stops the normal 
execution order and proceeds with the instructions the engineer gave for 
handling the particular situation. Usual responses are: 
 

• Hold all variables at their last good value until otherwise 
instructed 

• Execute the given normal shutdown procedures 
• Execute the given emergency procedures to get the process to 

the safest possible state in the fastest possible manner 
(emergency shutdown). 

 
The most critical safety functions are performed by dedicated equipment: 
The Safety Instrumented System (SIS), which are based on multiple 
redundant PLCs and instruments. 
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3.4.5 Communication with other systems 
 
Control systems are frequently composed of a principal system and a wide 
and complex variety of independent subsystems, both in process 
(laboratory, package units, etc) or not (management information system, 
shipping, etc.), that need to work together to accomplish operating 
objectives. To meet this requirement for integration of products from other 
vendors, it is necessary to provide a number of interfaces at the different 
network levels with capabilities such as data conversion, buffering, and 
processing necessary for an efficient interchange of information and 
smooth startup and shutdown. 
 

3.4.6 Reports 
 
Control systems have the capability for producing reports with current 
and historical data about the process and the system, which can be printed 
(on demand or at specified intervals) or displayed.  Reports can be 
classified into: 
 

• Journals, that collect a chronological list of events of a specified 
class, such as process alarms or operator changes to the process, 
that occurred within a specific time interval. 

• Logs, that collect historical values for a specified set of data point 
parameters. 

• Trends, that graphically show the history of points or parameters 
over a specified time interval. 

 
A report can include a mixture of the three types. 
 
 

3.5 Elements of control systems 
 
Any control have the following elements : sensor, actuator, controller and 
the communication  media between them all. A brief summary of the 
trends in the elements and the communication media is presented in this 
section. Besides the basic elements, there are other significant components 
in any control system: Human Machine Interfaces and Databases. 
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3.5.1 Sensors 
 

• The trend is the smart sensor. This smart digital devices offer new 
functionalities such as:Transmission of many data as: operating range, 
maintenance conditions 

• Remote operation by the user (change the span, software update,…). 

• Simpler communication. The digital communication removes the need of 
digital/analog and analog/digital converters. 

• Easy integration in the DCS configuration 

 

But these capabilities are not cost-free, an increase of complexity (with 
more possibilities of failure, although more means to detect it) is the major 
drawback when implementing the smart sensors. 
 

3.5.2 Actuators 
 
These devices are mostly valves in the process industry. The trend is the 
same as it was in sensors, having intelligent actuators. Besides the 
intelligent features there is an additional capability, what is being done is 
to transfer some control functions (basic control, and basic algorithms-
PID) from the control room to the field. The new valves incorporate 
control blocks making the control more distributed. 
 

3.5.3 Controllers 
Process controllers handle data acquisition and control functions. They 
can be configured with a selectable set of I/O units (which perform input 
and output processing on field I/O, independent of control processing 
functions), and control units with algorithms for continuous, batch, or 
hybrid applications that scan and write I/O units on the control module. 
Capabilities include sophisticated regulatory control, fully integrated 
interlock logic functions, and user programmable functions. With special 
units it can perform sequence of events functions providing typical 1 ms 
resolution time stamping of digital state changes. 
 
A wide range of signal types can be handled (even communication with 
PLC), including redundant pairs to maximize availability for critical 
applications. Redundancy can be extended to controllers units and power 
supply. 
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3.5.4 Human Machine Interfaces 
 
Operators view and monitor the process through standard operating 
displays that need to present a wide range of detail.  In operator stations 
the operator monitors and controls the process, and handles process and 
system alarms. He can also display and print process history, trends, and 
averages, print reports and monitor and change the status of the control 
system. Process engineers set up the process database, displays and 
reports, establish the interfaces with other computers, and manages 
system software. 
 
Levels of detail range from operating parameters and limits for individual 
points, to summaries of operating conditions (such as alarms) for 
individual process units (both continuous and discontinuous). Operators 
in different stations have to securely share data. The refresh frequency in 
displays ranges from seconds to fractions of seconds. 
 
A minimum of two operator stations is recommended, because this 
provides ongoing operations capability if one station is needed for process 
engineering or system maintenance, or if one should fail. Three stations 
are preferred: The operator typically uses one station for an overview of 
the process area, another for a more detailed view of a unit or part of a 
unit in the area, and the third for an alarm summary display. If one of the 
stations is being used for process engineering or maintenance, the other 
two can take over its functions. 
 

3.5.5  History database 
 
Control systems include a database that records historical data as specified 
of the process values used by several departments of the plant, at several 
levels. The database should be configurable (defining the history to be 
collected) in different ways to accommodate those needs.  
 
Apart form mass storage of process data by time and event (process 
alarms, changes made by an operator to the process or the system,  etc.) 
the history database usually stores also system program images, the entire 
system database as configured by the process engineer (reducing the time 
to restore application software of the modules), diagnostic information, 
custom graphic displays and user programs.  
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3.6 The Control System Landscape 
Increased globalization and a consolidation of the automation market 
through mergers by several major control system manufacturers, 
highlights the necessity of component based frameworks.  
 
The current, more traditional approach to software architecture, with one 
monolithic structure, becomes expensive to maintain, port, upgrade and 
customize. Significant portions of today’s automation systems are 
becoming either functionally inadequate or logistically insupportable.  
 
According to [Lüd01], one major problem is that of adding new I/O-
modules, communication interfaces and protocols. Adapting the software 
to new products from a growing number of hardware manufacturers 
requires modifications and extensions to this monolithic structure. 
 
 Examples of new features that are demanded by the market in ever 
shorter cycles, presented in [Mül02], are 
 

• Local and remote human/machine interface 
• Automation processes 
• Remote control options via a fieldbus 

 
Managing this within one single application is a error prone and 
expensive task, and the resulting piece of software is growing both in 
terms of size and complexity. At the same time, only a very small 
percentage of the code is related to control and most effort is put on just 
"make it run" and not on critical control issues. 
 
In [Gre99] three crucial factors of industrial efficiency are pointed out: 
 

• Easy and smooth co-operation of various, possibly embedded 
software systems along the production course. 

• Re-engineering tools of legacy industrial systems, improving 
information flows and control systems, while keeping basic heavy 
machining and manufacturing equipment. 

• Distance co-operation between development and manufacturing 
sites. 

 

3.6.1 The Role of Components 
The use of a proper component model allows systems to be configured 
dynamically from binary components. A system would then be configured 
by loading only the necessary modules at a point in time when both the 
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target hardware and software environment are known. The setup would 
resemble the way third party hardware is managed in the PC world 
through the use of device drivers. Of course, in an automation setting we 
need more than that, we need guarantees. It is never acceptable that the 
introduction of new hardware or software may cause unpredictable 
behavior or even system crashes. In automation applications we need to 
be certain that the deployed components will work together as intended. 
An application, designed as a composite of components, must be safe and 
predictable with respect to both its functional and temporal behavior.  
 
A component framework would improve code reuse and hence shorten 
development time. In the current situation where software is becoming a 
bigger and bigger part of development cost for automation systems, this 
would be a major win. The use of a component model would also have the 
effect of standardizing the way functions are implemented, and the 
introduction of well defined interfaces would enhance understanding of 
how functions are used. 
 
Besides creating a superior foundation for maintenance and upgrades, 
maybe a more important advantage of a component based framework is 
that it provides an increased level of abstraction, resulting in better 
support for design and implementation of complex automation 
applications. A distributed component technology will allow the 
programmer to postpone decision regarding the final application and 
instead focus on the design of the individual parts. The final application is 
then designed as an assembly of component, configured for a particular 
target. Good support for design of distributed systems design, greatly 
relieves the programmer from concerns about networking and 
communication, and simplifies implementation of heterogeneous systems. 
For example, seamless integration between high-performance servers, 
which are used to calculate advanced robot trajectories and low-level 
PLCs, which handle the high-frequency feedback loops. 
 
Furthermore, integrating different parts of a factory is also of great 
importance. A six layer model of the factory levels is found in Fig.5. The 
suggested layers are: 
 

• Enterprise management level  
Enterprise-wide control activities such as resource planning, supply 
chain management, financing and accounting. 

• Production or manufacturing level 
Management and administration of work batches 

• Process control level 
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Plant-wide remote supervision and control of the plant using 
operator stations and processing systems. 

• Group control level 
A set of control loops controlling a set of process level systems, e.g. 
the feedback loops belonging to a particular manufacturing cell. 

• Field level or single control level 
This is the level of sensors, actuators, drives, etc, i.e. the interface 
equipment of a control system to the physical processes. 

• Process level 
This is the controlled physical plant. 

 

Enterprise 
level

Production
management level

Process control level

Group control level

Field level

Process level
 

 
Figure 5. The six-layer model of an industrial control system [Pre02]. 

 
 
The introduction of a distributed component model such a CORBA would 
provide a software backplane allowing both horizontal and vertical 
integration of the layers on Fig.5. Horizontally, a standardized component 
would increase interoperability between modules from different 
manufacturers, while vertically the integration would allow business 
systems and administrative systems to directly access and query the 
control loops and, for example, monitor the progress of a particular 
assembly line. 
 
Middleware like CORBA provides high level object oriented 
communication mechanisms, transparency and interoperability, which 
relieves the system designer of making decisions about hardware 
architectures and operating systems. When applied to control systems, 
CORBA technology provides a simple mechanism for sub-system 
independence, by means of transparent support for active objects and 
multi-threaded server construction. CORBA greatly simplifies 
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evolutionary changes to a system since adding new components may be 
added without any necessary changes to the rest of the system. Adding 
software fault tolerance by means of replication (active or passive) is much 
better supported in a component based framework in comparison to a 
monolithic program. 

3.6.2 The Challenges 
Supervision and control systems such as plant control systems, traffic 
management systems, energy distribution systems, are typical examples of 
application domains to be built on top of a CORBA platform. However, 
they often exhibit real-time requirements which the platform must comply 
to. The adoption of the current component models, such a CORBA or 
DCOM to a time critical setting, possibility in an embedded environment 
where system resources, such as CPU, memory and power, are scarce is a 
non-trivial task. While using a standard distributed component model in 
this type of applications certainly was not an option at the time when 
CORBA was initially designed, today it is thanks to increasingly powerful 
hardware for less and less cost. A CORBA component interface specifies 
only the functional behavior, and this does not suffice for real-time 
applications. For an embedded control systems application it is necessary 
to support analysis of the timely behavior of the components (and the 
composite). The interface must specify execution times, sampling times, 
memory consumptions, synchronization needs, etc. It also must support 
the ability to query a component about its resource requirements.  
 

3.7  Examples of CORBA and Component Applications 
In the following a number of examples of how component technology in 
general and CORBA in particular has been applied or could be applied in 
industrial control systems are presented. 

3.7.1 Networked Control Loop 

In this example CORBA is used in the sensor nodes, controller node, and 
actuator node of a networked control loop. Figure 6 shows a networked 
control system, where the process samples are transmitted to a controller 
unit, which calculates a control signal and transmits it to the actuator 
node. This example will be further discussed in Chapter 4. 
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Control signals

Process samples

 
 

Figure 6. A networked control loop. 

3.7.2 Distributed Supervisory Control Loops 
In a distributed supervisory system the actual feedback control loop 
resides locally in the node, while reference trajectories or mode commands 
are transmitted over the network. This setup commonly, however not 
always, requires support for hard real-time. A stable system may behave 
dangerously if fed an incorrect trajectory. However, given some logic in 
the local node, this setup may become much less dependent on the 
network and may function autonomously in a stand alone mode in case of 
communication failure. This setup is shown in Fig.7, where one 
supervision node is serving two control loops with reference values.  
 

Reference values  
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Figure 7. A supervisory computer transmits reference values out to one or more 
control loops. In this figure there are two low-level feedback control loops 
managed by the supervisory node 
 

3.7.3 CORBA-based MMS 
In [Gre99] the COCA project is described where CORBA is used to 
implement the ISO MMS protocol in a distributed object-oriented manner. 
The approach is based on a mapping of MMS’s virtual manufacturing 
devices (VMD) onto CORBA objects. Similarly, MMS services are 
represented as object methods. The asynchronous services in MMS are 
replaced by synchronous CORBA method invocations. The advantages of 
the CORBA-based approach are openness and modularity. In order to 
reduce the risk of decreased performance due to the added software layers 
a very efficient ORB implementation is used. For example, remote 
invocations between objects across Ethernet use the medium directly and 
avoid the TCP/IP stack. 
 

3.7.4 Componentization of I/O and Communication 
One of the largest component-technology applications inside ABB 
Automation, apart from the Aspect Object model, concerns the use 
components for modularisation of the software related to IO and 
communication in Control IT [Lüd02]. The ABB Control Builder is used to 
specify the hardware configuration of a control system, comprising one or 
more ABB Controller, and to write the IEC 61131-3 programs that will 
execute on the controllers.  When the control application is downloaded to 
the control systems via the control network, the system software of the 
controllers is responsible for interpreting the configuration information 
and for scheduling and executing the control programs.  
 
For market reasons the control system must support a wide range of I/O 
systems, communication interfaces and communication protocols. In the 
existing software architecture the addition of a new I/O module or a new 
communication interface or protocol would require updates in a large 
number of software modules, or components. To simplify the support for 
addition of new I/O and communication it was decided to restructure the 
systems by splitting all the components in two parts: one generic part 
containing code that is shared by all hardware and protocols and one non-
generic part containing the code that is special to a particular hardware or 
protocol. The latter parts are called protocol handlers and they reside on 
the PC running the Control Builder and/or in the controllers. Using the 
new architecture the addition of a new IO or communication only requires 
the addition of the necessary protocol handlers. ABB’s control system is 
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based on COM and the COM Interface Description Language (IDL) is used 
for defining the component interfaces. 

3.7.5 Factory Integration Frameworks 
 
In [Yan99] a factory integration framework is described where CORBA 
technology is used for the development of manufacturing applications, 
including manufacturing execution systems and machine control. The 
framework focuses on three levels: factory level, cell level, and equipment 
level. At the equipment level the framework uses OPC. The framework 
uses three different communication models: synchronous two-way 
communication, asynchronous messaging using Java Messaging, and 
event-driven interaction through the Event Service. 
 
Component-based approaches in flexible manufacturing systems are also 
described in [Mor02]. 

3.7.6 CORBA-enabled PLC 
The development of an ORB for a PLC is described in [Kus98]. The ORB 
executes on a PC that is connected to a standard Melsec PLC. CORBA 
objects have been defined that represent the components and functions of 
the PLC. These PLC objects encapsulate the corresponding functionality of 
the PLC. 
 

3.7.7 Component-oriented reference architectures 
A number of reference architectures for open, inter-operable control 
systems have been proposed. Most of them take a component-based 
approach. Some examples are OSACA (Open Systems Architecture for 
Controls within Automation Systems) [OSA96], OMAC (Open Modular 
Architecture Controllers) [OMA98], and the Open Control Architecture for 
Windows NT [OCF98]. 
 
The OROCOS (Open Robot Control Software) project is an ongoing 
European open source software project aiming at creating highly 
configurable control components, based on CORBA principles, for robot 
control systems. However, CORBA is used mainly for the IDL and 
component interfaces, while distributed communication and RT properties 
of the run-time system is left out of the IDL. Instead, timing considerations 
are managed by supporting mechanisms in the control system 
architecture, but without HRT communication and execution.  
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3.7.8 Control Block Components 
A trend in both industrial automation and robotics is the increased use of 
model-based analysis and simulation using tools such as 
Matlab/Simulink. In addition to using this technology off-line during 
design it is also interesting to be able to use it on-line, e.g. as a part of a 
model-based control scheme. In Simulink controller functionality is 
encapsulated in blocks with well-defined signal interfaces. If this should 
be used on-line there are currently two options. One option is to use 
existing code-generation tools for generating on-line code. However, it is 
sometimes quite difficult to fit this automatically code into the existing 
software structure. The second option is to include Matlab/Simulink in 
the on-line feedback loop. Software licensing costs often prohibit this 
solution. An interesting possibility would be to encapsulate the control 
functionality in a component that could be used both during off-line 
design and on-line operation. 
 
A similar situation can be found within the IEC 61131-3 standard. Here, 
software blocks are available both in term of function blocks and 61131-3 
programs. Although it is possible to write user-defined function blocks in 
C, it is not straightforward to integrate legacy software into 61131-3 
application. A component-based approach where it would be possible to 
include components as, e.g. function blocks would be a very interesting 
approach. 
 

3.7.9 Robot Tele-operation 
 
As a laboratory experiment CORBA has been used to build a robot tele-
operation application (see Figure 8) at UPM. The application contains 
three CORBA objects: a six DoF (degrees of freedom) full force feedback 
master, a seven DoF robot slave and a coordinate space mapper 
(transforms master axis space into robot axis space). 
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A large delay is obtained, approx. 250 ms, but with a small jitter. The test 
was done using the common laboratory 10baseT network in normal state 
(about 20% load). 
 

3.7.10 Risk Management 
 
Another application of interest is RiskMan. This is a system for emergency 
management in a chemical complex with nine plants (see Figure 9). The 
system supports the whole life-cycle of emergencies: prevention, 
detection, firing, diagnosis, handling, follow-up & cancellation. 
 
The application is composed by a collection of CORBA objects running on 
heterogeneous platforms (VAX/VMS, Alpha/UNIX, x86/Windows NT) 
performing an heterogeneous collection of functions: expert systems, user 
interfaces, wrappers of real-time plant databases, data filters based on 
fuzzy rules, predictors based on neural networks, etc. 
 

3.7.11 Real-time Video for Tele-operation 
 
HydraVision is a real-time video system for the support of remote 
operation of hydraulic power plants. It uses a country-wide fiber optics 

 
 
Figure 8. Axis position evolution in master and robot during a test. 



  Sheet: 55 of 83 
 
Reference: IST37652/050 
 Date: 2003-02-11  /  1.1  /  Final 
 

 
 

©  HRTC Consortium / Clearance: Consortium 

WAN network of a electric company to integrate a collection of objects 
that wrap physical entities in the system (see Figure 10). 
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Figure 9: Some of the CORBA objects that compose the RiskMan  application. 
Informer and Updater are wrappers of external systems. 

 
 
Figure 10. The HydraVision main user interface and one of the object-wrapped 
cameras. 
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The physical systems that are wrapped as CORBA objects are: cameras, 
MPEG compressors, image/audio multiplexers, microphones, 
loudspeakers, video monitors, video stores, still image printers, etc. 
 
The system is supports multicasting and bidirectional streaming. It used 
by human operators to: get a visual confirmation of the status of the 
remote plant, video-conference, faking human presence, remote diagnosis, 
etc. 
 

3.7.12 Strategic operation of Cement Plants 
 
PIKMAC is an operator support system designed to address plant-wide 
strategic decision making in a cement plant. The system is used by 
operators specially in night and weekend shifts when there is only one one 
person in the plant (see Figure 11). 
 
The system is composed by a collection of interacting CORBA objects that 
provide four top level functionalities: 
 
n  Clinker quality estimation using neural network technology. 
n  Instantaneous cost estimator using deep models. 
n  Alarm management using expert systems. 
n  Inter-shift communication using multimedia technology. 
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3.7.13 Substation Automation 
 
In the DOTS project, [San01], an example of using CORBA automation 
objects embedded in field devices based on the Electric Utilities IEC 61850 
Draft standard is presented, see Figure 12. 
 

 

 
Figure 11. Part of the user interface that shows the results of the on-line 
quality estimator QDED. It uses neural networks to estimate present clinker 
quality because it is not possible to have a direct real-time measure of it. 
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Figure 12. The DOTS application in substation automation. 
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4  CORBA in the Control Loop 

4.1 CORBA Controllers 
The basic distributed control loop can be modeled in CORBA in at least 
two     different ways: 
 

• Distributed CORBA Loop: In the distributed CORBA approach the 
sensor node, the controller node, and the actuator node are all 
equipped with ORBs, see Figure 13. Inside the corresponding 
nodes, the sensor, actuator, and controller are all  modeled as 
CORBA objects. Different possibilities exist with respect to which of 
these objects that should be active objects. One possibility is to let 
the sensor object be an active time-triggered object that periodically 
takes a sensor measurement and invokes an execute operation on 
the passive controller object. The execute operation would typically 
be a one-way message. During the execution of the execute 
operation the controller object would invoke the actuate operation 
on the actuator object passing the control signal as the argument. 
Also this can be a one-way message. Another alternative is to let the 
controller be an active time-triggered object that every sample 
invokes the two-way operation getMeasurement on the sensor object, 
calculates the control signal, and invokes the actuate operation on 
the actuator object. A drawback with this approach is the risk for 
sampling jitter in the control loop.  
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Figure 13. Distributed CORBA Control Loop 

 
• Encapsulated CORBA Loop: In this approach we only require the 

controller to be a CORBA-compliant. The controller object then 
implements the communication with the actuator and sensor nodes 
using non-CORBA technology, e.g. using some fieldbus. The 
controller object could be active or it invoked from some other 
client representing the task execution control of the controller. The 
approach is outlined in Fig. 14. 
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Figure 14. Encapsulated CORBA loop 

Since the feedback loop is closed over the network the stability and control 
performance is directly affected by the quality of the transport. A network 
that possesses too long latencies or have too much timing variations may 
cause the control performance to deteriorate or completely fail. However, 
if the network characteristics are well known it is sometimes possible to 
take them into account when designing the control algorithm or 
compensate for them on-line. The need for a network with well-known 
timing properties is evident in the design of such a networked control 
systems. Both the timing properties of the network transport and of the 
protocol stacks must be taken into account when analyzing the timely 
behavior. 
 
 

4.2  Timing Constraints 
The basic control loop has two main timing constraints. The first is the 
sampling period, h, which should be constant, i.e., without jitter. The 
second constraint involves the input-output latency, τ τ τ τ , from the sampling of 
the measurement signal to the control signal actuation. This is also known 
as the control delay or the computational delay. In a distributed control loop 
the input-output latency also includes the communication delays from the 
sensor node to the controller node and from the controller node to the 
actuator node. The constraints are illustrated in Figure 15, where we 
assume that the controller is implemented in a single task. 
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Figure 15. Control loop definitions. 

 
From a control performance point of view the following specifications are 
important: 

• The sampling period should be constant, i.e., the sampling jitter 
should be negligible. This holds for all time-triggered control loops, 
which is the most common case. An example of the opposite, i.e., an 
event-triggered control loop is found in combustion engine control 
systems which normally are sampled against crankshaft 
revolutions. 

• The input-output latency should be negligible or constant, i.e. 
without jitter. A negligible latency can be ignored and a constant 
latency can be compensated for statically in the control design. 

• Most control loops are more sensitive to latency than to sampling 
jitter. 

• In most cases it is better to have a small latency with jitter than a 
larger latency without jitter, even if the larger latency is 
compensated for in the control design. 

4.3  Loop Timing 
Equidistant sampling intervals and a negligible or constant control delay 
from sampling to actuation. However, this can seldom be achieved in 
practice. Within a node, tasks interfere with each other through 
preemption, and blocking when accessing shared resources. The execution 
times of the tasks themselves may be data-dependent or may vary due to 
hardware features such as caches. On the distributed level, the 
communication gives rise to delays that can be more or less deterministic 
depending on the communication protocol. Some sources of 
communication delays are: 
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• Processing delay: The time required to process the message (e.g. a 
packet) within the nodes (hosts, routers, bridges) that the message 
passes through. At the sending at receiving hosts this consists of  
the time needed to pass through the different protocol layers (link-
network-transport), whereas in the hosts it consists of the time it 
takes to examine the message header in order to decide where to 
direct the message. The processing delay can also include other 
factors, e.g., the time needed to check for bit-level errors. 

• Queuing delay: The amount of time that the message spends in the 
output queue (buffer) of the host or router, waiting to be 
transmitted. 

• Transmission delay: The amount of time required to transmit all of 
the bits in the message into the link. For routers and bridges this is 
also known as the store-and-forward delay. 

• Propagation delay: The time required for the bits to propagate over 
the link. 

• Transport-level acknowledgement delay: In reliable transport 
protocols such as TCP, acknowledgments and resending is used to 
guarantee a reliable connection in spite of bit errors and lost 
packets. The latter can be caused by buffer overflow due to 
congestion. This source of delay can be removed if unreliable 
transport protocols such as UDP can be used. 

• Link-layer resending delay: This is the delays caused by collision 
detection and the subsequent back-off and resending in multi-
access link layer protocols, e.g., Ethernet (CSMA/CD) or CAN 
(CSMA/CA). This source of delays can be removed if the network 
is scheduled in such a way that the collisions are eliminated, e.g., 
using time-division multiplexing or through the separate collision 
domains of switched Ethernet. 

 

4.4  Delays in Control Design 
The problems caused by delays can be approached in two ways. Either 
they are reduced or eliminated through the choice of implementation 
techniques and platforms, for example, a time-driven static scheduling like 
TTP, or the controller is designed to be robust against, or even 
dynamically compensate, for timing variations. 
 
Handling of delays control systems design involves three different 
activities: 
 

• Delay Modeling. 
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In order to be able to analyze the system a suitable delay model 
must be chosen. 

• Analysis. 
The delayed system must be analyzed with respect to, e.g., stability 
and performance. 

• Synthesis. 
A controller must be designed in such a way that the control loop 
meets its performance specifications in spite of the delays. 
 

 
Delays can be modeled in several ways: 
 

• Constant delays 
• Independent random delays. The delays are modeled by a random 

distribution. The delays are independent from transfer to transfer. 
• Dependent random delays.  The delays are dependent from 

transfer to transfer. The delay can, e.g., be modeled by a Markov 
chain containing different states for different traffic conditions 
(“low load”, “medium load”, “high load”) 

 
Constant delays are straightforward to handle. In the continuous-time 
domain, the influence of the delay on the control loop performance can 
easily be decided using, e.g., frequency-domain techniques (Nyquist and 
Bode diagrams). The delay gives rise to a phase lag that decreases the 
phase margin. Constant delays can be compensated for using, e.g., Otto-
Smith controllers or using a lead-filter compensation link.  
 
In the discrete-time domain a constant delay is normally handled by 
including it in the sampled process model. For example the following 
continuous-time process model, where x denote the state vector, u the 
control signal, and y the process output and where we assume that the 
delay, ττττ, only occurs on the process input, i.e., between the controller node 
and the actuator node 
 

 
 
has the following sampled representation. i.e., what in continuous-time is 
a infinite-dimensional system becomes time-invariant finite-dimensional 
discrete-time system. 
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where 
 

 
 
Constant delays are most easily achieved using a time-triggered approach, 
i.e., using statically scheduled computations and a statically-scheduled 
time division protocol such as TTP, see Figure 16. 
 

 
Figure 16. TDMA-based networked control loop 

 
The communication between the sensor and the controller and between 
the controller and the actuator is only performed within pre-defined slots 
within the TDMA round.  
 
For varying and random delays the situation easily becomes more 
complex. For example, it is possible to find systems that are stable for all 
constant delays, but become unstable when the delay varies. A number of 
theoretical results are available. However, it is important to always keep 
in mind the assumptions that are made. For example, if the results are 
applicable only to constant delays but where the delays may lie within a 
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certain range, i.e. a parametric uncertainty, or whether the results are 
applicable to varying delays within a certain range. 

 
A system with varying delays can be sampled in the same way as a system 
with constant delays. The resulting system 
 

 
 
with 
 

 
now is a time-varying system. The same holds for the closed loop system 
(the controlled processes in a feedback connection with the controller), 
 

 
 
where e(kh) is the process noise. The same approach can also be used to 
handle sampling jitter. In this case the closed loop system matrices will 
also depend on the sampling intervals hk. 
 
Stability analysis methods are available both for the case when the delays 
vary according to a certain periodic pattern and for the case when the 
delays change randomly. In the latter case the analysis is based on 
Lyapunov methods. The system is stable if one can find a common 
Lyapunov function for all the delays. 
 
In [Lin02a] a new stability criterion was presented for systems with 
varying time delays based on the small gain theorem. The criterion has a 
nice graphical frequency-domain interpretation. 
 
For systems with varying delays it is in many cases possible for the 
controller to compensate for the delay, or part of the delay, provided that 
it has access to the actual delays. The normal approach for handling this is 
to use associate time information with the transmitted signal values. The 
time information is typically expressed with time stamps. 
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4.4.1 Optimal LQG Control 
 
In [Nil98] an LQG-based control scheme was presented. The approach is 
based on time-driven sampling and event-driven control and actuation. It 
is assumed that the full state can be measured and that all states from the 
same node are transmitted in the same frame. Further it is assumed that 
old delays are known through time-stamping and that the delays are 
independent with known distribution. Using this scheme the results in 
Fig. 17 can be achieved. There the accumulated loss functions are shown 
for four different cases: a design neglecting the time delays, a design based 
on knowledge of the mean delay, a design based on introducing buffering 
thereby increasing the delays but eliminating the delay jitter (the Luck-
Ray scheme), and the optimal LQG scheme. 
 

 
Figure 17. A comparison between different time delay compensation schemes. 

 
The LQG scheme has been extended in several directions relaxing several 
of the assumptions. For example, to handle incomplete state knowledge 
(using estimators and output feedback), to handle dependent delays 
modeled by a Markov chain, networks with different delay distributions 
between sensor-controller and controller-actuator, systems with sampling 
jitter in the time-driven sensor node, and multi-input multi-output 
(MIMO) systems. 
 



  Sheet: 68 of 83 
 
Reference: IST37652/050 
 Date: 2003-02-11  /  1.1  /  Final 
 

 
 

©  HRTC Consortium / Clearance: Consortium 

Within the same framework it is possible to investigate the effects of lost 
samples and whether it can be advantage to use timeouts for 
measurement signals. The idea behind the latter is to use a prediction-
based controller that bases the feedback on a prediction of the 
measurement rather that the measurement itself when the timeout has 
expired. For control of systems with large measurement noise it is often an 
advantage to use timeouts.  
 

4.4.2 Loop-shaping dynamic jitter compensation 
The LQG approach described above has quite large demands on the 
available information about the controlled process (process model) and 
the delay characteristics. In [Lin02b] a substantially simpler approach was 
proposed. The approach is based on time-stamping, but it does not require 
full process model knowledge (only at high frequencies) and it does not 
assume any knowledge about the delay statistics. The approach is based 
on the addition of a linear delay-compensator to an existing controller. 
Frequency-domain conditions are used to evaluate stability and 
performance, Using loop-shaping techniques stability compensation and 
performance compensation can be achieved 
 

4.5  Analysis using Jitterbug 
If not handled correctly the delay and jitter introduced by the computer 
and communication system can lead to significant performance 
degradation. To achieve good performance in systems with limited 
computer resources, the constraints of the implementation platform must 
be taken into account at design time. To facilitate this, software tools are 
needed to analyze and simulate how the timing affects the control 
performance. 
 
Jitterbug is a new Matlab-based toolbox that makes it possible to compute 
a quadratic performance criterion for a linear control system under 
various timing conditions [Lin02c]. The tool can also compute the spectral 
density of the signals in the system. Using the toolbox, one can easily and 
quickly assert how sensitive a control system is to delay, jitter, lost 
samples, etc., without resorting to simulation. The tool is quite general and 
can also be used to investigate jitter-compensating controllers, aperiodic 
controllers, and multi-rate controllers.  
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4.5.1 Calculating Control Performance 
The example we will look at is networked DC-servo control loop. The 
sensor, the actuator, and the controller are distributed among different 
nodes in a network. The sensor node is assumed to be time-driven, 
whereas the controller and actuator nodes are assumed to be event-driven. 
At a fixed period h, the sensor samples the process and sends the 
measurement sample over the network to the controller node. There the 
controller computes a control signal and sends it over the network to the 
actuator node, where it is subsequently actuated. In this example, we will 
assume a CAN-type network where transmission of simultaneous 
messages is decided based on priorities of the packages. 
 
We will begin by investigating how sensitive the control loop is to slow 
sampling and delays, and then we will look at delay and jitter 
compensation.  
 
The DC servo process is given by the continuous-time system 
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The process is driven by white continuous-time input noise. There is 
assumed to be no measurement noise. The discrete-time PD controller is 
implemented as,  
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where the controller parameters are chosen as 5.1=K  and 035.0=DT . (A 
real implementation would include a low-pass filter in the derivative part, 
but that is ignored here.) 
 
The delays in the computer system are modeled by the two (possibly 
random) variables 1τ  and 2τ . The total delay from sampling to actuation is 
thus given by 21 τττ +=tot  It is assumed that the total delay never exceeds 
the sampling period. 
 
Finally, we need to specify the control performance criterion to be 
evaluated. As a cost function, we choose the sum of the squared process 
input and the squared process output: 
 

( ) ( )( )dttutyJ T ∫ += ∞→
22lim  
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Figure 18. The cost function computed using Jitterbug. The plot shows the cost as 
a function of sampling period and delay in the network. 
 
A control system can typically give satisfactory performance over a range 
of sampling periods. In textbooks on digital control, rules of thumb for 
sampling period selection are often given. One such rule suggests that the 
sampling interval h should be chosen such that 
 

6.02.0 << hbω  
 
where bω  is the bandwidth of the closed-loop system. In our case, a 
continuous-time PD controller with the given parameters would give a 
bandwidth of about sradb /80=ω . This would imply a sampling period of 
between 2.5 and 7.5 ms. The effect of computational delay is typically not 
considered in such rules of thumb, however. Using Jitterbug, the 
combined effect of sampling period and computational delay can be easily 
investigated. In Fig.18, the cost function J  for the networked control 
system has been evaluated for different sampling periods in the interval 1 
to 10 milliseconds, and for constant total delay ranging from 0 to 100% of 
the sampling interval. As can be seen, a one-sample delay gives negligible 
performance degradation when 1=h  ms. When 10=h ms, a one-sample 
delay makes the system unstable (i.e., the cost  J  goes to infinity). 
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4.6  TrueTime 
 
The new Matlab/Simulink-based tool TrueTime facilitates simulation of 
the temporal behavior of a networked control loops consisting of nodes 
with multitasking real-time kernel executing controller tasks, and 
communication networks [Hen02]. The tasks are controlling processes that 
are modeled as ordinary Simulink blocks. Different task scheduling 
policies may be used (e.g., priority-based preemptive scheduling, static 
cyclic scheduling, and earliest-deadline-first (EDF) scheduling) and 
different communication protocols can be used (e.g., Ethernet, CAN, and 
TDMA). (For more on real-time scheduling, see [Liu00] and for more on 
communication protocols, see HRTC Deliverable 2.1.)   
 
TrueTime makes it possible to study more general and detailed timing 
models of computer-controlled systems. The toolbox offers two Simulink 
blocks: a Real-Time Kernel block and a Real-Time Network block, see 
Figure 19. The delays in the control loop are captured by simulation of the 
execution of tasks in the kernel and the transmission of messages over the 
network. 
 
The Simulink blocks are event-driven, so there is no need to specify a 
time-grain for the model. The execution of a task can be simulated on an 
arbitrarily fine timescale by dividing the code into segments. We need not 
simulate the task execution on instruction level. In fact, it is enough to 
model the timely aspects of the code that are of relevance to other tasks 
and to the controlled plant. This includes computational phases, input and 
output actions, and blocking of common resources (other than the CPU). 
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Figure 13. The TrueTime block library. The Kernel block is used to simulate a 
real-time kernel and the network models the behavior of a network 

4.6.1 Simulating a Distributed Control System 
As a recurring example in this section, we will study a control loop that is 
closed over a communications network. Closing control loops over 
networks is becoming increasingly popular in embedded applications 
because of its flexibility, but it also introduces many new problems. From 
a control perspective, the computer system will introduce (possibly 
random) delays in the control loop. There is also the potential problem of 
lost measurement signals or control signals. From a real-time perspective, 
the first problem is figuring out the temporal constraints (deadlines, etc.) 
of the different tasks in the system, and then scheduling the CPUs and the 
network such that all constraints are met during runtime. 
 
We will study the setup in Fig. 20. In our control loop, the sensor, the 
actuator, and the controller are distributed among different nodes in a 
network. The sensor node is assumed to be time-driven, whereas the 
controller and actuator nodes are assumed to be event-driven. At a fixed 
period h, the sensor samples the process and sends the measurement 
sample over the network to the controller node. There the controller 
computes a control signal and sends it over the network to the actuator 
node, where it is subsequently actuated. This kind of setup was studied in 
[Nil98], where an optimal, delay-compensating LQG controller was 
derived. Here we are more interested in the interplay between control and 
real-time design and choose to study a simple process and controller. 
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Using Jitterbug we can theoretically calculate the impact of sampling 
period, delay, and jitter on the control loop performance, while TrueTime 
allows us to simulate the timely behavior complex distributed real-time 
control systems. 
 

 
Figure 20. A networked control system. 

 
In this example, we will assume a CAN-type network where transmission 
of simultaneous messages is decided based on priorities of the packages. 
The PD controller executing in the controller node is designed a 10-ms 
sampling interval. The same sampling interval is used in the sensor node. 
 
In a first simulation, all execution times and transmission times are set 
equal to zero. The control performance resulting from this ideal situation 
is shown in Fig. 21. 
 



  Sheet: 74 of 83 
 
Reference: IST37652/050 
 Date: 2003-02-11  /  1.1  /  Final 
 

 
 

©  HRTC Consortium / Clearance: Consortium 

 
Figure 21. Control performance without time delay 

 
Next we consider a more realistic simulation where execution times in the 
nodes and transmission times over the network are taken into account. 
The execution time of the controller is 0.5 ms and the ideal transmission 
time from one node to another is 1.5 ms. The ideal round-trip delay is thus 
3.5 ms. The packages generated by the disturbance node have high 
priority and occupy 50% of the network bandwidth. We further assume 
that an interfering, high-priority task with a 7-ms period and a 3-ms 
execution time is executing in the controller node. Colliding transmissions 
and preemption in the controller node will thus cause the round-trip delay 
to be even longer on average and time varying. The resulting degraded 
control performance can be seen in the simulated step response in Fig. 22. 
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Figure 22. Control performance with interfering network messages and 

interfering tasks in the control node. 
 
The execution of the tasks in the controller node and the transmission of 
messages over the network can be studied in detail (see Fig. 23).  
 
Finally, a simple compensation is introduced to cope with the delays. The 
packages sent from the sensor node are now time-stamped, which makes 
it possible for the controller to determine the actual delay from sensor to 
controller. The total delay is estimated by adding the expected value of the 
delay from controller to actuator. The control signal is then calculated 
based on linear interpolation among a set of controller parameters pre-
calculated for different delays. Using this compensation, better control 
performance is obtained, as seen in Fig. 24. 
 
This small example demonstrated that while the control performance 
degrades severely due to latency and jitter it is sometimes possible to 
handle this by a more advanced control algorithm. 
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Figure 23. Close-up of schedules showing the allocation of common resources: 
network (top) and controller node (bottom). A high signal means sending or 

executing, a medium signal means waiting, and a low signal means idle. 
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Figure 24. Control performance with delay compensation. 

 
 
A screen capture of a typical TrueTime session is shown in Fig. 25. 
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Figure 25. Screen capture from a typical TrueTime session. 

 

4.7  TrueTime Simulation of CORBA Control Loops 
Within HRTC TrueTime will be used to simulate CORBA-based control 
systems, within the context of the Robot Control Testbed. Using TrueTime 
it is possible to simulate both shared and switched Ethernet. TrueTime 
also supports TDMA networks. Hence it will be possible to simulate both 
the Real-Time Ethernet and the TTP/C approach to Hard R-T CORBA. 
Furthermore, support for TCP has recently been implemented. This makes 
it possible to also simulate networked control loops using TCP and both 
CORBA and R-T CORBA 1.1. This will be further described in future 
HRTC deliverables. 
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5  Summary 
The use of CORBA in industrial control systems and for embedded real-
time applications with hard time constraints pose a number of challenges 
that current CORBA and R-T CORBA do not meet. The following 
requirements summarize the most important issues: 
 

• Backward Compatibility  
The HRT CORBA mat not deviate too much from CORBA and RT-
CORBA. It is important to maintain interoperability between HRT 
CORBA and conventional CORBA. If this is not the case seamless 
vertical control system integration is not possible. 

• Scalability in size 
HRT CORBA needs to execute on a wide range of systems, from 
small field devices and embedded devices to PC-type computer 
systems. On embedded platforms a small footprint is crucial. This 
necessitates a modular approach where the HRT-ORB is structured 
into a mandatory “micro-ORB” part that provides only the absolute 
necessary functionality of the HRT-ORB and a number of optional 
parts that each adds increased functionality. 

• Scalability with respect to temporal determinism 
Different control applications require different levels of temporal 
determinism. Hence, HRT CORBA must be able to support a range 
of different transport protocols with different levels of temporal 
determinism. For example, for certain applications it is necessary 
with a time-triggered transport that minimizes communication 
latency jitter, whereas for other applications a transport that only 
provides a bounded latency suffices. 

• Scheduling support 
A communication network is a shared resource. In order to be able 
to guarantee any communication timing constraints it is necessary 
to schedule the access to the network. Scheduling requires global 
knowledge of all network accesses. Communication involves at 
least two partners: a sender and a receiver. In order to be able to 
schedule the communication HRT CORBA needs to support the 
description of periodic invocations from a sender (client) to a 
receiver (server), i.e., it must be possible to model information that 



  Sheet: 80 of 83 
 
Reference: IST37652/050 
 Date: 2003-02-11  /  1.1  /  Final 
 

 
 

©  HRTC Consortium / Clearance: Consortium 

concerns both the client and the server object as a single entity, and 
to associate information to this entity, e.g., the period, the amount 
of data that will transferred, and what the maximum allowed 
communication latency is. In order to be able to schedule also the 
computation within the nodes it must also be possible to associate 
information of a temporal nature with the CORBA objects, e.g., 
whether objects are active or passive, worst-case execution times, 
deadlines, whether object operations are blocking, etc. 
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