
www.hardrealtimecorba.org

IST-2001-37652

Hard Real-time CORBA

 Title Domain Analysis
For CORBA-based Control Systems

 Authors Karl-Erik Årzén (LTH)
Ricardo Sanz(UPM)
Johan Eker (LTH)
Dan Henriksson(LTH)
Anton Cervin(LTH)
Santos Galán (UPM)
Manuel Rodríguez (UPM)

 Reference IST37652/050 Deliverable D1.1

 Date 2003-02-11

 Release 1.1

 Status Final

 Clearance Consortium

 Partners Universidad Politécnica de Madrid
Lunds Tekniska Högskola
Technische Universität Wien
SCILabs Ingenieros

 Sheet: 2 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Summary Sheet

IST Project 2001-37652
HRTC
Hard Real-time CORBA

Domain Analysis
For CORBA-based Control Systems

Abstract:

The present document is the Deliverable D1.1. This document contributes
to the analysis of the domain of control systems based on distributed
objects and, in particular, distributed control systems based on CORBA
technology.

Copyright

This is an unpublished document produced by the HRTC Consortium.
The copyright of this work rests in the companies and bodies listed below.
All rights reserved. The information contained herein is the property of
the identified companies and bodies, and is supplied without liability for
errors or omissions. No part may be reproduced, used or transmitted to
third parties in any form or by any means except as authorised by contract
or other written permission. The copyright and the foregoing restriction
on reproduction, use and transmission extend to all media in which this
information may be embodied.

HRTC Partners:

Universidad Politécnica de Madrid
Lunds Tekniska Högskola
Technische Universität Wien
SCILabs Ingenieros.

 Sheet: 3 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Release Sheet (1)

Release: 0.1 Draft
Date: 2002/09/09
Scope Initial version
Sheets All

Release: 0.9 Draft
Date: 2003/02/06
Scope First large-scale draft
Sheets All

Release: 0.91 Draft
Date: 2003/03/09
Scope Added process control content.
Sheets All

Release: 1.0 Draft
Date: 2003/03/11
Scope Formatted final draft.
Sheets All

Release: 1.1 Final
Date: 2003/03/13
Scope Minor corrections.
Sheets All

 Sheet: 4 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Table of Contents

1 Introduction __7

1.1 Objectives __ 7

1.2 The role of object technology _________________________________ 9

1.3 Scope ___ 9

1.4 Control engineering processes _______________________________ 10

1.5 Complex Software for Control ________________________________ 12

1.6 Complex control systems ___________________________________ 13
1.6.1 Outline___ 14

2 Distributed Objects and CORBA __________________________15

2.1 Distributed Object Computing ________________________________ 15

2.2 Integration ___ 16

2.3 CORBA ___ 18
2.3.1 CORBA Distributed Object Model_________________________ 18
2.3.2 CORBA Services and Facilities ___________________________ 21
2.3.3 The CORBA Component Model___________________________ 22

2.4 CORBA for Real-time and Embedded Systems __________________ 23
2.4.1 Real-time CORBA _____________________________________ 23
2.4.2 Fault-tolerant CORBA __________________________________ 26
2.4.3 Minimum CORBA _____________________________________ 26

2.5 Bridging Domains ___ 26

2.6 State and Future of the Technology ___________________________ 26

2.7 What should Hard Real-time CORBA be? ______________________ 27

2.8 Competing Technologies____________________________________ 29

3 Components in Control Systems__________________________33

3.1 Introduction __ 33

3.2 Industrial Control Systems __________________________________ 33

3.3 General characteristics of control systems ______________________ 36
3.3.1 Dependability ___ 36
3.3.2 Maintainability __ 37
3.3.3 Scalability __ 37
3.3.4 Configurability __ 37
3.3.5 Distributed architecture__________________________________ 38

3.4 Common functions in industrial control systems __________________ 41
3.4.1 Data acquisition__ 41

 Sheet: 5 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

3.4.2 Alarms___ 41
3.4.3 Control __ 42
3.4.4 Safety functions__ 42
3.4.5 Communication with other systems ________________________ 43
3.4.6 Reports __ 43

3.5 Elements of control systems _________________________________ 43
3.5.1 Sensors __ 44
3.5.2 Actuators ___ 44
3.5.3 Controllers__ 44
3.5.4 Human Machine Interfaces _______________________________ 45
3.5.5 History database _______________________________________ 45

3.6 The Control System Landscape ______________________________ 46
3.6.1 The Role of Components ________________________________ 46
3.6.2 The Challenges __ 49

3.7 Examples of CORBA and Component Applications _______________ 49
3.7.1 Networked Control Loop ________________________________ 49
3.7.2 Distributed Supervisory Control Loops _____________________ 50
3.7.3 CORBA-based MMS ___________________________________ 51
3.7.4 Componentization of I/O and Communication________________ 51
3.7.5 Factory Integration Frameworks___________________________ 52
3.7.6 CORBA-enabled PLC___________________________________ 52
3.7.7 Component-oriented reference architectures _________________ 52
3.7.8 Control Block Components_______________________________ 53
3.7.9 Robot Tele-operation ___________________________________ 53
3.7.10 Risk Management ____________________________________ 54
3.7.11 Real-time Video for Tele-operation_______________________ 54
3.7.12 Strategic operation of Cement Plants______________________ 56
3.7.13 Substation Automation ________________________________ 57

4 CORBA in the Control Loop ______________________________59

4.1 CORBA Controllers __ 59

4.2 Timing Constraints __ 61

4.3 Loop Timing__ 62

4.4 Delays in Control Design____________________________________ 63
4.4.1 Optimal LQG Control ___________________________________ 67
4.4.2 Loop-shaping dynamic jitter compensation __________________ 68

4.5 Analysis using Jitterbug_____________________________________ 68
4.5.1 Calculating Control Performance __________________________ 69

4.6 TrueTime__ 71
4.6.1 Simulating a Distributed Control System ____________________ 72

4.7 TrueTime Simulation of CORBA Control Loops __________________ 78

5 Summary ___79

 Sheet: 6 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

6 References __81

 Sheet: 7 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

1 Introduction

1.1 Objectives
The objective of this document is to investigate the usage of CORBA
technologies in an industrial control system setting. We believe that the
potential benefits from using CORBA, which is a mature, well spread, and
standardized technology, are enormous with respect to increased design
flexibility and better system integration. The introduction of CORBA
would enable independence from both hardware/software
manufacturers and implementation languages. Using CORBA throughout
a whole factory would allow integration between systems at all levels;
from high-level administrative and business systems down to individual
control loops.

The Common Object Request Broker Architecture (CORBA) is a
middleware specification for the development of interoperable,
distributed object systems. This report provides a general overview of the
topics in distributed object systems, focusing on CORBA aspects that are
critical for control systems engineering. Object Management Group
(OMG) technology is summarized and some sample applications are
presented. CORBA was originally created as an object-oriented
component technology for non real-time systems. The main objectives
were to create a framework that was flexible and powerful, rather than
predictable and light-weight. This makes CORBA a less appropriate tool
for time-critical systems, and as a remedy for this, a real-time extension,
called RT-CORBA, was introduced in the late 1990s. RT-CORBA addresses
the problems pertaining to priority inversions and unpredictability in
resource allocations, such as memory reservation and thread mapping.
However, RT-CORBA does not address the major source of non-
determinism in CORBA, the transport.

Control systems are a wide area. This report and the entire HRTC project
focuses on three different types of control systems:

• The basic control loop. The basic control loop consists of a single-
input, single-output (SISO) loop containing a sensor, a controller,

 Sheet: 8 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

and an actuator. These three parts are assumed to be distributed
over a communications network. Hence, the control loop is
networked. This type of control loop is at the heart of all types of
distributed control systems. There is also a large amount of theory
available for analyzing the effects of communication delays on the
control performance.

• Industrial automation systems. By this we mean the large,

distributed, and hierarchical control systems typically used in
process and manufacturing automation. Other names for this type
of system are PLC (Programmable Logic System) or DCS
(Distributed Control System). The control loop is central also in
these systems, but they also contain support for a large amount of
additional functionality, e.g., discrete logic control, operator
interface, supervisory control and monitoring applications,
database access, production planning and scheduling, etc. These
systems are typically also programmable, i.e., the user can program
different control applications using domain-specific programming
languages, as defined by IEC 61131-3. The resulting programs are
typically compiled, and the generated code is downloaded to
different distributed control systems. The use of CORBA in this
type of systems will be illustrated in the Process Control Testbed
(PCT).

• Robotics control systems. Control systems for industrial robotics

must combine flexibility (with respect to new tasks and unforeseen
application demands) and high performance (to accomplish
productivity and profitability). The control of the manipulator
motions has demanding real-time requirements and is typically
distributed in nature. At the end-user level special robot
programming languages are used or the robot programs are
generated directly from CAD data. On this level the real-time
requirements are less hard. The use of CORBA in robotics control
will be illustrated by the Robot Control Testbed (RCT).

This report studies the following topics:

• What are the potential uses for real time distributed object and
component technology in automation and automatic control
applications? Engineering control systems on a systematic, sound
way means addressing not only the limited scope of a single
controller but also considering a whole family of controllers. A
particular control system may be seen just as a single element of a
stream of control products.

 Sheet: 9 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

• Identifying the shortcomings of the current CORBA standards. The
fact that RT-CORBA does not guarantee any hard deadlines makes
it, possibly, not a very suitable platform for low level feedback
loops. However, it is not clear that 100% determinism is needed in
order to achieve good control performance. This report shows a few
simulations of networked control systems with stochastic timing
variations, i.e. jitter and latency.

1.2 The role of object technology
The very nature of control systems is object-oriented (OO) because a
control system couples virtual entities with real ones. A controller
correlates control design issues and software implementations, which are
very conceptual in its nature with sensors, actuators and external world
entities, which are very physical objects.

Control software makes a continuous mapping between external and
internal entities and hence, object-oriented software is a natural way to
build these systems. During the last decade OO technology was relegated
from mainstream real-time software because OO implementations
introduce computational overhead to support some aspects of OO
computation (for example, dynamic binding). While this is usually the
case, the computational power of today reduces the influence of this
overhead, and OO technology is becoming the technology of choice for
building complex real-time systems because it provides better mechanisms for
complexity handling. An example of grave importance for us is the case of
real-time distributed systems, where OO technology is a clear winner
[Sho00].

Industrial plants are Seas of Objects and software-intensive controllers for
them reflect this nature. The natural plant-modeling mechanisms are
object-oriented and dealing with preexisting software systems, for
example legacy controllers, is best done using object wrapping. Advanced
controllers are designed using clear responsibility distribution between
control objects.

1.3 Scope
The process of incorporation of information technology (IT) into industrial
processes is making profound modifications to production systems.
Control and monitoring technology is leaving the islands-of-automation
phase, entering a new phase of complete systems integration. While

 Sheet: 10 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

enterprise integration architectures (EAI) are hot topics in advanced
business engineering, at the production level where controllers live, the
incorporation of new technology and designs is confronting difficult
problems.

In most cases the problems are mainly due to classical barriers posed to
innovation in production systems: lack of predictability, need for non-stop
operation, lack of reliability and availability, less than ideal market
maturity, exploitation manager’s resilience, etc.

Two main objectives are being pursued in this effort, namely Complete
Horizontal Integration (CHI) and Complete Vertical Integration (CVI).
CHI deals with the integration of business units, business-to-business
integration or supply chain integration.

In this report we will address more the topic of CVI. It is time to start
thinking in plant-wide integration reaching even the lowest levels in
production plants: sensors, actuators and basic controllers.

Complete vertical integration means that integration paths are available
from sensors to management information systems (and back). This
eliminates some of the limitations that the underlying information
technology poses to the design space for monitoring and control systems.

Distributed object computing (DOC) is gaining an increased audience in
the IT sector and is the technology of choice for new system
implementation. From global experience in last years, it is pretty clear that
– besides other advantages - DOC technology enhances systems
integrability, simplifying the construction of complex information
applications. We will see in this report how a DOC technology, namely
CORBA, can supply us with some tools needed for better development of
complex, integrated control systems.

1.4 Control engineering processes
Control systems complexity is increasing at a very fast pace in this days.
New needs and new capabilities (nobody knows what came first) are
driving control systems development into mainstream systems
engineering. Integration capabilities are getting progressively critical as
system size increments, because modular development is the only known
practical way for complex systems engineering.

 Sheet: 11 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

From this perspective it is surprising, to some extent, the limited role that
software technologies play in control engineering journals and symposia.
It looks like this technology does not have relevance enough to be
considered a research discipline for control engineers (only small-scoped
real-time topics are addressed in control engineering places).

The typical development process of a control system can be decomposed,
like any other engineering process, in a series of phases that go from the
identification of the need to the decommission of the control system.

An example of phasing can be:

1. Problem identification
2. Plant Modeling
3. Control design
4. Control implementation
5. Commissioning
6. Operation
7. Decommissioning

Research in control systems has been mainly focused in the second and
third phases, because the first is considered an a priori for control
engineering (i.e. it is always given) and from fourth to seventh they can be
left to implementers (i.e. to raw work force). The separation between the
control laboratory and the real plant is too wide for real engineering.

The basic technology used today to implement control systems is software
technology. But, beyond a classical view of digital implementation of
controllers [Ast97], software technologies are the basis of modern complex
control systems, from SCADA:s and DCS:s to intelligent controllers based
on soft computing [Gup96].

Control engineering is about systems performance; this means that the
knowledge of the controlled system must involve not only the target
system but the controller itself, and when controllers are software-based,
giving a guarantee on global performance means a clear analysis and deep
understanding of software issues. When controller complexity increases
there are no available formal methods to guarantee behavior. Only good
development processes can provide predictable quality. Good
development processes involve all parts of the controller life-cycle; from
the problem identification phase to the operation phase and even
decommission.

 Sheet: 12 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

When complexity increases due to software flexibility the probability of
failure increases. Systems that were manually operated are now operated
by computers and this leads to a critical computer dependence of many
artificial systems. The case of the USS Yorktown is paradigmatical. The
ship had to go back to the harbor due to a software failure.

While software is becoming a real problem, it is also providing some
solutions. For example, advanced research topics on systems fault-
tolerance are strongly based in information processing capabilities that are
used to detect the fault, isolate it, and devise alternative control strategies
that can overcome the fault [Bla00].

1.5 Complex Software for Control
Software systems can range from a small shoe shop database to Star Trek's
USSS Enterprise control software. In a quick effort we can make a quick
and dirty classification of software systems based on factors that induce
systems complexity:

• Conventional: the shoe shop database.
• Real-time: meeting deadlines.
• Embedded: run within limited resources.
• Fault Tolerant: good behavior under faults.
• Distributed: run on several interacting computers.
• Intelligent: solving ill-posed problems.
• Large: millions of lines of code.
• Integrated: interoperate with alien systems.
• Heterogeneous: run on heterogeneous platforms.

Complexity factors affect negatively the system development process.
Development effort grows with complexity much more than linearly and
there are even systems we cannot build; examples are 24x365 systems
(total availability), one-shot systems (should work at the first try) or HP-
LC (High Performance and Low Cost).

Software engineers have always been “raiders of the silver bullet” looking
to solutions to software development problems. Complex software
engineering is just an emerging discipline, introduced in frontier areas
between those complexity topics mentioned before.

 Sheet: 13 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

1.6 Complex control systems
A typical control system in a modern plant is composed by a
heterogeneous collection of hardware and software entities scattered over
a set of heterogeneous platforms (operator stations, remote units, process
computers, programmable controllers, intelligent devices) and
communication systems (analog cabling, serial lines, fieldbuses, LANs or
even satellite communications). This HW/SW heterogeneity is a source of
extreme complexity in the control system regarded as a whole.

Apart from the platforms that provide support to the different control
system components, the technologies used in control system
implementation are quite heterogeneous and provide functionalities that
go well beyond the classical sensing-calculating-acting triad.

Examples of this heterogeneity is the use of software systems for controller
auto-tuning, advanced monitoring, filtering and estimation, adaptation
and learning, plant-wide optimization, or real-time, in-the-loop
simulation. Interception software systems are playing a wide collection of
intelligent roles in complex controllers fitting as interfaces between pre-
existent systems (plants, controllers and humans). Examples of these roles
are data/action filters and monitors.

Classical hierarchical layering overcomes some of the difficulties of
complex systems construction. A example of layering is shown in Figure 1

Strategic Control

Complex Loops

Advanced Control

Operational Control

Tactical Control

Sensors & Actuators

Simple Loops

MIS

Continuous Process Plant

Optimization

Plan execution

Reactivity

Conventional
Process
Control

U
se

r
In

te
rf

ac
e

Figure 1: A classical layering of control entities in a complex continuous process
control system. Layer quantity and labeling is somewhat field-dependent, but
layer roles can be easily mapped from domain to domain.

 Sheet: 14 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

where some intelligent layers are added atop classical control layers in
process control systems.

While hierarchies encapsulate low level behavior, simplifying the
deployment of higher level controllers, they do not necessarily solve the
problem of the conceptual integrity of the system. Layers can be difficult to
match if they lack a common view of structure and responsibility
distribution.

Conceptual integrity — an elusive, difficult to define property — is seen as
the core factor affecting systems constructability. Conceptual integrity
manifests in several system properties (some of them functional and some
non-functional) that are considered extremely important in systems
construction. These properties are the basic design principles of systems
architecture [Sha96] (See table).

Table1: Architecture design principles
Conforming Scalable

Suitable Simple
Composable Standard

Modular Proven
Extensible Performing

Fast Efficient

We will see in the next section how object technology can provide us with
some ideas and tools to approximate this ideal of system conceptual
integrity.

1.6.1 Outline
Chapter 2 gives an overview of component technologies and CORBA.
Chapter 3 discusses the current state of automation software and how it
could benefit from component design. Introducing distributed component
technology in a partly time-critical setting will create new demands on
both the component technology as such and the design of the application,
which in our scenario is the controller. The main complication with the
controller design is how to deal with jitter and latency that may be
introduced and in Chapter 4 we address these issues from a control
theoretic angle. Finally, in Chapter 5 our requirement analysis of Hard
Real-Time CORBA is summarized.

 Sheet: 15 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

2 Distributed Objects and
CORBA

2.1 Distributed Object Computing
Distributed Object Computing (DOC) or Object-Oriented Distributed
Processing (OODP) is a software model based in the use of services
provided by objects that are running in different hosts. Distribution means
true concurrence even when most distributed applications serialize
behavior of the application using some form of centralized controller.

DOC can be considered a generalization of the client/server model. In
DOC, client and server roles are relative to a specific request and not to the
whole life-cycle of the object (an object can be the client in a request and
the server in the next one).

DOC is a “natural” way of modeling distributed systems because it hides
implementation details (OS, protocols, languages) behind “interfaces”.
Encapsulation, abstraction and inheritance are valid and very useful
concepts to model distributed control systems.

There are many benefits of using DOC for control systems engineering. In
many cases they are the same as for any other type of system, but in most
situations they are of critical importance for control software due to the
special requirements posed to control systems. Examples of these benefits
are:

• Object collaboration through connectivity and interworking.
• Performance through parallel processing.
• Reliability and availability through replication.
• Scalability and portability through modularity.
• Extensibility through dynamic configuration and reconfiguration.
• Cost effectiveness through resource sharing and open systems.
• Maintainability through hot swapping.
• Design flexibility through transparency.

 Sheet: 16 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

2.2 Integration
DOC technology addresses particularly well one of the main problems of
complex systems construction: integration.

If we consider the interaction between two pieces of code (the client and
the server) we can identify four relative positions (i.e. four coarse types of
integration mechanisms (see Table 2)):

Table 2: Coarse types of integration mechanisms
In-Thread Client and server are parts of the same thread. Interaction

is done by method call. This means serialization (no
concurrence) and a simple integration vehicle
(programming language routine invocations). This is easy
to use, extremely fast and reliable.

In-Process Client and server are parts of the same process but in
different threads. We have inter-thread requests usually
based on ITC (Inter-Thread Communication) mechanisms
provided by the operating system. This is relatively
complex but very fast and reliable.

In-Host This situation is similar to the previous, but in this case
client and server are in different processes. Inter-process
requests are based on operating systems IPC (Inter-Process
Communication). This is also a fast and reliable mechanism.

In-Net Client and server are in different hosts. The basic
integration mechanism is some form of remote procedure
call (RPC). Lower level mechanisms can also be used but
in most cases it is not worth the effort. Inter hosts requests
rank lower in speed and reliability because it is easier to
have different host states in the client, the server or even in
the communication channel. Distribution means in many
cases unpredictability and unreliability, but also balancing
computational load and fault tolerance through redundant
servers.

Middleware is a generic name used to refer to a class of software whose
sole purpose is to serve as glue between separately built systems. Object-
oriented middleware is used to simplify the development and use of
ubiquitous objects. Middleware tries to simplify the implementation of
clients and servers for different relative locations; for example making
possible the implementation of clients that are unaware of server
locations.

 Sheet: 17 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

A large simplification is achieved by using the same interface to be used
by client and servers independently of the underlying integration
mechanism; i.e. the same interface is used to wrap an IPC and an RPC.
However, the really large step is when this interface is independent of the
relative location of the other object, i.e., location transparency.

Brokering middleware is based on the use of an intermediary entity
between the client and the server: the broker (See Figure 2). The process of
remote invocation is decomposed in eight steps:

1. The client makes a call to the client stub (the client plug to the
broker).

2. The client stub packs the call parameters into a request message and
invokes a wire protocol.

3. The wire protocol delivers the message to the server side stub (the
server plug to the broker).

4. The server side stub then unpacks the message and calls the actual
method on the object.

5. [6,7,8] The response - if any - uses the same process to reach the
client.

There are many contenders in the object-oriented middleware arena. The
three main technologies are Microsoft's COM+, Sun Microsystems' Java
RMI and Object Management Group.

ServerServerClientClient

ServerServer

ClientClient

ServerServerClientClient

BrokerBrokerBrokerBroker

Figure 2: Brokering middleware is based on the use of an ``intelligent''
intermediary between clients and servers.

 Sheet: 18 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

2.3 CORBA
CORBA is the acronym for Common Object Request Broker Architecture,
OMG's open, vendor-independent architecture and infrastructure that
computer applications use to work together over networks. Using special
protocols, a CORBA-based program from any vendor, on almost any
computer, operating system, programming language, and network, can
interoperate with a CORBA-based program from the same or another
vendor, on almost any other computer, operating system, programming
language, and network.

CORBA is designed with the following goals in mind:

• Object-orientation: Remote operations are grouped into interfaces,
similar to classes in object-oriented programming languages. An
instance of an interface is known as a CORBA object. Objects reside
in servers and are invoked by clients. Objects can be active or
passive. An object can also simultaneously play the client and the
server role.

• Location transparency: A client does not need to know the location
of the object (local or remote). Operations are always invoked with
the same syntax.

• Programming language neutrality: CORBA, in contrast to, e.g.,
Java RMI, is not dependent on any single programming language.
Clients and servers can be implemented in a large number of
different programming languages.

• Support for bridge interoperability: The core specification of
CORBA contains an internetworking architecture that allows
CORBA to operate in conjunction with other distributed computing
technologies, e.g., DCE Remote Procedure Calls and Microsoft’s
DCOM.

The CORBA technology consists of three main parts: the CORBA
distributed object model, CORBA services and facilities, and the CORBA
component model.

2.3.1 CORBA Distributed Object Model
The distributed object model enables the implementation of distributed
object-oriented client-server applications. The Distributed Object Model is
based on the following parts:

• The Interface Definition Language (IDL). The Interface Definition
Language is used to define the interface of a CORBA object. The

 Sheet: 19 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

interface is the syntax part of the contract that the server object
offers to the clients that invoke it. Any client that wants to invoke
an operation on the object must use this IDL interface to specify the
operation it wants to perform, and to marshal the arguments that it
sends. When the invocation reaches the target object, the same
interface definition is used there to unmarshal the arguments so
that the object can perform the requested operation with them. The
interface definition is then used to marshal the results for the reply,
and to unmarshal them when they reach their destination. The IDL
interface definition is independent of programming language, but
maps to all of the popular programming languages via OMG
standards. OMG has standardized mappings from IDL to C, C++,
Java, COBOL, Smalltalk, Ada, Lisp, Python, and IDLscript. CORBA
interfaces are strongly typed, support multiple inheritance, but
does not allow overloading,

• Object Request Broker (ORB). The ORB contains the necessary

infrastructure that enables clients to invoke operations on CORBA
objects. It typically contains client stub code and server skeleton
code obtained when the IDLs are compiled, and linked with the
application. It also contains mechanisms for locating and activating
remote servers.

• Object references. Object references are the basic entity for

encapsulating the type and location of a CORBA object. Object
references are represented as runtime objects. They contain
information about the interface type of the CORBA object and
thereby also of all supported operations for that object. They also
contain information about the location of the object. This typically
includes the host address and port number of the relevant server
and a server-specific object key. Object references can also be
passed between clients and servers, e.g., as a part of a remote
invocation. For this purpose the interoperable object reference
(IOR) has been defined.

• Object adapters. The object adapter is the part of the ORB that is

responsible for providing the necessary mechanisms for associating
a CORBA object implementation with a particular IDL interface.
When an object adapter receives a request message, it identifies the
target object implementation using the object key and invokes the
corresponding operation on behalf of the client. The object
implementation is known as a servant. The object adapter is also
responsible for managing the life-cycle of the CORBA objects, e.g.,
object activation and deactivation. The Portable Object Adapter

 Sheet: 20 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

(POA) is the object adapter version used in the current CORBA
standard.

• Inter-ORB protocols. CORBA Inter-ORB Protocols (IOP)s define

interoperability between ORB end-systems. The IOP:s are normally
mapped down onto reliable full-duplex connection-oriented
transport protocols such as TCP that are implemented as octet
(byte) streams. The General Inter-ORB Protocol (GIOP) is the basis
for all IOP:s. GIOP defines three core elements: a Common Data
Representation (CDR), message formats, and the transport
assumptions described above. The CDR defines how data should be
represented during transport (byte ordering, byte alignment,
serialization ordering, etc). Eight different message formats are
defined for handling communication between ORBs. These include
request and reply messages. The mapping of GIOP onto TCP/IP is
known as the Internet Inter-ORB Protocol (IIOP). This is the default
protocol used by commercial ORBs.

• CORBA Messaging. CORBA 2 supported three communication

models: synchronous two-way communication where the client
blocks until the reply from the server is received (the most
commonly used CORBA model), one-way communication without
any reply implemented on top of TCP or UDP, and deferred
synchronous communication in which the client is not blocked, but
can itself chose to poll to see if the reply has been received or do a
blocking wait for the reply. However, both the one-way
communication and the deferred synchronous communication had
certain drawbacks. For example, the deferred synchronous
invocation mode could only be used if the request is invoked using
the Dynamic Invocation Interface (DII), as opposed to the normal
Static Invocation Interface (SII). To alleviate this, CORBA 3.0
introduced Messaging that supports asynchronous method
invocation (AMI), time-independent invocation (TII), and
messaging quality-of-service policies. Using AMI, operations can be
invoked asynchronously using the static invocation interface. Two
communication models are supported. In the polling model each
asynchronous two-way communication returns a Poller object that
the client can use to check whether the reply has arrived or not. In
the callback model server responses are dispatched to special
ReplyHandler objects. Time-independent invocations is a
specialization of AMI that supports “store-and-forward” semantics,
where requests may outlive clients and the response may be
handled by a completely different client. The inclusion of AMI and
TII into CORBA can be seen as OMG’s response to the strong

 Sheet: 21 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

industrial interest for Message-Oriented Middleware (MOM).
CORBA 3.0 also supports messaging quality-of-service (QoS)
properties. All QoS properties are defined as interfaces.
Applications can define QoS properties at multiple client- and
server-side levels, e.g., the ORB level, thread level, and object
reference level. The client-side policies give control over things like
request and reply timeouts, priorities and ordering, routing
semantics, etc. CORBA Messaging can partly be viewed as a
replacement for the CORBA Event Service and Notification Service.

The CORBA architecture is summarized by Figure 3.

Figure 3. The CORBA architecture (from [Sch02]).

2.3.2 CORBA Services and Facilities
CORBA Services provide pre-built functionality for the construction of
applications from CORBA building blocks. A large number of services
have been defined, e.g., Collection Service, Concurrency Service,
Enhanced View of Time, Event Service, Externalization Service, Licensing
Service, Life Cycle Service, Naming Service, Notification Service,
Persistent State Service , Property Service, Query Service, Relationship
Service, Security Service, Telecom Log Service, Time Service, Trading
Object Service, and Transaction Service. CORBA Facilities are similar to
services (but coarser). They include facilities for Internationalization and
Time, and Mobile Agents. Two of the services that are of particular
relevance to real-time communication are the Event Service and the
Notification Service.

 Sheet: 22 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

• CORBA Event Service. The CORBA Event Service decouples the

communication between objects. Two roles for objects are defined:
the supplier role and the consumer role. Suppliers produce event
data and consumers process event data. Events are sent
asynchronously between suppliers and consumers. This is achieved
using event channel objects that implements the Mediator pattern
to implement asynchronous communication between multiple
suppliers and multiple consumers. Two communication models are
supported. In the push model it is the supplier of events that
initiates the transfer of event data, whereas in the pull model it is
the consumer that is taking the initiative.

• CORBA Notification Service. The Notification Service enhances
the Event Service by providing QoS support, event filtering,
structured events, and event subscription.

2.3.3 The CORBA Component Model
The traditional CORBA object model has several limitations when viewed
as a component model. For example, it has no standard way to deploy
object implementations, a fairly restricted interface model, no standard
object life cycle management, the availability of CORBA Services cannot
be guaranteed, and a very high degree of flexibility which requires the
designer to do a large number of design choices and specify a large
number details. To address the limitations the OMG in 1999 adopted the
CORBA Component Model (CCM) to extend and subsume the CORBA
object model. CCM is an distributed component model with close
similarities to Enterprise Java Beans (EJB). The model contains an
architecture for defining components and their interactions, a packaging
technology for deploying binary multi-lingual executables, and a
container framework for injecting lifecycle, (de)activation, security,
transactions, persistence, and events. Components are created and
managed by homes, execute in containers that manage system services, and
are hosted by application component servers. They have several input and
output interfaces, and support both synchronous and asynchronous
operations. Components are defined using a number of extensions to
CORBA IDL 2. For example IDL 3.0 is used to define component-oriented
collaborations (component types, event types), OMG Persistent State
Definition Language (PSDL) defines storage types and homes, and OMG
Component Implementation Description Language (CIDL) defines
compositions and segments. The CCM specification is quite large and
complex. Therefore it has not yet been fully accepted among ORB
providers. For these reasons, we will primarily focus on the CORBA object
model rather than the component model in HRTC.

 Sheet: 23 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

2.4 CORBA for Real-time and Embedded Systems
Apart from the importance of having a platform for integration and
development of modularized controllers, there are some new issues in
CORBA that are especially relevant for distributed control systems
engineering. These issues are: predictable behavior, fault tolerance and
execution in an embedded environment.

The Real-time platform task Force is addressing all these topics and
focuses their activities on real-time systems, which often also are
embedded and have fault tolerance requirements.

The Real-time PSIG goal is the recommendation of adoption of
technologies that can ensure that OMG specifications enable the
development of real-time ORBs and applications. To achieve this goal, the
Real-time PSIG gathers real-time requirements from industry, organizes
workshops and other activities and involves real-time technology
manufactures to elaborate Requests For Information and Requests For
Proposals for these technologies.

The main results of this work can be organized in the three categories:

• Real-time CORBA: The Real-Time CORBA (RT-CORBA)
specification (in addition to the Messaging specification) provides
mechanisms for controlling resource usage to enhance application
predictability.

• Fault-tolerant CORBA: The specification provides mechanisms for
fault tolerance based on entity redundancy.

• Minimum CORBA: Minimum CORBA addresses the construction
of CORBA applications on systems with scarce resources like
embedded computers, where small memory footprint is important.
This specification eliminates most dynamical interfaces that are not
necessary in static applications (most embedded applications are
ROM-ed applications).

2.4.1 Real-time CORBA
RT-CORBA standardizes the mechanisms for resource control (memory,
processes, priorities, threads, protocols, bandwidth, etc.) and handling of
priorities in a distributed sense (for example forwarding client priorities to
the server).

 Sheet: 24 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

The RT-CORBA 1.0 specification defines standard features that support
end-to-end predictability for fixed priority CORBA applications. Standard
interfaces and QoS policies are defined that allow applications to
configure and control (1) processor resources via thread pools, priority
mechanisms, intra-process mutexes, and global scheduling, (2)
communication resources via protocol properties and explicit bindings,
and (3) memory resources via buffering requests in queues and bounding
the size of thread pools.

The following are the most import parts of RT-CORBA [Sch00]:

• Priority type systems. Two types of priorities are defined: CORBA
priorities and native priorities, as well as the mapping in-between.
This allows consistent global priorities in distributed applications
with heterogeneous nodes with different priority bands.

• Priority Models. Two priority models are defined. Using server-
declared priorities it is the server that decides the priority at which an
object invocation should execute on the server-side. The client is
made aware of the priority at which the object invocation will
execute through a tagged component in the object reference and can
take use this information internally. With client-propagated priorities
it is the client that declares the invocation priorities which the
server then must honor. The invocation priority is transferred to the
server in the service context part of the GIOP request message.

• Priority transforms. A server is permitted to define priority
transforms that sets the priority at which a particular invocation is
performed based on e.g., external factors. This can be used to define
different types of priority ceiling protocols. Inbound
transformations are applied on incoming invocations after
reception by the ORB core, but before dispatching to the servant.
Outbound transformations are performed when a servant invokes
an operation on an object.

• Thread pools. The thread pool model allows pre-allocation of
thread pools and the setting of thread attributes, e.g., default
priorities. Each POA must be associated with one thread pool, but a
thread pool can be associated with multiple POAs. Thread pools
without lanes is created with a fixed number of statically allocated
threads which the ORB uses for executing client invocations. To
handle request bursts the number of threads is allowed to grow
through the creation of dynamic threads. The thread pool can also
be pre-configured for a maximum buffer size or number of
requests. Using thread pools with lanes the threads in a thread pool
are partitioned into subsets, each with different priorities or priority

 Sheet: 25 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

bands. Lanes with higher priorities are allowed to borrow threads
from lower priority lane.

• Mutex. In order to avoid priority inversion and ensure consistency
between the synchronization mechanisms used within the ORB and
the synchronization mechanisms used in the application part of the
code RT-CORBA defines a mutex.

• Global scheduling service. The global scheduling service allows
application developers to express QoS requirements using a higher
level of abstraction than what is provided by traditional OS
mechanisms. The service is provided in the form of a CORBA object
that is responsible for allocating system requirements in order to
meet the QoS requirements. Using the scheduling service it is
possible to specify the processing requirements of the operations in
terms of, e.g., worst-case execution time or period. The scheduling
service is, however, only an optional part of RT-CORBA 1.0.

• Protocol properties. An interface is defined that allows applications
to specify ORB- and transport-specific protocol properties that
control various communication protocol features. The protocol
property structures reside in a protocol list that is part of the object
references. The order in which the protocols appear indicates the
order of preference in the case when parallel protocols are
available. Servers can export protocol preferences to clients through
object references. Clients can use protocol policies to select which
protocol to use when acquiring a binding to an object.

• Explicit binding. In standard CORBA connections (bindings)
between a client and a server are established on-demand. The
connections are normally persistent and it is allowed for an ORB to
multiplex multiple invocations to the same server on the same
connection. RT-CORBA allows an explicit binding model that allow
pre-establishment of connections to servers, and makes it possible
to associate priorities with the connections. Using priority-banded
connections it is possible for clients to specify explicit priorities or
priority bands for each connection or to select an appropriate
connection at run-time based on the CORBA priority of the thread.
Using private connections a connection may not be reused for other
invocations until the reply for the previous request has been
received.

• Leveraged CORBA 3.0 features. RT-CORBA also leverages a
number of real-time relevant features in ordinary CORBA. CORBA
Messaging provides policies to control roundtrip timeouts. It also
supports reliable one-way communications and type-safe
asynchronous method invocation. The Enhanced Views of Time
Service defines interfaces to control and access clocks. The RT

 Sheet: 26 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Notification Service is a planned rt-extended notification service.
Work on a dynamic scheduling addition to RT-CORBA has been
started.

2.4.2 Fault-tolerant CORBA
Fault-tolerant CORBA tries to enhance application fault tolerance reducing
to a minimum the impact to the application (computing overheads and
increase of complexity). Fault tolerance is increased by means of entity
replication: cold passive replication, warm passive replication, active
replication or active replication and majority voting.

2.4.3 Minimum CORBA
Embedded CORBA applications reduce memory footprint by means of
elimination of some features (dynamic interfaces and repositories), the use
of standardized operating system services or special transports. The
elimination of a specific service from the specification does not mean that
the application cannot use it, only that it will not be necessarily provided
by a compliant CORBA implementation.

2.5 Bridging Domains
While the Minimum CORBA specification reduces the requirements posed
to the ORB, the Real-time CORBA and Fault Tolerant CORBA specifications
can increase the size and complexity of the application.

Thanks to interoperability, it is not necessary at all to have all the
application running atop the same ORB. It is possible to have the critical
part of an application running over a Real-time ORB and the rest over a
more conventional one. It is possible to use a CORBA gateway to bridge
between two different worlds in a control application.

2.6 State and Future of the Technology
CORBA technology is impressive but perhaps too impressive for normal
control systems developers. It suffers what is called a second system effect,
trying to address all possible functionality or requirement. We must
identify our own needs and determine if the CORBA way fits our needs. If
not, we are still in time to modify it.

Perhaps the main question is why we need integration? Beyond many
obvious answers (to build complete plants, to achieve total safety, to be
the first in the market, to spend less money, etc.), the authors would like to
stress one door that this approach opens for us: The modular approach
fostered by CORBA will let us develop true modular control systems.

 Sheet: 27 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

The second point we want to mention is design freedom. Design freedom is
necessary in the complex control systems domain to explore alternative
controller designs. Excessively restrictive technologies will collapse,
unnecessarily, dimensions of the controller design space [Sha96]. This is,
for example, the case of some fieldbus technologies that support several
slaves but only one master. While design restrictions, in the form of
prerequisite design decisions, simplify development, they sacrifice
flexibility.

Can we get both, simple development and flexibility? The key are no-
compromises frameworks, i.e. frameworks where design dimensions are
still open even when pre-built designs are available. To continue the
example of the fieldbus, the one-master/several-slaves approach is one
type of pre-built, directly usable, designs; but the underlying fieldbus
mechanism should allow for alternative, multi-master designs. This can be
done by means of the development of agent libraries that provide
predefined partial designs in the form of design patterns [San99], and a
transparent object-oriented real-time middleware.

2.7 What should Hard Real-time CORBA be?
CORBA and RT-CORBA contain a number of features that are useful also
for hard real-time applications, e.g. timeouts, asynchronous invocations,
one-way invocations, private and pre-allocated connections, avoidance of
priority inversion within ORBs, and consistent global priorities. However,
several important issues are not addressed or are lacking.

• Deterministic transports.
The major source of non-determinism in current CORBA/RT-
CORBA is the transport protocol. The IIOP (GIOP over TCP)
transport does not give any end-to-end timing guarantees.
Although CORBA allows the use of other transports, which also
may be pluggable, most ORB manufacturers only support IIOP, or
only support additional transports that have similar timing
characteristics as IIOP/TCP, e.g., the ATM transport protocol, or
which are intended for communication within a node using, e.g.,
shared memory, Unix sockets, or VME-bus. An exception to this is
the support for the unreliable, connection-free communication
provided by UDP, which is provided by certain ORBs, in particular
for multicast messages.

 Sheet: 28 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

In order for CORBA to be applicable to hard real-time applications
it is necessary to support transport protocols with higher levels of
determinism. The minimal requirement on a deterministic transport
is an upper bound on the end-to-end latency. If the transport also
can guarantee a lower bound on the latency the level of
determinism increases. The less conservative (tighter) the bounds
are the smaller will the jitter in the latency be.

• Periodic activities
CORBA was originally based on a client-server communication
model. In later CORBA versions support has also been added for
message-passing. For real-time communication a sender-receiver
model is more appropriate, where a sender periodically transmits
messages to one or multiple receivers. Using the client-server model
this would typically correspond to a client thread located in one
node that periodically invokes an operation on a server object
located in another node. IDL is focused on describing the interface
of the CORBA objects residing on the server side. In order to
support periodic real-time communication CORBA also needs to
support the description of periodic invocations from a client to a
server, i.e., it must be possible to model information that concerns
both the client and the server object as a single entity, and to
associate information to this entity, e.g., the period, the amount of
data that will transferred, and what the maximum allowed
communication latency is.

RT-CORBA briefly defines the concept of an activity. However, an
activity is primarily used to describe a sequence of, possibly nested,
operation invocations. Hence, it only concerns the client-side of the
communication.

• Scheduling

A communication network is a shared resource. In order to be able
to guarantee any communication timing constraints it is necessary
to schedule the access to the network. Scheduling requires global
knowledge of all network accesses. Depending on the type of
communication protocol that is used and the degree of determinism
that is desired the scheduling requires different amount of prior
information. The output of the scheduling is also dependent on the
type of scheduling used. For example, the output of a static time-
triggered scheduling approach would be the time slot allocation for
the different nodes. In a worst-case scheduled switched Ethernet
the output would instead be the maximum send rates for the
different nodes.

 Sheet: 29 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

The need for global information about distributed object
invocations does not fit into CORBA very well. One approach is to
simply say that the scheduling is something that is external to HRT-
CORBA. In this approach one would then simply assume that all
clients generate distributed invocations according to some pre-
defined schedule. However, this would rule out all more dynamic
scheduling approaches. In order to dynamically decide whether a
new periodic communication request should be allowed or not
(admission control) it is necessary to have some global source of the
scheduling information. Where and how this information should be
provided is an open issue. One possibility could be to have a special
CORBA scheduling object that resides within some node and that is
defined using IDL. Another possibility would be to introduce the
scheduling support as a CORBA service.

RT-CORBA again mentions global scheduling. However, not in a
way that fits the demands for scheduling of communication traffic.
The RT-CORBA scheduling service is only assumed to apply to RT-
CORBA activities. Also, the scheduling service is only an optional
part of RT-CORBA 1.1. To our knowledge it has not been
implemented in any commercial ORB.

• Small footprint
CORBA has a reputation of being resource-intensive. RT-CORBA
increases complexity rather than decreases it. In order for HRT-
CORBA to be applicable to embedded systems, e.g., used in
sensors, actuators, and intelligent controllers it must have a small
footprint. Hence, it is necessary for HRT-CORBA to build upon the
Minimum CORBA specification rather than the RT-CORBA
specification. Several of the features of RT-CORBA, e.g., the
multiple thread lanes, dynamic thread creation, and thread
borrowing are probably not necessary in embedded HRT-CORBA
applications.

2.8 Competing Technologies
Two major advantages of CORBA are the language independency and the
platform and vendor independency. The two main competitors to
CORBA, Java technology and Microsoft technology do not share these
advantages. However, the strong position that Java has within Web-
computing and the strong position that Microsoft has within industrial
automation in general, make the competition fierce.

 Sheet: 30 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

The Microsoft based technologies can be divided into two groups: pre-
.NET and .NET technologies. The pre-.NET technologies include COM,
Microsoft’s component framework, DCOM, the distributed version of
COM, and MTS which adds persistency and transaction services. Together
they constitute COM+. COM relies on binary interoperability conventions
and on interfaces. A COM interface can be seen as a C++ virtual class.
COM provides a simple protocol that COM objects can use to dynamically
discover or create objects and interfaces. From an implementation point of
view a COM object is a piece of binary code that can be packaged in
executables or DLL dynamic libraries. DCOM extends COM with
distribution based on the DCE Remote Procedure Call (RPC) mechanism.

The .NET component model relies on language interoperability and
introspection rather than binary interoperability. In order to enable this
.NET is based on an internal byte-code language called Microsoft
Intermediate Language (MSIL), very similar to Java byte-code. The
interpreter for this language is called the Common Language Runtime
(CLR), which is very similar to the Java virtual machine. A number of
languages can be compiled to MSIL. .NET represents the programming
language approach to component programming. The program contains
the information related to the relationships with other components, and
the compiler is responsible for generating the information needed at
execution.

Microsoft’s drastic change of technology has partly upset the automation
industry. Traditionally they have been using COM technology, which no
longer is the main approach pursued by Microsoft. However, the interface
and bridge support between .NET and COM is good.

Another Microsoft technology of importance to the automation industry is
OPC (OLE for Process Control). OPC is designed to bridge Windows-
based applications and process control hardware. OPC is based on OLE
(Object Linking and Embedding), a part of Active-X that provides object
plug-and-play functionality within Windows, and on COM/DCOM.

OPC software are either OPC-clients or OPC-servers. An OPC-client is
typically a data-sink, e.g., a GUI or SCADA system that needs on-line
process data. An OPC-server is a data source – a device-specific program
that collects process data from a field device and then makes it available to
an OPC-client. Due to the relatively large memory footprint of OPC-
servers they are rarely embedded in the field devices per se. Instead the
OPC-server is typically part of the control system, either in the control
stations or at some supervisory level. Used in this way the OPC-server

 Sheet: 31 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

encapsulates the underlying process and control data and makes it
available to clients. OPC provides a number of different services, e.g.,
online data access, alarm and event handling, and historical data access.
The main difference between OPC and CORBA is that OPC is based on
signals whereas CORBA is object-oriented. However, part of the
functionality that hard RT-CORBA will provide will clearly overlap with
OPC. One possibility for handling this problem would be to either
encapsulate an OPC-server as a CORBA object or to provide a completely
CORBA-based implementation of OPC.

The Java environment provides its own solutions both to distributed
object computing and to component technologies. The Java distributed
object model is Java RMI (Remote Method Invocation). Java RMI shares
many of the features of CORBA and during recent years Sun has strived to
unite them even further. For example, RMI over IIOP enables the
programmer to develop CORBA compliant distributed Java applications
using the RMI framework. To develop CORBA applications in other
languages IDL models can be automatically generated from Java
programming language interfaces. RMI over IIOP includes the full
functionality of a CORBA ORB and is a part of both the Java Standard
Edition and the Java Enterprise Edition. Java also directly supports
CORBA through Java IDL. Using Java IDL the distributed object interfaces
are programmed directly in IDL, rather than in RMI.

The Java component technology is known as Enterprise Java Beans (EJB).
The EJB server-side component model simplifies development of
middleware components that are transactional, scalable, and portable. EJB
servers reduce the complexity of developing middleware by providing
automatic support for middleware services such as transactions, security,
database connectivity, and more. EJBs use the RMI/IDL CORBA subset
for their distributed object model, and use the Java Transaction Service
(JTS) for their distributed transaction model. When Enterprise JavaBeans
are implemented using the RMI-IIOP protocol for EJB interoperability in
heterogeneous server environments, the standard mapping of the EJB
architecture to CORBA enables the following interoperability:

• A client using an ORB from one vendor can access enterprise beans
residing on an EJB server provided by another vendor.

• Enterprise beans in one EJB server can access enterprise beans in
another EJB server.

• A non-Java platform CORBA client can access any enterprise bean
object.

 Sheet: 32 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

 Sheet: 33 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

3 Components in Control
Systems

3.1 Introduction
The primary market drivers in the automation industry today are
increased productivity and flexibility, increased quality and yield, reduced
life-cycle costs, safeguarding investments, and environmental and safety
management. A key goal is to provide vertical integration, i.e. to make
real-time information available across the enterprise, allowing users and
applications to make informed production decisions. The real-time
information also needs to be shared between multiple automation
platforms, including control systems, transmission networks, PLCs, safety
systems, SCADA systems and maintenance systems. The goal which all
process and manufacturing enterprises are striving for today is a seamless
integration of plant and enterprise systems. In order to achieve this it is
necessary to build the system on a strong architectural foundation. A
common distributed object and component model is a key element of this.

3.2 Industrial Control Systems
Modern industrial control systems of the DCS (Distributed Control
System) or PLC (Programmable Logic Controller) type are complex,
distributed, heterogeneous systems. The majority of the complexity is due
to software issues rather than hardware issues. The systems are
hierarchically organized and are often depicted in the form of a triangle or
pyramid, see Figure 5. Traditionally the information flow between the
layers has been small, compared to the information flow within the layers.
However, the trend towards vertical integration in process control systems
is beginning to change this. The refinement level of the information is also
different between the layers. At the layers close to the process the
information primarily consists of signal data, e.g., measurement signals
and control signals. Higher up in the hierarchy the information content is
of the same nature as what is found in general enterprise systems. In a

 Sheet: 34 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

similar way the real-time characteristics are different between the layers.
Close to the process the information is updated periodically with high
frequency and the real-time requirements are of hard or “semi”-hard
nature, whereas at higher layers the traffic is of a more aperiodic nature
with softer real-time requirements.

An example of the network architecture of modern control systems is
found in Figure 4. The figure shows ABB’s new Control IT system. The
solutions provided by the other four largest control companies (Emerson,
Honeywell, Invensys and Yokogawa) are presented in deliverable D4.1.
Control IT is the controller part of ABB’s new Industrial IT concept. The
system contains several communication networks. At the bottom level
there is one or several fieldbuses for connecting remote field devices (e.g.,
sensors and actuators) with the control system. Examples of fieldbuses
that currently are wide-spread are Foundation Fieldbus, Profibus,
LonWorks, and HART. The majority of the communication concerned
with networked control loops takes place at the fieldbus level.

The control network is used to connect the individual controllers with
each others, with the Connectivity Server and with the Control Builder
Server. The Connectivity Server is an OPC server that publishes the
control system information to higher level applications. The Control
Builder Server is responsible for the downloading of the control
application code to the individual controllers. Although it is possible to
close control loops over the control network it is not so common. The
control networks have traditionally been based on vendor-specific
communication protocols, but this is gradually changing towards the use
of more standard protocols. The Control IT system uses the ISO
Manufacturing Message Specification (MMS) application protocol layered
on top of the TCP stack. MMS has been defined by experts from process
control and manufacturing. It allows definition of abstract virtual devices
in terms of data and services. Originally MMS was developed to run on
top of the MAP communication stack. MAP support interoperability
between heterogeneous shop-floor devices, PLCs, robots, sensors, and
actuators. However, despite large investments MAP never became a real
success.

For security and efficiency reasons the control network is split up into two
parts, the part that connects the controllers and the part that connects the
different user workplaces, e.g., Operator Stations or Engineering Stations,
and the application servers. The latter network is typically a standard
TCP/IP client-server network. The control network is then connected
through a bridge to the plant intranet, which in turn is connected to the
ordinary Internet.

 Sheet: 35 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Figure 4. The network architecture of the ABB Control IT system.

Object models are important architectural cornerstones in modern
automation systems. An example of this can again be collected from ABB.
The ABB Industrial IT concept is based on the Aspect Object model, a
multi-view object model where each object is described from several
different views or aspects. The objects themselves can be physical process
objects such as valves or motors, or they can represent products, materials,
orders, et cetera. Aspects can include human machine interface,
configuration, simulation, quality report, production reports, maintenance
records, electrical diagram, control diagram, and many more. The aim of
the Aspect Object model is to model one aspect of an object at a time,
rather than to create a complete single object. The Aspect object can be
seen as a container of references to different “ordinary” objects that
implement the individual aspects. The aspects are implemented by
different software systems, so called aspect system, which store, manage,
and present information in an aspect-specific way. The result is a system
of loosely integrated independent software systems held together by a
special aspect directory service. Aspect objects allow reuse of knowledge
and components and facilitate one-time entry of information. The Aspect

 Sheet: 36 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Object model implementation is based on COM. The Aspect Object model
is quite advanced and contains several features which cannot be found in
conventional software object models, such as CORBA and COM.

3.3 General characteristics of control systems
There are two fundamental characteristics that a control system must have
to be able to perform effectively:

• Dependability,
• Maintainability

Other required or typical characteristics are:

• Scalability
• Configurability

Finally, its distributed architecture is considered.

3.3.1 Dependability

A system is a dependable if it is operative when it is needed. The major
factors that contribute to dependability are availability, security, and ease
of use.

• Availability is the proportion of time the system performs to
specifications. Superior system availability is provided by the
following factors:
o Integrity. In addition to the architecture, integrity is achieved

by self-checking failure detection, fault containment, and the
inherent safety designed into the system to ensure correct
operation. Errors that do persist should be tolerated with
little or no degradation of system performance, affecting
only the device or module in which they occur. If one of
these devices fails, some capacity, throughput, or functions
may be lost, but the system continues to operate.

o Redundancy. Multiple elements can produce correct output
when one or more of the elements is not functioning
correctly. The most critical system elements are usually fully
redundant with automatic switchover.

 Sheet: 37 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

o Maintenance. It is the activity that keeps the equipment in
satisfactory working order, including tests, diagnoses,
measurements, replacements, adjustments, and repairs.

• Security. If unqualified users of a system are able to make
improper changes to the process or control information stored in
the system, it will reduce the user's level of confidence that the
available information is correct. Furthermore, improper changes
might cause damage to the process or plant, and injury to
people. To keep this from happening, the different levels of
access have to be provided.

• Ease of use. Time spent in finding how to do something with the
system or in retrying an operating procedure is unproductive.

3.3.2 Maintainability

Maintainability is achieved by:

• Standardization of hardware and software.
• Automatic diagnostics where the system records and analyzes

both hardware and software errors and makes
recommendations to replace devices it suspects of impending
failure.

• Off-line tests when self-diagnostics cannot pinpoint a problem.
• Hot-replaceability For maintenance or repairs, any module can

be removed from service and returned to service while the
remainder of the system is on-line.

3.3.3 Scalability

Another key design objective for automation systems is scalability. The
same automation system family should support the full range of
applications from small PLC-type applications involving, e.g. only a single
standalone PC to large enterprise-wide control systems with replica-
determinism to achieve fault-tolerance.

3.3.4 Configurability

A characteristic feature that distinguishes industrial control systems from
most real-time software systems is the fact that the systems are end-user

 Sheet: 38 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

programmable. From a software point of view the systems consists of two
layers: the system level and the application level. The system level
provides configuration support, run-time support, and a communication
infrastructure. The control applications are typically programmed by the
customer using a domain-specific programming language. Many times,
the user does not write custom software, but enters the information that
the standard software uses. This entry process is known as “system
configuration”.

The domain-specific languages are often graphical in nature and are based
on quite simple computational models, e.g., signal or activity flows. The
most common example are the five languages in the IEC 61131-3 standard.
Although these languages are not object-oriented in the strict sense, they
contain structuring elements that can be compared to objects. There is also
a strong interest in extending these languages with more powerful object
constructs. The fact that the system contains two separate layers further
increases the potential for using component technology in their
programming.

3.3.5 Distributed architecture

Data acquisition and control functions are distributed throughout the
plant, using a variety of process-connected devices to meet a plant’s needs,
as it was shown in the ABB’s Control IT example in the previous section.

In other industrial control systems, similar four network levels are
encountered:

1. Information network. It is a network that is capable of sharing
information with the operation network.

2. Operation network. It links operator stations, processing modules,

and gateways/interface modules. New systems implement an
Ethernet TCP/IP network.

On this networks are the modules:

a. Human machine interfaces (operator stations, etc).
b. History database
c. Advanced control (MBPC, statistical, etc.)
d. Gateways and interfaces to:

i. Control networks
ii. Other process control subsystems like PLCs

iii. Information networks
iv. Other operation networks

 Sheet: 39 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

e. Safety instrumented systems controllers

3. Control network. It links process-connected devices with each other
and with the operation network (through the gateway). The devices
connected are process controllers.

4. Fieldbus. Fieldbus is a digital, two-way, multi-drop communication

link among intelligent control devices. The main benefits are:

a. Higher accuracy and data reliability
b. Multi variable access
c. Remote configuration and diagnostics
d. Wiring cost savings
e. Reduce commissioning time (due to the diagnostic and

configuration information available)
f. Benefits of moving control functions to the field devices

improves the control.
It links process controllers (through an I/O unit) with instruments.
There are other I/O units in the process control modules: analog,
digital, serial, etc.

The communication advances is what is making possible the use of smart
sensors and. There has been an evolution from the traditional analog
transport (where a 4-20mA was transmitted indicating the percentage of
the process variable measured or the percentage to act on the valve) to the
current digital fieldbuses where different “standard” protocols are
competing to rule in the field level.

In between there is an hybrid solution, the HART (Highway
Addressable Remote Transducer) protocol which superimpose a
digital signal to the classical analog one. This enables the use of the
existing devices and take the advantages of digital communication.
Although this has been widely used in the process industry it seems
that the digital fieldbuses will take over finally in the coming years.

Some control strategies at high levels require calculations that may
require, for example extensive file handling or computation (optimization,
simulation) that generally do not need to be synchronized with control
algorithm execution. In addition, collection, storage, and manipulation of
exceptionally large quantities of historical data may be required. Via the
information network such computer programs can access and write
information anywhere in the system. This makes it feasible to establish a
system-wide information network to make timely data available at all
levels of decision-making within the organization.

 Sheet: 40 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

The gateway between the operation and control network passes event and
alarm information from the control network to the other and responds to
requests from the modules in the operation network for information about
the process. It also passes configuration files to the control network
modules. On the control network, the gateway validates existence of
requested points, checks for device status, and checks for device and
parameter error conditions.

As it was said above, control systems implement redundancy in networks
and equipment. Regarding the network, either of the two redundant
cables can be designated as the active one; the other is then the backup. If
the active cable fails or has an excessive error rate, the roles of the cables
are automatically switched (the cables can also be manually switched).
Additional security can be achieved by running each cable over a different
route.

The HRTC project is focused on distributed hard real-time CORBA
applications. It is therefore of interest to investigate the types of network
communication that takes place in a typical control system and their real-
time characteristics. Some examples are:

• Sensor data and control signals
Sensor data that is being sent from remote field devices to the
controllers and control signals that are sent in the opposite direction
are perhaps the most important network traffic. The real-time
characteristics depend on the control application and the type of
control being performed. For example, in many cases a discrete
logic controller has harder real-time characteristics than a
continuous control loops. In the latter case it often acceptable with
an occasionally long delay or lost sample. Raw sensor data or
filtered sensor data is also transmitted to the supervisory layers,
e.g., to the HMI and to different supervisory control applications. In
general, this type of traffic has less hard real-time constraints. The
data transfer is in many cases based on OPC.

• Events and Commands
Events or alarms are typically generated from the controllers when,
e.g. some abnormal situation has been detected that require
operator invention. Hence, the real-time requirements are typically
quite high. Commands correspond to discrete operations that are
performed from the supervisory control levels, including the HMI,
and that affect the operation of the controllers. Also, here the
severity of the real-time constraints is application-dependent.

• Binary Code

 Sheet: 41 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Binary code is typically downloaded from the configuration and
engineering workstations to the controllers when the control system
is installed or updated. The possibility to perform the updates on-
line (hot-swap) is important. This implies that the real-time
requirements can be quite high also for this type of traffic.

• Internet traffic
The use of web server techniques is becoming increasingly common
also at the lower layers of the control system hierarchy. A typical
application is equipment diagnosis. The traffic is typical of
traditional HTTP nature.

3.4 Common functions in industrial control systems

3.4.1 Data acquisition

In a typical scheme, the control system acquires data from process
connected devices distributed on networks. Each device scans its
associated process instrument(s) at regular intervals, checks the input
signals, and converts them to a form suitable for storage in its own process
database.

All of the information about the process that the system collects or
produces must be structured in some way for easy retrieval, e.g., a
collection of closely related data values (such as all parameters associated
with a control loop) and instructions for their processing. At the scheduled
time, standard software within each kind of device or module
automatically collects process variables, stores them, performs any
calculations or other manipulations, and sends outputs to designated
locations.

3.4.2 Alarms

Alarm states are detected by comparing values against limits, ranges, or
other conditions. Changes in the state of alarms are events to other
modules. There are alarms for process variables and for deviations of
process variables from setpoints. Alarms can be in one of several
detection modes ranging from the no-action level, which totally ignores
the occurrence of the alarm (used, e.g., to filter out nuisance alarms during
startup and shutdown), to the emergency level, which immediately brings
the alarm to the attention of the operator in several ways: audible signal,

 Sheet: 42 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

red text on the screen, flashing text, flashing lights, printed messages, etc.
Alarms have to be acknowledged by the operator.

3.4.3 Control

The basic control functions of control systems can be classified in two
types:

• Continuous
• Discontinuous

For every unit, a set of continuous control functions (loops) are defined.
Also, sequences are defined. Each sequence is divided into phases
containing several steps (statements of the programming language). As
these sequential statements control the sequence of operations being
performed, they also initiate any continuous or logic operations required,
such as setting setpoints or checking that a valve is closed before
admitting fluid into a tank. These sequences can run in different modes,
automatically or under the operator intervention. The engineer can specify
whether the operator or the system can change the mode and the system
has provision for automatically performs all the functions necessary to
prevent "bumps" in the process, including initialization, ramping, and
antiwindup whenever a mode is changed.

3.4.4 Safety functions

In response to abnormal conditions, usually detected using logic
functions, safety sequences can be triggered that stops the normal
execution order and proceeds with the instructions the engineer gave for
handling the particular situation. Usual responses are:

• Hold all variables at their last good value until otherwise
instructed

• Execute the given normal shutdown procedures
• Execute the given emergency procedures to get the process to

the safest possible state in the fastest possible manner
(emergency shutdown).

The most critical safety functions are performed by dedicated equipment:
The Safety Instrumented System (SIS), which are based on multiple
redundant PLCs and instruments.

 Sheet: 43 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

3.4.5 Communication with other systems

Control systems are frequently composed of a principal system and a wide
and complex variety of independent subsystems, both in process
(laboratory, package units, etc) or not (management information system,
shipping, etc.), that need to work together to accomplish operating
objectives. To meet this requirement for integration of products from other
vendors, it is necessary to provide a number of interfaces at the different
network levels with capabilities such as data conversion, buffering, and
processing necessary for an efficient interchange of information and
smooth startup and shutdown.

3.4.6 Reports

Control systems have the capability for producing reports with current
and historical data about the process and the system, which can be printed
(on demand or at specified intervals) or displayed. Reports can be
classified into:

• Journals, that collect a chronological list of events of a specified
class, such as process alarms or operator changes to the process,
that occurred within a specific time interval.

• Logs, that collect historical values for a specified set of data point
parameters.

• Trends, that graphically show the history of points or parameters
over a specified time interval.

A report can include a mixture of the three types.

3.5 Elements of control systems

Any control have the following elements : sensor, actuator, controller and
the communication media between them all. A brief summary of the
trends in the elements and the communication media is presented in this
section. Besides the basic elements, there are other significant components
in any control system: Human Machine Interfaces and Databases.

 Sheet: 44 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

3.5.1 Sensors

• The trend is the smart sensor. This smart digital devices offer new
functionalities such as:Transmission of many data as: operating range,
maintenance conditions

• Remote operation by the user (change the span, software update,…).

• Simpler communication. The digital communication removes the need of
digital/analog and analog/digital converters.

• Easy integration in the DCS configuration

But these capabilities are not cost-free, an increase of complexity (with
more possibilities of failure, although more means to detect it) is the major
drawback when implementing the smart sensors.

3.5.2 Actuators

These devices are mostly valves in the process industry. The trend is the
same as it was in sensors, having intelligent actuators. Besides the
intelligent features there is an additional capability, what is being done is
to transfer some control functions (basic control, and basic algorithms-
PID) from the control room to the field. The new valves incorporate
control blocks making the control more distributed.

3.5.3 Controllers
Process controllers handle data acquisition and control functions. They
can be configured with a selectable set of I/O units (which perform input
and output processing on field I/O, independent of control processing
functions), and control units with algorithms for continuous, batch, or
hybrid applications that scan and write I/O units on the control module.
Capabilities include sophisticated regulatory control, fully integrated
interlock logic functions, and user programmable functions. With special
units it can perform sequence of events functions providing typical 1 ms
resolution time stamping of digital state changes.

A wide range of signal types can be handled (even communication with
PLC), including redundant pairs to maximize availability for critical
applications. Redundancy can be extended to controllers units and power
supply.

 Sheet: 45 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

3.5.4 Human Machine Interfaces

Operators view and monitor the process through standard operating
displays that need to present a wide range of detail. In operator stations
the operator monitors and controls the process, and handles process and
system alarms. He can also display and print process history, trends, and
averages, print reports and monitor and change the status of the control
system. Process engineers set up the process database, displays and
reports, establish the interfaces with other computers, and manages
system software.

Levels of detail range from operating parameters and limits for individual
points, to summaries of operating conditions (such as alarms) for
individual process units (both continuous and discontinuous). Operators
in different stations have to securely share data. The refresh frequency in
displays ranges from seconds to fractions of seconds.

A minimum of two operator stations is recommended, because this
provides ongoing operations capability if one station is needed for process
engineering or system maintenance, or if one should fail. Three stations
are preferred: The operator typically uses one station for an overview of
the process area, another for a more detailed view of a unit or part of a
unit in the area, and the third for an alarm summary display. If one of the
stations is being used for process engineering or maintenance, the other
two can take over its functions.

3.5.5 History database

Control systems include a database that records historical data as specified
of the process values used by several departments of the plant, at several
levels. The database should be configurable (defining the history to be
collected) in different ways to accommodate those needs.

Apart form mass storage of process data by time and event (process
alarms, changes made by an operator to the process or the system, etc.)
the history database usually stores also system program images, the entire
system database as configured by the process engineer (reducing the time
to restore application software of the modules), diagnostic information,
custom graphic displays and user programs.

 Sheet: 46 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

3.6 The Control System Landscape
Increased globalization and a consolidation of the automation market
through mergers by several major control system manufacturers,
highlights the necessity of component based frameworks.

The current, more traditional approach to software architecture, with one
monolithic structure, becomes expensive to maintain, port, upgrade and
customize. Significant portions of today’s automation systems are
becoming either functionally inadequate or logistically insupportable.

According to [Lüd01], one major problem is that of adding new I/O-
modules, communication interfaces and protocols. Adapting the software
to new products from a growing number of hardware manufacturers
requires modifications and extensions to this monolithic structure.

 Examples of new features that are demanded by the market in ever
shorter cycles, presented in [Mül02], are

• Local and remote human/machine interface
• Automation processes
• Remote control options via a fieldbus

Managing this within one single application is a error prone and
expensive task, and the resulting piece of software is growing both in
terms of size and complexity. At the same time, only a very small
percentage of the code is related to control and most effort is put on just
"make it run" and not on critical control issues.

In [Gre99] three crucial factors of industrial efficiency are pointed out:

• Easy and smooth co-operation of various, possibly embedded
software systems along the production course.

• Re-engineering tools of legacy industrial systems, improving
information flows and control systems, while keeping basic heavy
machining and manufacturing equipment.

• Distance co-operation between development and manufacturing
sites.

3.6.1 The Role of Components
The use of a proper component model allows systems to be configured
dynamically from binary components. A system would then be configured
by loading only the necessary modules at a point in time when both the

 Sheet: 47 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

target hardware and software environment are known. The setup would
resemble the way third party hardware is managed in the PC world
through the use of device drivers. Of course, in an automation setting we
need more than that, we need guarantees. It is never acceptable that the
introduction of new hardware or software may cause unpredictable
behavior or even system crashes. In automation applications we need to
be certain that the deployed components will work together as intended.
An application, designed as a composite of components, must be safe and
predictable with respect to both its functional and temporal behavior.

A component framework would improve code reuse and hence shorten
development time. In the current situation where software is becoming a
bigger and bigger part of development cost for automation systems, this
would be a major win. The use of a component model would also have the
effect of standardizing the way functions are implemented, and the
introduction of well defined interfaces would enhance understanding of
how functions are used.

Besides creating a superior foundation for maintenance and upgrades,
maybe a more important advantage of a component based framework is
that it provides an increased level of abstraction, resulting in better
support for design and implementation of complex automation
applications. A distributed component technology will allow the
programmer to postpone decision regarding the final application and
instead focus on the design of the individual parts. The final application is
then designed as an assembly of component, configured for a particular
target. Good support for design of distributed systems design, greatly
relieves the programmer from concerns about networking and
communication, and simplifies implementation of heterogeneous systems.
For example, seamless integration between high-performance servers,
which are used to calculate advanced robot trajectories and low-level
PLCs, which handle the high-frequency feedback loops.

Furthermore, integrating different parts of a factory is also of great
importance. A six layer model of the factory levels is found in Fig.5. The
suggested layers are:

• Enterprise management level
Enterprise-wide control activities such as resource planning, supply
chain management, financing and accounting.

• Production or manufacturing level
Management and administration of work batches

• Process control level

 Sheet: 48 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Plant-wide remote supervision and control of the plant using
operator stations and processing systems.

• Group control level
A set of control loops controlling a set of process level systems, e.g.
the feedback loops belonging to a particular manufacturing cell.

• Field level or single control level
This is the level of sensors, actuators, drives, etc, i.e. the interface
equipment of a control system to the physical processes.

• Process level
This is the controlled physical plant.

Enterprise
level

Production
management level

Process control level

Group control level

Field level

Process level

Figure 5. The six-layer model of an industrial control system [Pre02].

The introduction of a distributed component model such a CORBA would
provide a software backplane allowing both horizontal and vertical
integration of the layers on Fig.5. Horizontally, a standardized component
would increase interoperability between modules from different
manufacturers, while vertically the integration would allow business
systems and administrative systems to directly access and query the
control loops and, for example, monitor the progress of a particular
assembly line.

Middleware like CORBA provides high level object oriented
communication mechanisms, transparency and interoperability, which
relieves the system designer of making decisions about hardware
architectures and operating systems. When applied to control systems,
CORBA technology provides a simple mechanism for sub-system
independence, by means of transparent support for active objects and
multi-threaded server construction. CORBA greatly simplifies

 Sheet: 49 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

evolutionary changes to a system since adding new components may be
added without any necessary changes to the rest of the system. Adding
software fault tolerance by means of replication (active or passive) is much
better supported in a component based framework in comparison to a
monolithic program.

3.6.2 The Challenges
Supervision and control systems such as plant control systems, traffic
management systems, energy distribution systems, are typical examples of
application domains to be built on top of a CORBA platform. However,
they often exhibit real-time requirements which the platform must comply
to. The adoption of the current component models, such a CORBA or
DCOM to a time critical setting, possibility in an embedded environment
where system resources, such as CPU, memory and power, are scarce is a
non-trivial task. While using a standard distributed component model in
this type of applications certainly was not an option at the time when
CORBA was initially designed, today it is thanks to increasingly powerful
hardware for less and less cost. A CORBA component interface specifies
only the functional behavior, and this does not suffice for real-time
applications. For an embedded control systems application it is necessary
to support analysis of the timely behavior of the components (and the
composite). The interface must specify execution times, sampling times,
memory consumptions, synchronization needs, etc. It also must support
the ability to query a component about its resource requirements.

3.7 Examples of CORBA and Component Applications
In the following a number of examples of how component technology in
general and CORBA in particular has been applied or could be applied in
industrial control systems are presented.

3.7.1 Networked Control Loop

In this example CORBA is used in the sensor nodes, controller node, and
actuator node of a networked control loop. Figure 6 shows a networked
control system, where the process samples are transmitted to a controller
unit, which calculates a control signal and transmits it to the actuator
node. This example will be further discussed in Chapter 4.

 Sheet: 50 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Control signals

Process samples

Figure 6. A networked control loop.

3.7.2 Distributed Supervisory Control Loops
In a distributed supervisory system the actual feedback control loop
resides locally in the node, while reference trajectories or mode commands
are transmitted over the network. This setup commonly, however not
always, requires support for hard real-time. A stable system may behave
dangerously if fed an incorrect trajectory. However, given some logic in
the local node, this setup may become much less dependent on the
network and may function autonomously in a stand alone mode in case of
communication failure. This setup is shown in Fig.7, where one
supervision node is serving two control loops with reference values.

Reference values

 Sheet: 51 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Figure 7. A supervisory computer transmits reference values out to one or more
control loops. In this figure there are two low-level feedback control loops
managed by the supervisory node

3.7.3 CORBA-based MMS
In [Gre99] the COCA project is described where CORBA is used to
implement the ISO MMS protocol in a distributed object-oriented manner.
The approach is based on a mapping of MMS’s virtual manufacturing
devices (VMD) onto CORBA objects. Similarly, MMS services are
represented as object methods. The asynchronous services in MMS are
replaced by synchronous CORBA method invocations. The advantages of
the CORBA-based approach are openness and modularity. In order to
reduce the risk of decreased performance due to the added software layers
a very efficient ORB implementation is used. For example, remote
invocations between objects across Ethernet use the medium directly and
avoid the TCP/IP stack.

3.7.4 Componentization of I/O and Communication
One of the largest component-technology applications inside ABB
Automation, apart from the Aspect Object model, concerns the use
components for modularisation of the software related to IO and
communication in Control IT [Lüd02]. The ABB Control Builder is used to
specify the hardware configuration of a control system, comprising one or
more ABB Controller, and to write the IEC 61131-3 programs that will
execute on the controllers. When the control application is downloaded to
the control systems via the control network, the system software of the
controllers is responsible for interpreting the configuration information
and for scheduling and executing the control programs.

For market reasons the control system must support a wide range of I/O
systems, communication interfaces and communication protocols. In the
existing software architecture the addition of a new I/O module or a new
communication interface or protocol would require updates in a large
number of software modules, or components. To simplify the support for
addition of new I/O and communication it was decided to restructure the
systems by splitting all the components in two parts: one generic part
containing code that is shared by all hardware and protocols and one non-
generic part containing the code that is special to a particular hardware or
protocol. The latter parts are called protocol handlers and they reside on
the PC running the Control Builder and/or in the controllers. Using the
new architecture the addition of a new IO or communication only requires
the addition of the necessary protocol handlers. ABB’s control system is

 Sheet: 52 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

based on COM and the COM Interface Description Language (IDL) is used
for defining the component interfaces.

3.7.5 Factory Integration Frameworks

In [Yan99] a factory integration framework is described where CORBA
technology is used for the development of manufacturing applications,
including manufacturing execution systems and machine control. The
framework focuses on three levels: factory level, cell level, and equipment
level. At the equipment level the framework uses OPC. The framework
uses three different communication models: synchronous two-way
communication, asynchronous messaging using Java Messaging, and
event-driven interaction through the Event Service.

Component-based approaches in flexible manufacturing systems are also
described in [Mor02].

3.7.6 CORBA-enabled PLC
The development of an ORB for a PLC is described in [Kus98]. The ORB
executes on a PC that is connected to a standard Melsec PLC. CORBA
objects have been defined that represent the components and functions of
the PLC. These PLC objects encapsulate the corresponding functionality of
the PLC.

3.7.7 Component-oriented reference architectures
A number of reference architectures for open, inter-operable control
systems have been proposed. Most of them take a component-based
approach. Some examples are OSACA (Open Systems Architecture for
Controls within Automation Systems) [OSA96], OMAC (Open Modular
Architecture Controllers) [OMA98], and the Open Control Architecture for
Windows NT [OCF98].

The OROCOS (Open Robot Control Software) project is an ongoing
European open source software project aiming at creating highly
configurable control components, based on CORBA principles, for robot
control systems. However, CORBA is used mainly for the IDL and
component interfaces, while distributed communication and RT properties
of the run-time system is left out of the IDL. Instead, timing considerations
are managed by supporting mechanisms in the control system
architecture, but without HRT communication and execution.

 Sheet: 53 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

3.7.8 Control Block Components
A trend in both industrial automation and robotics is the increased use of
model-based analysis and simulation using tools such as
Matlab/Simulink. In addition to using this technology off-line during
design it is also interesting to be able to use it on-line, e.g. as a part of a
model-based control scheme. In Simulink controller functionality is
encapsulated in blocks with well-defined signal interfaces. If this should
be used on-line there are currently two options. One option is to use
existing code-generation tools for generating on-line code. However, it is
sometimes quite difficult to fit this automatically code into the existing
software structure. The second option is to include Matlab/Simulink in
the on-line feedback loop. Software licensing costs often prohibit this
solution. An interesting possibility would be to encapsulate the control
functionality in a component that could be used both during off-line
design and on-line operation.

A similar situation can be found within the IEC 61131-3 standard. Here,
software blocks are available both in term of function blocks and 61131-3
programs. Although it is possible to write user-defined function blocks in
C, it is not straightforward to integrate legacy software into 61131-3
application. A component-based approach where it would be possible to
include components as, e.g. function blocks would be a very interesting
approach.

3.7.9 Robot Tele-operation

As a laboratory experiment CORBA has been used to build a robot tele-
operation application (see Figure 8) at UPM. The application contains
three CORBA objects: a six DoF (degrees of freedom) full force feedback
master, a seven DoF robot slave and a coordinate space mapper
(transforms master axis space into robot axis space).

 Sheet: 54 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

A large delay is obtained, approx. 250 ms, but with a small jitter. The test
was done using the common laboratory 10baseT network in normal state
(about 20% load).

3.7.10 Risk Management

Another application of interest is RiskMan. This is a system for emergency
management in a chemical complex with nine plants (see Figure 9). The
system supports the whole life-cycle of emergencies: prevention,
detection, firing, diagnosis, handling, follow-up & cancellation.

The application is composed by a collection of CORBA objects running on
heterogeneous platforms (VAX/VMS, Alpha/UNIX, x86/Windows NT)
performing an heterogeneous collection of functions: expert systems, user
interfaces, wrappers of real-time plant databases, data filters based on
fuzzy rules, predictors based on neural networks, etc.

3.7.11 Real-time Video for Tele-operation

HydraVision is a real-time video system for the support of remote
operation of hydraulic power plants. It uses a country-wide fiber optics

Figure 8. Axis position evolution in master and robot during a test.

 Sheet: 55 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

WAN network of a electric company to integrate a collection of objects
that wrap physical entities in the system (see Figure 10).

InfoPlus

Updater

ORB

DOB Logger

Master
Control

ICa
Monitor

Slave

ValidatorPredictor Emergency
Server

Fault
Detector

Emergency
Client

Informer

InfoPlus

Updater

ORB

DOB Logger

Master
Control

ICa
Moni

InfoPlus

Updater

ORB

DOB Logger

Master
Control

ICa
Monitor

Slave

ValidatorPredictor Emergency
Server

Fault
Detector

Emergency
Client

Informer

Figure 9: Some of the CORBA objects that compose the RiskMan application.
Informer and Updater are wrappers of external systems.

Figure 10. The HydraVision main user interface and one of the object-wrapped
cameras.

 Sheet: 56 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

The physical systems that are wrapped as CORBA objects are: cameras,
MPEG compressors, image/audio multiplexers, microphones,
loudspeakers, video monitors, video stores, still image printers, etc.

The system is supports multicasting and bidirectional streaming. It used
by human operators to: get a visual confirmation of the status of the
remote plant, video-conference, faking human presence, remote diagnosis,
etc.

3.7.12 Strategic operation of Cement Plants

PIKMAC is an operator support system designed to address plant-wide
strategic decision making in a cement plant. The system is used by
operators specially in night and weekend shifts when there is only one one
person in the plant (see Figure 11).

The system is composed by a collection of interacting CORBA objects that
provide four top level functionalities:

n Clinker quality estimation using neural network technology.
n Instantaneous cost estimator using deep models.
n Alarm management using expert systems.
n Inter-shift communication using multimedia technology.

 Sheet: 57 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

3.7.13 Substation Automation

In the DOTS project, [San01], an example of using CORBA automation
objects embedded in field devices based on the Electric Utilities IEC 61850
Draft standard is presented, see Figure 12.

Figure 11. Part of the user interface that shows the results of the on-line
quality estimator QDED. It uses neural networks to estimate present clinker
quality because it is not possible to have a direct real-time measure of it.

 Sheet: 58 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

IED-2 Ethernet Hub

Operator
Terminal

IED-1

Pushbutto
n

10BaseFL

10BaseT

GPS

Camera

10BaseT

Doorbell

Configuration
Terminal

Figure 12. The DOTS application in substation automation.

 Sheet: 59 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

4 CORBA in the Control Loop

4.1 CORBA Controllers
The basic distributed control loop can be modeled in CORBA in at least
two different ways:

• Distributed CORBA Loop: In the distributed CORBA approach the
sensor node, the controller node, and the actuator node are all
equipped with ORBs, see Figure 13. Inside the corresponding
nodes, the sensor, actuator, and controller are all modeled as
CORBA objects. Different possibilities exist with respect to which of
these objects that should be active objects. One possibility is to let
the sensor object be an active time-triggered object that periodically
takes a sensor measurement and invokes an execute operation on
the passive controller object. The execute operation would typically
be a one-way message. During the execution of the execute
operation the controller object would invoke the actuate operation
on the actuator object passing the control signal as the argument.
Also this can be a one-way message. Another alternative is to let the
controller be an active time-triggered object that every sample
invokes the two-way operation getMeasurement on the sensor object,
calculates the control signal, and invokes the actuate operation on
the actuator object. A drawback with this approach is the risk for
sampling jitter in the control loop.

 Sheet: 60 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Figure 13. Distributed CORBA Control Loop

• Encapsulated CORBA Loop: In this approach we only require the

controller to be a CORBA-compliant. The controller object then
implements the communication with the actuator and sensor nodes
using non-CORBA technology, e.g. using some fieldbus. The
controller object could be active or it invoked from some other
client representing the task execution control of the controller. The
approach is outlined in Fig. 14.

 Sheet: 61 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Figure 14. Encapsulated CORBA loop

Since the feedback loop is closed over the network the stability and control
performance is directly affected by the quality of the transport. A network
that possesses too long latencies or have too much timing variations may
cause the control performance to deteriorate or completely fail. However,
if the network characteristics are well known it is sometimes possible to
take them into account when designing the control algorithm or
compensate for them on-line. The need for a network with well-known
timing properties is evident in the design of such a networked control
systems. Both the timing properties of the network transport and of the
protocol stacks must be taken into account when analyzing the timely
behavior.

4.2 Timing Constraints
The basic control loop has two main timing constraints. The first is the
sampling period, h, which should be constant, i.e., without jitter. The
second constraint involves the input-output latency, τ τ τ τ , from the sampling of
the measurement signal to the control signal actuation. This is also known
as the control delay or the computational delay. In a distributed control loop
the input-output latency also includes the communication delays from the
sensor node to the controller node and from the controller node to the
actuator node. The constraints are illustrated in Figure 15, where we
assume that the controller is implemented in a single task.

 Sheet: 62 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Figure 15. Control loop definitions.

From a control performance point of view the following specifications are
important:

• The sampling period should be constant, i.e., the sampling jitter
should be negligible. This holds for all time-triggered control loops,
which is the most common case. An example of the opposite, i.e., an
event-triggered control loop is found in combustion engine control
systems which normally are sampled against crankshaft
revolutions.

• The input-output latency should be negligible or constant, i.e.
without jitter. A negligible latency can be ignored and a constant
latency can be compensated for statically in the control design.

• Most control loops are more sensitive to latency than to sampling
jitter.

• In most cases it is better to have a small latency with jitter than a
larger latency without jitter, even if the larger latency is
compensated for in the control design.

4.3 Loop Timing
Equidistant sampling intervals and a negligible or constant control delay
from sampling to actuation. However, this can seldom be achieved in
practice. Within a node, tasks interfere with each other through
preemption, and blocking when accessing shared resources. The execution
times of the tasks themselves may be data-dependent or may vary due to
hardware features such as caches. On the distributed level, the
communication gives rise to delays that can be more or less deterministic
depending on the communication protocol. Some sources of
communication delays are:

 Sheet: 63 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

• Processing delay: The time required to process the message (e.g. a
packet) within the nodes (hosts, routers, bridges) that the message
passes through. At the sending at receiving hosts this consists of
the time needed to pass through the different protocol layers (link-
network-transport), whereas in the hosts it consists of the time it
takes to examine the message header in order to decide where to
direct the message. The processing delay can also include other
factors, e.g., the time needed to check for bit-level errors.

• Queuing delay: The amount of time that the message spends in the
output queue (buffer) of the host or router, waiting to be
transmitted.

• Transmission delay: The amount of time required to transmit all of
the bits in the message into the link. For routers and bridges this is
also known as the store-and-forward delay.

• Propagation delay: The time required for the bits to propagate over
the link.

• Transport-level acknowledgement delay: In reliable transport
protocols such as TCP, acknowledgments and resending is used to
guarantee a reliable connection in spite of bit errors and lost
packets. The latter can be caused by buffer overflow due to
congestion. This source of delay can be removed if unreliable
transport protocols such as UDP can be used.

• Link-layer resending delay: This is the delays caused by collision
detection and the subsequent back-off and resending in multi-
access link layer protocols, e.g., Ethernet (CSMA/CD) or CAN
(CSMA/CA). This source of delays can be removed if the network
is scheduled in such a way that the collisions are eliminated, e.g.,
using time-division multiplexing or through the separate collision
domains of switched Ethernet.

4.4 Delays in Control Design
The problems caused by delays can be approached in two ways. Either
they are reduced or eliminated through the choice of implementation
techniques and platforms, for example, a time-driven static scheduling like
TTP, or the controller is designed to be robust against, or even
dynamically compensate, for timing variations.

Handling of delays control systems design involves three different
activities:

• Delay Modeling.

 Sheet: 64 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

In order to be able to analyze the system a suitable delay model
must be chosen.

• Analysis.
The delayed system must be analyzed with respect to, e.g., stability
and performance.

• Synthesis.
A controller must be designed in such a way that the control loop
meets its performance specifications in spite of the delays.

Delays can be modeled in several ways:

• Constant delays
• Independent random delays. The delays are modeled by a random

distribution. The delays are independent from transfer to transfer.
• Dependent random delays. The delays are dependent from

transfer to transfer. The delay can, e.g., be modeled by a Markov
chain containing different states for different traffic conditions
(“low load”, “medium load”, “high load”)

Constant delays are straightforward to handle. In the continuous-time
domain, the influence of the delay on the control loop performance can
easily be decided using, e.g., frequency-domain techniques (Nyquist and
Bode diagrams). The delay gives rise to a phase lag that decreases the
phase margin. Constant delays can be compensated for using, e.g., Otto-
Smith controllers or using a lead-filter compensation link.

In the discrete-time domain a constant delay is normally handled by
including it in the sampled process model. For example the following
continuous-time process model, where x denote the state vector, u the
control signal, and y the process output and where we assume that the
delay, ττττ, only occurs on the process input, i.e., between the controller node
and the actuator node

has the following sampled representation. i.e., what in continuous-time is
a infinite-dimensional system becomes time-invariant finite-dimensional
discrete-time system.

 Sheet: 65 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

where

Constant delays are most easily achieved using a time-triggered approach,
i.e., using statically scheduled computations and a statically-scheduled
time division protocol such as TTP, see Figure 16.

Figure 16. TDMA-based networked control loop

The communication between the sensor and the controller and between
the controller and the actuator is only performed within pre-defined slots
within the TDMA round.

For varying and random delays the situation easily becomes more
complex. For example, it is possible to find systems that are stable for all
constant delays, but become unstable when the delay varies. A number of
theoretical results are available. However, it is important to always keep
in mind the assumptions that are made. For example, if the results are
applicable only to constant delays but where the delays may lie within a

 Sheet: 66 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

certain range, i.e. a parametric uncertainty, or whether the results are
applicable to varying delays within a certain range.

A system with varying delays can be sampled in the same way as a system
with constant delays. The resulting system

with

now is a time-varying system. The same holds for the closed loop system
(the controlled processes in a feedback connection with the controller),

where e(kh) is the process noise. The same approach can also be used to
handle sampling jitter. In this case the closed loop system matrices will
also depend on the sampling intervals hk.

Stability analysis methods are available both for the case when the delays
vary according to a certain periodic pattern and for the case when the
delays change randomly. In the latter case the analysis is based on
Lyapunov methods. The system is stable if one can find a common
Lyapunov function for all the delays.

In [Lin02a] a new stability criterion was presented for systems with
varying time delays based on the small gain theorem. The criterion has a
nice graphical frequency-domain interpretation.

For systems with varying delays it is in many cases possible for the
controller to compensate for the delay, or part of the delay, provided that
it has access to the actual delays. The normal approach for handling this is
to use associate time information with the transmitted signal values. The
time information is typically expressed with time stamps.

 Sheet: 67 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

4.4.1 Optimal LQG Control

In [Nil98] an LQG-based control scheme was presented. The approach is
based on time-driven sampling and event-driven control and actuation. It
is assumed that the full state can be measured and that all states from the
same node are transmitted in the same frame. Further it is assumed that
old delays are known through time-stamping and that the delays are
independent with known distribution. Using this scheme the results in
Fig. 17 can be achieved. There the accumulated loss functions are shown
for four different cases: a design neglecting the time delays, a design based
on knowledge of the mean delay, a design based on introducing buffering
thereby increasing the delays but eliminating the delay jitter (the Luck-
Ray scheme), and the optimal LQG scheme.

Figure 17. A comparison between different time delay compensation schemes.

The LQG scheme has been extended in several directions relaxing several
of the assumptions. For example, to handle incomplete state knowledge
(using estimators and output feedback), to handle dependent delays
modeled by a Markov chain, networks with different delay distributions
between sensor-controller and controller-actuator, systems with sampling
jitter in the time-driven sensor node, and multi-input multi-output
(MIMO) systems.

 Sheet: 68 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Within the same framework it is possible to investigate the effects of lost
samples and whether it can be advantage to use timeouts for
measurement signals. The idea behind the latter is to use a prediction-
based controller that bases the feedback on a prediction of the
measurement rather that the measurement itself when the timeout has
expired. For control of systems with large measurement noise it is often an
advantage to use timeouts.

4.4.2 Loop-shaping dynamic jitter compensation
The LQG approach described above has quite large demands on the
available information about the controlled process (process model) and
the delay characteristics. In [Lin02b] a substantially simpler approach was
proposed. The approach is based on time-stamping, but it does not require
full process model knowledge (only at high frequencies) and it does not
assume any knowledge about the delay statistics. The approach is based
on the addition of a linear delay-compensator to an existing controller.
Frequency-domain conditions are used to evaluate stability and
performance, Using loop-shaping techniques stability compensation and
performance compensation can be achieved

4.5 Analysis using Jitterbug
If not handled correctly the delay and jitter introduced by the computer
and communication system can lead to significant performance
degradation. To achieve good performance in systems with limited
computer resources, the constraints of the implementation platform must
be taken into account at design time. To facilitate this, software tools are
needed to analyze and simulate how the timing affects the control
performance.

Jitterbug is a new Matlab-based toolbox that makes it possible to compute
a quadratic performance criterion for a linear control system under
various timing conditions [Lin02c]. The tool can also compute the spectral
density of the signals in the system. Using the toolbox, one can easily and
quickly assert how sensitive a control system is to delay, jitter, lost
samples, etc., without resorting to simulation. The tool is quite general and
can also be used to investigate jitter-compensating controllers, aperiodic
controllers, and multi-rate controllers.

 Sheet: 69 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

4.5.1 Calculating Control Performance
The example we will look at is networked DC-servo control loop. The
sensor, the actuator, and the controller are distributed among different
nodes in a network. The sensor node is assumed to be time-driven,
whereas the controller and actuator nodes are assumed to be event-driven.
At a fixed period h, the sensor samples the process and sends the
measurement sample over the network to the controller node. There the
controller computes a control signal and sends it over the network to the
actuator node, where it is subsequently actuated. In this example, we will
assume a CAN-type network where transmission of simultaneous
messages is decided based on priorities of the packages.

We will begin by investigating how sensitive the control loop is to slow
sampling and delays, and then we will look at delay and jitter
compensation.

The DC servo process is given by the continuous-time system

()1

1000
)(

+
=

ss
sG

The process is driven by white continuous-time input noise. There is
assumed to be no measurement noise. The discrete-time PD controller is
implemented as,







 −+−=

z

z

h

T
KzH D 1

1)(

where the controller parameters are chosen as 5.1=K and 035.0=DT . (A
real implementation would include a low-pass filter in the derivative part,
but that is ignored here.)

The delays in the computer system are modeled by the two (possibly
random) variables 1τ and 2τ . The total delay from sampling to actuation is
thus given by 21 τττ +=tot It is assumed that the total delay never exceeds
the sampling period.

Finally, we need to specify the control performance criterion to be
evaluated. As a cost function, we choose the sum of the squared process
input and the squared process output:

() ()()dttutyJ T ∫ += ∞→
22lim

 Sheet: 70 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

0
20

40
60

80
100

0.001

0.005

0.010
1

1.5

2

2.5

3

Delay (in % of h)Sampling period h

C
os

t
J

Figure 18. The cost function computed using Jitterbug. The plot shows the cost as
a function of sampling period and delay in the network.

A control system can typically give satisfactory performance over a range
of sampling periods. In textbooks on digital control, rules of thumb for
sampling period selection are often given. One such rule suggests that the
sampling interval h should be chosen such that

6.02.0 << hbω

where bω is the bandwidth of the closed-loop system. In our case, a
continuous-time PD controller with the given parameters would give a
bandwidth of about sradb /80=ω . This would imply a sampling period of
between 2.5 and 7.5 ms. The effect of computational delay is typically not
considered in such rules of thumb, however. Using Jitterbug, the
combined effect of sampling period and computational delay can be easily
investigated. In Fig.18, the cost function J for the networked control
system has been evaluated for different sampling periods in the interval 1
to 10 milliseconds, and for constant total delay ranging from 0 to 100% of
the sampling interval. As can be seen, a one-sample delay gives negligible
performance degradation when 1=h ms. When 10=h ms, a one-sample
delay makes the system unstable (i.e., the cost J goes to infinity).

 Sheet: 71 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

4.6 TrueTime

The new Matlab/Simulink-based tool TrueTime facilitates simulation of
the temporal behavior of a networked control loops consisting of nodes
with multitasking real-time kernel executing controller tasks, and
communication networks [Hen02]. The tasks are controlling processes that
are modeled as ordinary Simulink blocks. Different task scheduling
policies may be used (e.g., priority-based preemptive scheduling, static
cyclic scheduling, and earliest-deadline-first (EDF) scheduling) and
different communication protocols can be used (e.g., Ethernet, CAN, and
TDMA). (For more on real-time scheduling, see [Liu00] and for more on
communication protocols, see HRTC Deliverable 2.1.)

TrueTime makes it possible to study more general and detailed timing
models of computer-controlled systems. The toolbox offers two Simulink
blocks: a Real-Time Kernel block and a Real-Time Network block, see
Figure 19. The delays in the control loop are captured by simulation of the
execution of tasks in the kernel and the transmission of messages over the
network.

The Simulink blocks are event-driven, so there is no need to specify a
time-grain for the model. The execution of a task can be simulated on an
arbitrarily fine timescale by dividing the code into segments. We need not
simulate the task execution on instruction level. In fact, it is enough to
model the timely aspects of the code that are of relevance to other tasks
and to the controlled plant. This includes computational phases, input and
output actions, and blocking of common resources (other than the CPU).

 Sheet: 72 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Figure 13. The TrueTime block library. The Kernel block is used to simulate a
real-time kernel and the network models the behavior of a network

4.6.1 Simulating a Distributed Control System
As a recurring example in this section, we will study a control loop that is
closed over a communications network. Closing control loops over
networks is becoming increasingly popular in embedded applications
because of its flexibility, but it also introduces many new problems. From
a control perspective, the computer system will introduce (possibly
random) delays in the control loop. There is also the potential problem of
lost measurement signals or control signals. From a real-time perspective,
the first problem is figuring out the temporal constraints (deadlines, etc.)
of the different tasks in the system, and then scheduling the CPUs and the
network such that all constraints are met during runtime.

We will study the setup in Fig. 20. In our control loop, the sensor, the
actuator, and the controller are distributed among different nodes in a
network. The sensor node is assumed to be time-driven, whereas the
controller and actuator nodes are assumed to be event-driven. At a fixed
period h, the sensor samples the process and sends the measurement
sample over the network to the controller node. There the controller
computes a control signal and sends it over the network to the actuator
node, where it is subsequently actuated. This kind of setup was studied in
[Nil98], where an optimal, delay-compensating LQG controller was
derived. Here we are more interested in the interplay between control and
real-time design and choose to study a simple process and controller.

 Sheet: 73 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Using Jitterbug we can theoretically calculate the impact of sampling
period, delay, and jitter on the control loop performance, while TrueTime
allows us to simulate the timely behavior complex distributed real-time
control systems.

Figure 20. A networked control system.

In this example, we will assume a CAN-type network where transmission
of simultaneous messages is decided based on priorities of the packages.
The PD controller executing in the controller node is designed a 10-ms
sampling interval. The same sampling interval is used in the sensor node.

In a first simulation, all execution times and transmission times are set
equal to zero. The control performance resulting from this ideal situation
is shown in Fig. 21.

 Sheet: 74 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Figure 21. Control performance without time delay

Next we consider a more realistic simulation where execution times in the
nodes and transmission times over the network are taken into account.
The execution time of the controller is 0.5 ms and the ideal transmission
time from one node to another is 1.5 ms. The ideal round-trip delay is thus
3.5 ms. The packages generated by the disturbance node have high
priority and occupy 50% of the network bandwidth. We further assume
that an interfering, high-priority task with a 7-ms period and a 3-ms
execution time is executing in the controller node. Colliding transmissions
and preemption in the controller node will thus cause the round-trip delay
to be even longer on average and time varying. The resulting degraded
control performance can be seen in the simulated step response in Fig. 22.

 Sheet: 75 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Figure 22. Control performance with interfering network messages and

interfering tasks in the control node.

The execution of the tasks in the controller node and the transmission of
messages over the network can be studied in detail (see Fig. 23).

Finally, a simple compensation is introduced to cope with the delays. The
packages sent from the sensor node are now time-stamped, which makes
it possible for the controller to determine the actual delay from sensor to
controller. The total delay is estimated by adding the expected value of the
delay from controller to actuator. The control signal is then calculated
based on linear interpolation among a set of controller parameters pre-
calculated for different delays. Using this compensation, better control
performance is obtained, as seen in Fig. 24.

This small example demonstrated that while the control performance
degrades severely due to latency and jitter it is sometimes possible to
handle this by a more advanced control algorithm.

 Sheet: 76 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Figure 23. Close-up of schedules showing the allocation of common resources:
network (top) and controller node (bottom). A high signal means sending or

executing, a medium signal means waiting, and a low signal means idle.

 Sheet: 77 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Figure 24. Control performance with delay compensation.

A screen capture of a typical TrueTime session is shown in Fig. 25.

 Sheet: 78 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

Figure 25. Screen capture from a typical TrueTime session.

4.7 TrueTime Simulation of CORBA Control Loops
Within HRTC TrueTime will be used to simulate CORBA-based control
systems, within the context of the Robot Control Testbed. Using TrueTime
it is possible to simulate both shared and switched Ethernet. TrueTime
also supports TDMA networks. Hence it will be possible to simulate both
the Real-Time Ethernet and the TTP/C approach to Hard R-T CORBA.
Furthermore, support for TCP has recently been implemented. This makes
it possible to also simulate networked control loops using TCP and both
CORBA and R-T CORBA 1.1. This will be further described in future
HRTC deliverables.

 Sheet: 79 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

5 Summary
The use of CORBA in industrial control systems and for embedded real-
time applications with hard time constraints pose a number of challenges
that current CORBA and R-T CORBA do not meet. The following
requirements summarize the most important issues:

• Backward Compatibility
The HRT CORBA mat not deviate too much from CORBA and RT-
CORBA. It is important to maintain interoperability between HRT
CORBA and conventional CORBA. If this is not the case seamless
vertical control system integration is not possible.

• Scalability in size
HRT CORBA needs to execute on a wide range of systems, from
small field devices and embedded devices to PC-type computer
systems. On embedded platforms a small footprint is crucial. This
necessitates a modular approach where the HRT-ORB is structured
into a mandatory “micro-ORB” part that provides only the absolute
necessary functionality of the HRT-ORB and a number of optional
parts that each adds increased functionality.

• Scalability with respect to temporal determinism
Different control applications require different levels of temporal
determinism. Hence, HRT CORBA must be able to support a range
of different transport protocols with different levels of temporal
determinism. For example, for certain applications it is necessary
with a time-triggered transport that minimizes communication
latency jitter, whereas for other applications a transport that only
provides a bounded latency suffices.

• Scheduling support
A communication network is a shared resource. In order to be able
to guarantee any communication timing constraints it is necessary
to schedule the access to the network. Scheduling requires global
knowledge of all network accesses. Communication involves at
least two partners: a sender and a receiver. In order to be able to
schedule the communication HRT CORBA needs to support the
description of periodic invocations from a sender (client) to a
receiver (server), i.e., it must be possible to model information that

 Sheet: 80 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

concerns both the client and the server object as a single entity, and
to associate information to this entity, e.g., the period, the amount
of data that will transferred, and what the maximum allowed
communication latency is. In order to be able to schedule also the
computation within the nodes it must also be possible to associate
information of a temporal nature with the CORBA objects, e.g.,
whether objects are active or passive, worst-case execution times,
deadlines, whether object operations are blocking, etc.

 Sheet: 81 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

6 References

[Ast97] K. J. Åström and B. Wittenmark Computer Controlled Systems. Third
ed. Prentice-Hall. New York, NJ. 1997.

[Bla00] M. Blanke, Ch. Frei, F. Kraus, R. J. Patton and M. Staroswiecki
Fault-tolerant control systems. In: Aström et al. (eds) Control of Complex
Systems. Springer. 2000.

[Gre99] E. Gressier-Soudan, M. Epivent, A. Laurewnt, R. Boissier, D.
Razafindramary, M. Raddadi Component Oriented Control Architecture: the
COCA Project Microprocessors and Microsystems, 23, 1999.

[Gup96] M. M. Gupta and N.K. Singh Intelligent Control Systems. IEEE
Press. Piscataway, NJ. 1996

[Hen02] D. Henriksson, A. Cervin and K.-E. Årzén, TrueTime: Simulation of
Control Loops Under Shared Computer Resources, Proceedings of the IFAC
World Congress, Barcelona, 2002

[Kop97] H. Kopetz, Real-Time Systems: Design Principles for Distributed
Embedded Applications. Boston, MA: Kluwer, Academic Pub., 1997.

[Kus98] K. Kusunoki, I. Imai, H. Ohtani, T. Nakakawaji, M. Ohshima, and
K. Ushijima A CORBA-based Remote Monitoring System for Factory
Automation, First International Symposium on Object-Oriented Real-
Time Distributed Computing, 1998. (ISORC 98)

[Lin02a] B. Lincoln, A Simple Stability Criterion for Control Systems With
Varying Delays, Proceedings of the IFAC World Congress, Barcelona, 2002

[Lin02b] B. Lincoln, Jitter Compensation in Digital Control Systems,
Proceedings of the 2002 American Control Conference.

 Sheet: 82 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

[Lin02c] B. Lincoln and A. Cervin, Jitterbug: A Tool for Analysis of Real-
Time Control Performance, Proceedings of the 41st IEEE Conference on
Decision and Control, Las Vegas, 2002

[Liu00] J.W.S. Liu, Real-Time Systems. Upper Saddle River, NJ: Prentice
Hall, 2000.

[Lüd02] F. Lüders, I. Crnkovic and A. Sjögren Case Study: Componentization
of Industrial Control Systems, IEEE COMPSAC 2002, Oxford, UK, August,
2002.

[Mor02] Y. Morton, D. Troy and G. Pizza, An Approach To Develop
Component-Based Control Software For Flexible Manufacturing Systems,
Proceedings of the American Control Conference, Anchorage, 2002

[Mül02] P. O. Müller, Ch. M. Stich, and Ch. Zeidler Component-Based
Embedded Systems in I. Crnkovic and M. Larsson (eds) Building reliable
component-based software systems, Arttech House, UK, 2002.

[Nil98] J. Nilsson, Real-Time Control Systems with Delays. PhD thesis ISRN
LUTFD2/TFRT--1049--SE, Department of Automatic Control, Lund
Institute of Technology, Sweden, January, 1998.
[OFC98] Open Control Foundation. Open Control Interface, Version 1.4,
February 1998

[OMA98] OMAC API Work Group, OMAC API SET, Version 0.18,
Working Document, February 1998.

[OSA96] OSACA Open Architecture for Controls within Automation Systems
OSACA I & II Final Report, Project No EP 6379 & EP 9115, EU Brussels,
April 1996

[Pre02] O. Preis and M. Naedele Architectural Support for Reuse: A Case
Study in Industrial Automation in I. Crnkovic and M. Larsson (eds) Building
reliable component-based software systems, Arttech House, UK, 2002.

[Rod99] M. Rodríguez, and R. Sanz HOMME: A modeling environment to
andel complexity. In: IASTED Modeling and Simulation Conference. 1999

[Rus99] J. Rushby Partitioning in avionics architectures: Requirements,
mechanisms, and assurance. Technical Report NASA/CR-1999-209347.
NASA. 1999.

 Sheet: 83 of 83

Reference: IST37652/050
 Date: 2003-02-11 / 1.1 / Final

© HRTC Consortium / Clearance: Consortium

[San99] Sanz, Ricardo, Idoia Alarcón, Miguel J. Segarra, Angel de Antonio
and José A. Clavijo (1999a). Progressive domain focalization in intelligent
control systems. Control Engineering Practice 7(5), 665–671, 1999

[San01] R. Sanz, J.A. Clavijo, M. Segarra, A. de Antonio, and M. Alonso
CORBA-based Substation Automation Systems, Proceedings of the 2001
IEEE International Conference on Control Applications, Mexico City

[Sch00] D. Schmidt and F. Kuhns An Overview of the Real-Time CORBA
Specification, IEEE Computer, June 2000

[Sch02] D. Schmidt Overview of CORBA
http://www.cs.wustl.edu/~schmidt/corba-overview.html

[Sha96] M. Shaw and D. Garlan Software Architecture. An Emerging
Discipline. Prentice Hall. Upper Saddle River, NJ. 1996

[Sho00] Shokri, Eltefaat and Phillip Sheu, Real-time distributed object
computing: An emerging field. IEEE Computer pp. 45–46, 2000

[Val92] Valenzo, Demartini, Ciminiera MAP and TOP communcations,
Addison- Wesley, Reading, MA, 1992.

[Yan99] Z. Yang, G. Huang, R. Lim Yan Guan, R.Gay CORBA as Object-
oriented Infrastructure for Factory Communication and Control,
Communications, APCC/OECC '99. Fifth Asia-Pacific Conference on ...
and Fourth Optoelectronics and Communications Conference

