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1 Introduction 
One problem of CORBA is that – like in other models of computation – the necessary 
time for executing a method is not regarded. Thus the OMG interface definition 
language (IDL) lacks the capability of modeling the concept of physical time in 
interfaces. 
Physical time is needed if we are to reason about timely failure detection (in particular, 
of autonomous component systems), performance, and other real-time properties. This 
point of view is also taken by Edward A. Lee in an excellent recent survey on embedded 
computer systems: “Time has been systematically removed from theories of 
computation, since it is an annoying property that computations take time. ‘Pure’ 
computation does not take time, and has nothing to do with time. It is hard to 
overemphasize how deeply rooted this is in our culture. So called “real-time” operating 
systems have so little to go on that they often reduce the characterization of a 
component (a process) to a single number, its priority.” [Lee99]. 
According to page 8 of the Technical Annex it belongs to the goals of this project to 
“identify hard real-time requirements for distributed control systems” and to 
“implement a CORBA pluggable protocol over a hard real-time transport”. Since hard 
real-time can not be established on top of a communication layer with unknown 
temporal behavior this document identifies the necessary properties of the transportation 
layer and evaluates the available protocols regarding their real-time capabilities. Further 
some possibilities of making available the special features of hard real-time protocols 
are outlined ordered by the intrusiveness to existing implementations or the current 
specification (CORBA 3). 
The remainder of this document is organized as follows: Section 2 identifies the 
requirements that characterize protocols especially suited for our purpose. Section 3 
gives an overview how real-time protocols can be included in nowadays CORBA 
implementations and if this is enough for making the real-time properties available. 
Section 4 gives an overview of the available protocols with emphasize on the properties 
that have been identified in the previous sections. Section 5 compares the properties 
according to the results of the previous section. Section 6 concludes this document with 
a recommendation for a protocol that serves best our purposes. 

2 Requirements 

2.1 Notion of Component 
According to [Kru98] a component is a non-trivial, nearly independent, and replaceable 
part of a system that fulfills a clear function in the context of a well-defined 
architecture. A component conforms to and provides the physical realization of a set of 
interfaces. 
A component is substitutable for any other component which realizes the same 
interfaces. Logical and physical cohesiveness of a component denotes a meaningful 
structural and/or behavioral part of a larger system. Furthermore a component represents 
a fundamental building block upon which systems can be designed and composed. 
Conformity of a component to a given interface means that it satisfies the “contract” 
specified by that interface and may be substituted in any context wherein that interface 
applies. 
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An interface is referred to as a common boundary between two subsystems. Since 
architecture design is primarily interface design, the most important phase in the design 
of large system architecture is the layout and placement of the interfaces ([Kop97], 
p. 77). The interface of a component is the point of interaction between a system and its 
environment (see [JKK+01]). A correctly designed interface provides understandable 
abstractions, which capture the essential properties of the interfacing subsystems and 
hide irrelevant details (control, temporal, functional, and data properties). 
In order to disentangle unrelated functions of components it is advantageous to specify a 
distinct interface for every separable service [Kop00]. We have identified three unique 
functions that occur in many scenarios and should normally be serviced across 
independent interfaces: The Real-Time Service (RS) Interface, the Diagnostic and 
Management (DM) Interface, and the Configuration Planning (CP) Interface. Besides 
from these three interfaces that expose well defined services to other components there 
is a Local Interface that supports services depending from the particular application (e.g. 
the communication with a particular temperature sensor). This allows e.g. a component 
that encapsulates the services of the local interface and provides these services in a 
generalized way to other components. 
The following sections further describe the special properties of these interfaces: 

2.1.1 Real-Time Service (RS) Interface 
This is the interface that provides the intended service in a temporal predictable way to 
the environment, namely the systems with which it interacts. The real-time service 
interface is the most important interface for the user of the service. To keep the service 
interface small and understandable, only those objects and functions that are required 
for the intended emerging service should be visible at the service interface. It is 
counterproductive for all internal objects of a component system to be visible at the 
service interface. 
In the CORBA world [Sie00], the (syntax of the) services that are provided by an object 
are defined by the interface definition in a special interface definition language (IDL) 
that can be mapped into a number of different programming languages. The interface 
definition specifies the operations that can be performed by the object, the input and 
output parameters, possible exceptions that may by raised by the object during 
execution, and possibly, the declared state of the component. 
In real-time systems, the purpose of the RS interface is the timely exchange of 
observations among the component subsystems. An observation states that the state 
variable possessed the stated value at the indicated instant or an event occurred at the 
instant. In control applications, the temporal access pattern of information at the RS 
interface is typically periodic, and a small delay and minimal jitter are important for the 
quality of control. These temporal parameters must be stable in order to support the 
composability at the RS interface. The user of the observations at the RS interface must 
know only about the meaning of these observations but does not need any knowledge 
about the internal structure or operation of the component system that delivers the 
observation. 

2.1.2 Diagnostic and Management (DM) Interface 
The DM interface provides a communication channel to the internals of the component 
system for the purpose of diagnosis and management. 
A maintenance engineer who accesses the internals of a component system via the DM 
interface must have detailed knowledge about the internal structure, the internal objects 
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and the precise behavior of the system. The end-points of communication are the 
internals of a component system on one side and some maintenance system or engineer, 
possibly sitting at a remote terminal on the Internet, on the other side. The 
communication pattern is, thus, point-to-point and the messages between the maintained 
component system and the maintenance system or engineer must be routed transparently 
through a set of networks. The DM interface should be independent from the service 
interface, since these two interfaces are directed towards two different user groups and 
require different knowledge. 
In a real-time system, there is usually a need to support on-line maintenance and 
management while a system is operational. To achieve this objective, any sporadic 
maintenance and management traffic must coexist with the time-critical real-time traffic 
without disturbing the latter. The traffic pattern across the DM interface is normally 
sporadic and not time-critical, although precise knowledge about the instant when a 
particular value was observed or modified can be important. 

2.1.3 Configuration Planning (CP) Interface 
The CP interface is used during the integration or reconfiguration phase to connect a 
component system to other component systems of a system of systems. 
The CP interface is typically point-to-point and not time-critical. 

2.1.4 Local Interfaces 
This interface realizes the connection between the component and some sensors or 
actuators located nearby the component. This interface depends from the particular 
application. 

2.2 Communication Requirements for Transport 
The interfaces denoted in the previous section are characterized by different 
requirements regarding the transport layer: 

2.2.1 Real-Time Service (RS) Interface 
The RS Interface requires the communication of real-time data with known latency and 
bounded jitter. The jitter can be translated in a measurement error if the gradient of the 
observed variable is known. Thus it should be reasonable low. 
Since the data is transferred in a periodic schema this interfaces requires an a priori 
known bandwidth on the communication channel. Because of the nature of state 
information where the new state obsoletes the previous state the loss of individual data 
frames may be tolerated without degradation of service. For use in high risk 
environments an architecture is required that is able to tolerate a single failure in an 
arbitrary component in order to guarantee that no information is lost. 

2.2.2 Event-Service (ES) Interface 
Since the CP and the DM interface require similar temporal properties, they can be 
merged on the transport layer to an Event-Service (ES) Interface. Nevertheless for the 
application these interfaces should be available separately. 
The CP Interface is mainly used in the initialization- and shutdown-phase and for 
switching to another configuration. Although it is not time critical for a seamless 
transition it is very important that the performance of the RS interface is not affected. 
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The DM Interface is used for diagnostic purposes in order to check the internal state of 
the node if the system does not operate in the intended way or for setting parameters 
(e.g. calibration values). This interface allows full access to the internals of the node and 
usually is not time critical. 

2.2.3 Local Interfaces 
Since this interface is used for realizing the connection between the component and 
some sensors or actuators located nearby the component, using CORBA is not viable 
for this interface. Thus the requirements of this interface are disregarded in the 
remainder of this document. 

2.3 Classification of Requirements 

A candidate protocol must provide possibilities of integrating real-time traffic with its 
special demands together with asynchronous non real-time communication without 
disturbing the real-time communication. This requires guaranteed bandwidth with 
known latency and minimal jitter to serve the purposes of the RS Interface. In addition 
it must allow interleaving real-time traffic with non real-time traffic (e.g. asynchronous 
requests for calibration). 

In high risk environments highly dependable systems are required that must be able to 
tolerate the presence of a single failed component. Further, the protocol must allow a 
global notion of time and composability which means that the real-time properties of a 
system are preserved even in the case of adding other components. 

To be able to run some demanding tasks the protocol must be available on a platform 
with sufficient CPU and memory resources. With respect to RT-CORBA it should be 
available on a widely available platform. 

3 Including RT-Protocols in CORBA 
Since the HRTC project targets especially on identifying approaches of creating 
CORBA based hard real-time applications this section identifies two approaches for 
adding hard real-time protocols to nowadays CORBA by using the current specification 
(CORBA 3). 

3.1 Replacing the Protocol-Stack 
Since the IIOP-protocol is mandatory for a CORBA-ORB communication between two 
ORBs is usually performed as an IIOP communication on top of the TCP/IP protocol 
which is often layered on top of the Ethernet protocol (see Figure 1: Commonly used 
Protocol-Layers of CORBA). 
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Figure 1: Commonly used Protocol-Layers of CORBA 

By replacing some of these protocols from bottom to top by a protocol offering the 
same services with specified temporal properties it is possible to enhance the temporal 
behavior of CORBA: 
Ethernet: The duration for the transmission of a message is highly dependent from the 
current load of the system and is not limited if other nodes use the network 
continuously. Replacing the Ethernet Layer with a packet service that provides 
guaranteed bandwidth and constant latencies the communication of two ORBs becomes 
independent from the communication of other nodes. 
IP: The services of IP are Fragmentation of packets and Routing through the network. If 
real-time communication takes place in one single cluster only, routing is not needed 
anymore which simplifies a replacement IP-layer. 
TCP: One source of indeterminism of the TCP layer is based on the retry mechanism for 
lost packages. If the underlying packet service is based on a highly dependable 
communication channel, the retry mechanism will not be used and this source of 
indeterminism is eliminated. If the packets are provided in the proper order this also 
eliminates a source of indeterminism. 
This approach is compatible with every ORB since the IIOP protocol is mandatory for 
all CORBA 3.0 compliant implementations. It can be performed with no changes of 
existing implementations. 
This approach is least intrusive since the existing CORBA specifications are not 
touched. This approach allows RT-communication and  

3.2 Extensible Transport Framework 
Some members of the OMG have recognized the importance of replacing the TCP/IP 
protocol with other protocols. Thus in 2000 an RFP (see [OMG00]) has been issued.  
In response to this RFP a proposal for an Open Communications Interface (OCI) has 
been submitted (see [OMG01]). Since the standardization progressed (and is still not 
finished yet) today’s most recent interim document is [OMG02a]. 
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Although these submissions differ in details (e.g. the names of the interfaces) they both 
describe the same core concepts and allow replacing the transport layer by the use of 
plugins with a specified interface: 
Information is stored in buffers as a sequence of octets. The ORB of the client requests 
a connection from the server which allows reading and writing data stored in a buffer. 
This connection is considered as stream of octets, that guarantees that data is received in 
the same order as it is sent and no information gets lost. Thus the plugin has to include 
mechanisms for retrieving lost packages for an unreliable, connectionless transport. If a 
connection is not used anymore there are methods for closing the connection. 

3.3 Evaluation 
Neither of these possibilities allows solving all problems. By providing dedicated 
virtual connections from one RT-ORB to the other these approaches allow 
communication of other nodes without disturbing the behavior of the RT-ORBs.  
As soon as a RT-ORB is involved in communication with a non real-time ORB it is 
possible that the RT-ORB (or the task running on this machine) misses its deadline 
because it has been interrupted by the non real-time ORB. Further, both approaches lack 
mechanisms to adjust to deadlines or provide information how long the communication 
of the data will need or about the delay because of well filled buffers. 
For establishing a hard real-time system the following points should be considered: 

? Reliable communication channel with bounded jitter and bounded transmission 
delay that is accessed in an a priori known pattern. 

? The worst case execution time (WCET) of the ORB has to be adjusted to this 
pattern.  

? The worst case execution time (WCET) of all tasks has to be adjusted to this 
pattern.  

Introducing these properties and the necessary hooks for configuring the transport 
requires changes in several parts of the CORBA specification. 

4 Overview of Protocols 

Since there are a lot of protocols available the following comparison cannot be 
exhausting but it emphasizes on the protocols that are widely used or provide special 
features that qualify them for this purpose. 

Some protocols (like TCP/IP) are layered on top of other protocols. Since the behavior 
is heavily influenced by this protocol, statements about this protocol’s behavior are 
based on assumptions of the underlying protocol as mentioned in the description. 

Each Protocol is described according to a standard structure. It is judged how the 
protocol meets the requirements established in the previous section. 

4.1 Ethernet 

The DIX Ethernet (the abbreviation DIX is for the developing companies: Digital, Intel, 
Xerox) is based on a CSMA/CD project of Xerox that started in 1973. 

IEEE 802.3 (see also [IEEE802.3]) is a standard of the Institute of Electrical and 
Electronics Engineers (IEEE) for a Carrier Sense Multiple Access with Collision 
Detection (CSMA/CD) Local Area Network (LAN) specifying several data rates from 
1 MBit to 1 GBit. It supports the bus topology as well as the star topology. The first 
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version of this standard has been published in 1983 and is based on the results of DIX 
Ethernet. 

An IEEE 802.3 Frame consists of a header (30 octets) and a payload (42-1500 octets) 
resulting in a minimum packet length of 72 octets. 

In half duplex mode (which is especially used for bus topology), a station waits before 
transmitting for a quiet period on the medium (that is, no other station is transmitting) 
and then sends the intended message in bit-serial form. If, after initiating a transmission, 
the message collides with that of another station, then each transmitting station 
intentionally transmits for an additional predefined period to ensure propagation of the 
collision throughout the system. Since each node must be able to detect the collision the 
length of cabling in bus topology is limited (depending on the data rate) and a minimum 
packet length is required.  

The station remains silent for a random amount of time (backoff) before attempting to 
transmit again. Each aspect of this access method process is specified in detail in 
subsequent clauses of this standard. 

Without any further assumptions this standard is not usable for real time applications. It 
is possible that the senders A and B send packages to the receiver C at a higher 
combined transmitting bandwidth than C has as receiving bandwidth. Either the central 
switch drops some packages or it is not possible to calculate an upper bound for the 
latency.  

Predictability can be established by using a bus access strategy that prevents collisions 
and limiting the bandwidth for each node. The following is an example for a real-time 
system based on Ethernet: 

In the MARS approach (see [RSG89]) each node runs a set of statically scheduled real-
time tasks and an identical copy of the MARS operating system. All operating system 
concepts that could lead to an unexpected delay or deadlock (e.g. dynamic resource 
allocation) have been kept out. Communication is performed by the broadcast of 
messages containing state variables on Ethernet. The bus is accessed in a TDMA 
scheme in order to prevent collisions. They have been able to establish a hard real-time 
system with a global time base, allowing a known synchronization accuracy of a few 
microseconds. 

Another example of preventing collisions is subdividing the collision domain of an 
Ethernet network into several smaller collision domains by using an Ethernet Switch. 
Although in switched Ethernet all nodes remain in the same broadcast domain a node 
that is directly connected to a port of the switch is a collision domain of its own and 
therefore might utilize all available bandwidth for communication with the target node 
without disturbing communication between other nodes connected to the switch. 
Determinism can be reached if priorities are used (see [HS02]). 

4.2 Wireless 

According to [IEEE802.11] Wireless LAN (WLAN) is specified for two fundamentally 
different types of physical layers. The communication via diffuse infrared light is 
specified but only used rarely. Further, the communication via radio waves is specified. 
This medium is used by most network devices according to this standard. 
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Like Ethernet without any further assumptions this standard is not usable for real time 
applications. 

By using an appropriate protocol on top of WLAN (e.g. as described in [NMG01]) it is 
possible to use it for real-time applications but in addition to the problems of Ethernet 
(see previous section) data loss can not be neglected in wireless communication which 
makes it only usable for real-time applications where sporadic data-loss can be 
tolerated. 

In [LO01] is a discussion of other wireless communication mechanisms and a brief 
overview of their real-time capabilities. In order to prevent problems because of 
sporadic data loss and thus reduce complexity in debugging a wire bound 
communication mechanism should be preferred. 

4.3 Internet Protocol (IP) 

Networking in UNIX Systems is based on the Internet Protocol (IP) which has been 
developed in 1981 by the Information Sciences Institute (ISI) for the Defense Advanced 
Research Projects Agency (DARPA) which is a part of the Department of Defense 
(DoD) (see also [RFC791]). 

The IP interfaces on one side to higher level protocols like TCP or UDP (see below) and 
on the other side to a local network protocol like ethernet (see Figure 2: Internet 
Protocol (IP) in relation to other protocols). 

 

 
Figure 2: Internet Protocol (IP) in relation to other protocols 

The IP serves mainly two purposes: 

? Routing: Datagrams are transported from the source to the sink of the 
communication even if there is no direct path and thus gateways have to be used. 

? Fragmentation: If an intermediate network supports small packet sizes only the 
datagrams have to be fragmented in smaller packages and reassembled at the 
receivers side. 

Data is communicated through datagrams consisting of the IP header and the payload. 
The header length is at least 20 Bytes. For using fragmentation a packet must allow a 
payload of at least 8 octets thus resulting in a minimum packet size of 28 Bytes. If 
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TCP/IP is used with a packet size of just 28 Bytes even the header of the overlying 
protocol is likely to be fragmented which could be a reason for problems with some 
protocol implementations. According to [Cox96] IP requires at least 72 Bytes but for 
acceptable performance at least 200 Bytes should be provided.  

The temporal behavior of IP depends on the temporal properties of the Local Network 
Protocol and on the load of the queues in the sender, the receiver, and intermediate 
nodes. 

4.4 User Datagram Protocol (UDP/IP) 

The User Datagram Protocol (UDP) assumes that IP is used as underlying protocol 
hence the name UDP/IP (see also [RFC768]). 

It allows multiple processes to access the network independently by introducing the 
concept of ports. Each UDP Packet contains the source port and the destination port and 
the operating system provides a multiplexer and demultiplexer that assigns the datagram 
to the application owning the respective port. 

In addition a 16 bit checksum is provided in order to protect the datagram against bit 
errors. 

The UDP header adds to the IP header 8 bytes of header. 

4.5 Transmission Control Protocol (TCP/IP) 

The Transmission Control Protocol (TCP) assumes it can obtain a simple, potentially 
unreliable datagram service from the lower level protocols. The TCP fits into a layered 
protocol architecture just above the IP which provides a way for the TCP to send and 
receive variable-length segments of information enclosed in internet datagram (see 
also [RFC793]). 

TCP is a connection oriented protocol introducing the following properties: 

? Order: A stream of data is decomposed to packages. At the receivers side order 
has to be re-established thus composing the stream of data. 

? Reliability: TCP tolerates errors on the underlying datagram service (damaged, 
duplicate or lost packages) by using a Positive Acknowledgement or 
Retransmission (PAR) protocol with sequence numbers. 

? Flow Control: TCP communicates information about the number of packages 
the receiver may receive. 

? Multiplexing: TCP allows multiple processes to access the network 
independently by introducing the concept of ports. Each TCP Packet contains 
the source port and the destination port thus allowing each packet to be assigned 
to the application owning the respective port. 

? Connections: TCP allows establishing and clearing of connections. 

The temporal behavior of TCP relies on the underlying protocols (IP, Ethernet). Besides 
from this the buffering of TCP introduces additional delays and the multiplexing 
mechanism leads to unpredictable temporal behavior. 
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4.6 General/Internet Inter-Orb Protocol (GIOP/IIOP) 

In 1996 the Object Management Group (OMG) released version 2.0 of their Common 
Object Request Broker Architecture (CORBA) specification. Among several other 
extensions the specification included “out of the box” interoperability by introducing 
the General Inter-Orb Protocol (GIOP) and its mapping to TCP/IP called Internet Inter-
Orb Protocol (IIOP). The latest version of GIOP includes the following features (see 
also [OMG02b]): 

? Common Data Representation (CDR): a representation of all data types of the 
IDL is defined, that is independent from the computer’s byte order. 

? Request Multiplexing: allows sharing one transmission channel between several 
CORBA objects. 

? Fragmentation: It is anticipated that value types may be rather large. Hence 
breaking up the serialization into an arbitrary number of chunks is supported in 
order to facilitate incremental processing. 

? Connection Management: allows establishing and clearing of connections. 

Since IIOP is a mapping of GIOP to a TCP/IP transport the temporal behavior depends 
besides from the current workload of the ORB on the client’s side as well as on the 
server’s side also on the temporal characteristic of TCP/IP (see previous section). 

4.7 LIN 
LIN is a single-wire serial communication protocol based on the UART interfaces 
which are available as low cost silicon module on almost all micro-controllers and can 
also be implemented as equivalent in software or as pure state machine for ASICs. The 
medium access in a LIN network is controlled by a master node so that no arbitration or 
collision management in the slave nodes is required, thus giving a guarantee of the 
worst-case latency times for signal transmission. 
The maximum transmission speed is 20 kbit/s which results from the requirements of 
electromagnetic compatibility (EMC) and clock synchronization. 
A node in LIN networks does not make use of any information about the system 
configuration, except from the denomination of the master node which allows adding 
nodes to the LIN network without requiring hardware or software changes in other slave 
nodes. A LIN network comprises one master node and one or more slave nodes. All 
nodes include a slave communication task that is split into a transmit task and a receive 
task, while the master node includes an additional master transmit task. The 
communication in an active LIN network is always initiated by the master task: the 
master sends out a message header which comprises the synchronization break, the 
synchronization byte, and the message identifier. 
Exactly one slave task is activated upon reception and filtering of the identifier and 
starts the transmission of the message response. The response comprises two, four, or 
eight data bytes and one checksum byte. A message frame consists of the header and the 
response part. 
The size of a LIN network is typically under 12 nodes (though not restricted to this), 
resulting from the small number of 64 identifiers and the relatively low transmission 
speed. The clock synchronization, the simplicity of UART communication, and the 
single-wire medium are the major factors for the cost efficiency of LIN. 
Further details can be found in the LIN specification (see [Wen00]). 
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4.8 Control Area Network (CAN) and TTCAN 
The Control Area Network (CAN) is a serial communications protocol. It supports 
prioritization of messages. This is achieved by a bit arbitration mechanism on the 
identifier (it is assumed that there is a dominant and a recessive state on the bus and the 
identifier consisting of dominant bits only has highest priority). Data rates up to 1 MBit 
are supported. 
CAN uses 4 different types of frames: data frames, remote frames, error frames, and 
overload frames. 
A data frame consists of the Start-of-Frame marker (a single dominant bit), arbitration 
field, control field, data field, CRC field, ACK field, and End-of-Frame (a sequence of 
seven recessive bits). The arbitration field contains the ID of the sender and the Remote-
Transmission-Request (RTR) Bit. The control field contains a Data-Length-Code of 
4 Bits. The data field contains from 0 to 8 Bytes of payload. Thus a data frame consists 
of 44 bit for the header plus 0-8 data bytes for payload. 
A remote frame is similar to a data frame but contains no data field and is used by the 
receiver in order to request data from the sender. 
Error frames and overload frames are used for signaling error conditions or delaying the 
transmission of further messages. 
The bus access strategy is a Carrier Sense Multiple Access Collision Avoidance 
(CSMA/CA) and assumes that the bus provides a dominant state. The identifier of the 
node with highest priority consists of dominant bits only. 
Further information is available in [Bos91]. 
TTCAN is a higher-layer protocol built on top of the unchanged standard CAN protocol 
that synchronizes the communication schedules of all CAN nodes in a network that 
provides a global system time. When the nodes are synchronized, any message can be 
transmitted at a specific time slot, without competing with other messages for the bus. 
Thus the loss of arbitration is avoided and the latency becomes predictable (see also 
[Har00]). 

4.9 Time Triggered Protocol Class A (TTP/A) 
TTP/A is a member of the TTP protocol family that is intended for low cost networks of 
sensors and actuators. TTP/A is ideally suited for integration with TTP/C into an overall 
architecture where each and every sensor's reading and actuator's command is 
completely predictable with respect to its temporal properties. This allows carrying out 
all sensing and actuating action within hard real-time deadlines and minimal jitter. 
TTP/A is a time-triggered protocol based on the TDMA bus access scheme. However, 
in contrast to TTP/C it is a master/slave protocol, without redundant channels and with 
limited fault-tolerance capabilities. The master is responsible for the clock- 
synchronization and thus initiates the TDMA rounds. Since TTP/A is intended for low 
cost systems, a standard UART and an 8 bit micro controller are sufficient for the 
protocol. The communication protocol is integrated with the application software 
running on an operating system. 
Communication is performed by using Master-Slave (MS) rounds or Multi-Partner 
(MP) rounds. While the MS rounds are used for the DM and CP interface the MP 
rounds allow temporally predictable communication of data via the RS interface. 
The maximum transmission speed depends on the physical layer. There are several 
implementations based on UART frames at a data rate of 19.2 kbit/s. Data rates of up to 
1 Mbit/s are specified on an RS485 physical layer or CAN physical layer. Since this 
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protocol is not restricted to UART frames other data rates are possible (e.g. on a fiber 
optic physical layer). 
Due to the higher data efficiency the TTP/A protocol provides less jitter and better real-
time response compared to the LIN protocol on a physical layer with the same speed 
(see [KEM00]). 
Further details about this protocol can be found in [EEE+01]. 

4.10 Time Triggered Protocol Class C (TTP/C) 
TTP/C is a member of the TTP protocol family that is intended as high speed network 
for high dependability applications. TTP/C is ideally suited for integration with TTP/A 
into an overall architecture where several fieldbus clusters have to be interconnected in 
a temporally predictable manner. This allows carrying out all sensing and actuating 
action within hard real-time deadlines and minimal jitter. 
TTP/C is a time-triggered protocol based on the TDMA bus access scheme. However, 
in contrast to TTP/A it is no master/slave protocol and provides fault tolerance by the 
capability of tolerating one arbitrary faulty node or one faulty communication channel 
in the system. This is reached by utilizing redundant channels and two central bus 
guardians. Since TTP/C is intended for high dependable systems, the major part of the 
protocol is available in hardware (the C1 communication controller and its successor, 
the C2 communication controller). This controller provides to the microcontroller the 
communication network interface (CNI), which is implemented as dual-ported RAM 
and mapped into the address space of the microcontroller. This configuration acts as a 
temporal firewall (see [KN97]) where only state data but no flow of control crosses the 
boundary of the interface. 
Communication is performed in a predefined TDMA schedule, called message 
descriptor list (MEDL), which is stored in the flash memory of the communication 
controller of each node. This protocol also provides a fault tolerant global notion of 
time. 
The current implementation of the TTP/C protocol supports data rates up to 25 Mbit/s. 
Since the communication controller has to perform the protocol code in the inter frame 
gaps (IFG) there is a minimum duration for the IFG which depends on the clock speed 
of the controller and other parameters. 
Further details of the TTP/C protocol can be found in [Kop02]. 

4.11 FlexRay 
FlexRay is based on the TTP/C protocol, for this reason the fundamental concepts of the 
time-triggered architecture can also be found in FlexRay. Thus it is also based on a 
TDMA schedule for avoiding collisions, uses redundant communication channels which 
are protected from babbling nodes by a bus guardian, and provides a fault tolerant 
global notion of time. 
Communication is done in a communication cycle consisting of a static and a dynamic 
segment, where each of the segments may be empty. The sending slots are used 
deterministically (in a pre-defined TDMA strategy) in the static segment. In the 
dynamic segment there can be differences in the phase on the two channels. It is 
possible to send different data in the same sending slot on different channels. Nodes that 
are connected to both channels send their frames in the static segment simultaneously 
on both channels. Two nodes, that are connected to one channel only, but not the same 
channel, may share a slot in the static segment. 
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To guarantee the consistency of the clock synchronization only nodes which are 
received by all other nodes are allowed to participate. All nodes execute the clock 
synchronization algorithm, but only the frames of the static segment are considered. 
As described in [Kop01] the FlexRay protocol differs from the TTP/C protocol (see 
previous section) by the point of view of the tradeoff between contradicting 
requirements. While in TTP/C safety, composability, and flexibility (in this order) are of 
outmost importance, the FlexRay protocol tilts away from safety and composability 
towards flexibility. 
Further details of the FlexRay protocol can be found in [BBE+02]. 

4.12 PROFIBUS 
The history of the PROcess FIeld BUS (PROFIBUS) started in 1987 in Germany where 
21 companies and institutes joined forces and aimed at realization and establishing of a 
bit-serial fieldbus. The communication layer is specified in the standards IEC 61158 and 
IEC 61784 for speeds of 9600 kBit/s – 12 MBit/s. 
From the technological standpoint the lower level (communications) of the system 
structure of PROFIBUS is based on the ISO/OSI reference model: It has a modular 
design and offers several different communication technologies, application and system 
profiles, as well as device management tools.  
As bus access protocol, PROFIBUS allows the master-slave procedure, supplemented 
by the token passing procedure for coordination of several masters on the bus. This 
guarantees that each master may access the bus within an a priori known interval. 
Further information about Profibus can be found at [PI02]. 
In Profibus the presence of stations with highly differing dynamics can cause high-
priority messages to miss their deadline if the workload increases (see [BM00]). 

4.13 WordFIP / FIP 
The WorldFIP protocol is based on a white paper defining the Flux Information Process 
(FIP) concept that has been published in 1984 and is designed to satisfy the following 
two communication requirements of process control systems: Operational 
communication between sensors and actuators and automated equipment. 
Communication of information between equipment in the control room and automated 
devices, as well as communication between configuration and maintenance tools and 
equipment in the system, including sensors and actuators. The entire WorldFIP protocol 
is covered by the standards EN 50170-3 and EN 50254. 
The Fieldbus Internet Protocol (FIP) combines the advantages of the Internet Protocol 
and WorldFIP with supported data rates from 31.25 kb/s to 25 Mb/s. In addition to 
compatibility with the installed base, it conserves all WorldFIP advantages such as 
synchronization and availability. It also provides services offered by the Internet, 
including true access to multimedia upon request. 
Further information is available in [Wor01]. 

4.14 EN 50170, EN 50254, EN 50325 

It has been tried to standardize a fieldbus protocol that included the best of the available 
national standards. Since the favorites, PROFIBUS and FIP, have been completely 
different it has been impossible to integrate both protocols in one single protocol. After 
more than 10 years this standard included both protocols and some other protocols that 
have been developed in the meanwhile. 
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In order to make the standards easier to handle the available standards have been 
bundled according to their primary application areas (see [FS02]): “General purpose 
field communication systems” (EN 50170), “High efficiency communication 
subsystems for small data packages” (EN 50254), and CAN based standards 
(EN 50325). 

Among these standards are PROFIBUS, WorldFIP, Foundation Fieldbus, P-NET, 
ControlNet, INTERBUS, DeviceNet, SDS, and CANOpen. 

4.15 SERCOS 
The SErial Realtime COmmunications System (SERCOS) defines an open, digital 
standardized interface for communication between digital controls, drives, sensors and 
actuators for numerically controlled machines and systems. 
Development began in 1988 and the physical layer and communications protocol were 
accepted as international standard IEC 61491 in 1995. 
The SERCOS interface uses fiber optics in ring topology as the communications 
medium for high noise immunity and electrical isolation. It operates at standardized data 
rates between 2 and 16 Mbit/s and allows up to 254 nodes per ring. 
There are three types of data telegrams that are received simultaneously by all nodes 
(the media is accessed in an a priori known TDMA schedule): Master-Sync-Telegram 
(for distributing time information), Master-Data-Telegram, and Slave-Data-Telegram 
(for communication between master and slave). Each Data-Telegram contains a field for 
predefined cyclic data and a service-field for asynchronous requests. 
It has been designed to include mechanisms to ensure the high level of determinism 
required when synchronizing multiple axes of digital drives and directly supports 
position, velocity and torque commands which can be set with a precision of about 1 µs. 
The cycle time may be set to some specified values down to 62 µs. 
For further details see [Ser99] or the standards mentioned above. 

5 Comparative Evaluation 

The temporal behavior of Ethernet is deterministic only when no collisions occur on the 
media. If this can be guaranteed Ethernet provides low latency, constant delay, and 
minimal jitter. 

Wireless communication has similar restrictions as Ethernet but in addition the data rate 
depends on external disruption as well as collisions because of other devices on the 
same frequency spectrum. 

The temporal properties of IP and UDP/IP are inherited from the underlying layer. 

Since TCP/IP introduces retries in the case of lost packages, the temporal behavior is 
unpredictable. If it can be assumed that the underlying network provides a high 
dependability no retries are necessary and the temporal behavior of TCP/IP is similar to 
the behavior of the IP layer. 

GIOP/IIOP relies on TCP/IP or another stream oriented transport and inherits its 
temporal properties from the underlying layer. 

LIN is specified for 20 kbit/s only and suffers from its high jitter. 

The worst case delay in a CAN network is too high because of the possibility of 
collisions. If TTCAN is used the mandated temporal properties could be established.  
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TTP/A is well suited from the point of view of the temporal properties but usually its 
implementations lack the resources for running RT-CORBA. 

TTP/C provides the necessary temporal properties on protocol level and is designed to 
tolerate one arbitrary fault. In addition a global timebase is provided that allows 
synchronization of tasks. At TTTech (see [TTT02]) there are several Motorola 68k 
based computation nodes available as well as an implementation with more memory 
based on the Power PC that provides enough resources for running some demanding 
real-time tasks with CORBA. 

In Profibus the presence of stations with highly differing dynamics can cause high-
priority messages to miss their deadline if the workload increases. 

FlexRay provides similar properties than TTP/C but lacks composability due to its 
event-triggered part. 

The SERCOS is based on similar mechanisms as the TTP/A protocol. It is designed for 
controlling digital drives and includes a lot of commands that are specific for this 
domain. Transmission of CORBA messages is should be possible if a packet service is 
established on top of SERCOS. 

6 Conclusion 
Apart from a predictable communication protocol with constant delay and minimal jitter 
the TTP/C protocol also provides a common notion of time and provides a dependable 
communication because of its capability of tolerating one arbitrary fault. Thus it is best 
suited for implementing a predictable and dependable CORBA system. The 
implementation based on the PowerPC could be used as a test bed for some demanding 
tasks based on CORBA. 
If the requirements for a precise global timebase and dependability are relaxed other 
systems (e.g. flexray, switched Ethernet, etc.) become usable. 
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