

IST-2001-37652

Hard Real-Time CORBA

 Title D2.1
RT-Protocols for Real-Time
Control

Overview

 Authors Thomas Losert (TUWien)

 Reference IST37652/036
 Date 2002-12-20
 Release 1.0
 Status Final
 Clearance Consortium

 Partners Universidad Politécnica de Madrid
Lunds Tekniska Högskola
Technische Universität Wien
SCILabs Ingenieros

 Sheet: 2 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

Summary Sheet

IST Project 2001-37652
HRTC
Hard Real-time CORBA

D2.1

RT-Protocols for Real-Time Control

Overview

Abstract:

The present document contains an overview of the available network protocols and
investigates their suitability for hard real-time communication.

Copyright:

This is an unpublished document produced by the HRTC Consortium. The copyright of
this work rests in the companies and bodies listed below. All rights reserved. The
information contained herein is the property of the identified companies and bodies, and
is supplied without liability for errors or omissions. No part may be reproduced, used or
transmitted to third parties in any form or by any means except as authorized by
contract or other written permission. The copyright and the foregoing restriction on
reproduction, use and transmission extend to all media in which this information may be
embodied.

HRTC Partners:

Universidad Politécnica de Madrid
Lunds Tekniska Högskola
Technische Universität Wien
SCILabs Ingenieros.

 Sheet: 3 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

Release Sheet (1)

Release: 0.1 Draft
Date: 2002-10-28
Scope Initial version
Sheets All

Release: 0.2 Draft
Date: 2002-11-28
Scope Revised version
Sheets All

Release: 1.0 Final
Date: 2002-12-20
Scope Improved chapter 2 and 3
Sheets All

 Sheet: 4 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

Table of Contents

 Sheet: 5 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

 Sheet: 6 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

1 Introduction
One problem of CORBA is that – like in other models of computation – the necessary
time for executing a method is not regarded. Thus the OMG interface definition
language (IDL) lacks the capability of modeling the concept of physical time in
interfaces.
Physical time is needed if we are to reason about timely failure detection (in particular,
of autonomous component systems), performance, and other real-time properties. This
point of view is also taken by Edward A. Lee in an excellent recent survey on embedded
computer systems: “Time has been systematically removed from theories of
computation, since it is an annoying property that computations take time. ‘Pure’
computation does not take time, and has nothing to do with time. It is hard to
overemphasize how deeply rooted this is in our culture. So called “real-time” operating
systems have so little to go on that they often reduce the characterization of a
component (a process) to a single number, its priority.” [Lee99].
According to page 8 of the Technical Annex it belongs to the goals of this project to
“identify hard real-time requirements for distributed control systems” and to
“implement a CORBA pluggable protocol over a hard real-time transport”. Since hard
real-time can not be established on top of a communication layer with unknown
temporal behavior this document identifies the necessary properties of the transportation
layer and evaluates the available protocols regarding their real-time capabilities. Further
some possibilities of making available the special features of hard real-time protocols
are outlined ordered by the intrusiveness to existing implementations or the current
specification (CORBA 3).
The remainder of this document is organized as follows: Section 2 identifies the
requirements that characterize protocols especially suited for our purpose. Section 3
gives an overview how real-time protocols can be included in nowadays CORBA
implementations and if this is enough for making the real-time properties available.
Section 4 gives an overview of the available protocols with emphasize on the properties
that have been identified in the previous sections. Section 5 compares the properties
according to the results of the previous section. Section 6 concludes this document with
a recommendation for a protocol that serves best our purposes.

2 Requirements

2.1 Notion of Component
According to [Kru98] a component is a non-trivial, nearly independent, and replaceable
part of a system that fulfills a clear function in the context of a well-defined
architecture. A component conforms to and provides the physical realization of a set of
interfaces.
A component is substitutable for any other component which realizes the same
interfaces. Logical and physical cohesiveness of a component denotes a meaningful
structural and/or behavioral part of a larger system. Furthermore a component represents
a fundamental building block upon which systems can be designed and composed.
Conformity of a component to a given interface means that it satisfies the “contract”
specified by that interface and may be substituted in any context wherein that interface
applies.

 Sheet: 7 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

An interface is referred to as a common boundary between two subsystems. Since
architecture design is primarily interface design, the most important phase in the design
of large system architecture is the layout and placement of the interfaces ([Kop97],
p. 77). The interface of a component is the point of interaction between a system and its
environment (see [JKK+01]). A correctly designed interface provides understandable
abstractions, which capture the essential properties of the interfacing subsystems and
hide irrelevant details (control, temporal, functional, and data properties).
In order to disentangle unrelated functions of components it is advantageous to specify a
distinct interface for every separable service [Kop00]. We have identified three unique
functions that occur in many scenarios and should normally be serviced across
independent interfaces: The Real-Time Service (RS) Interface, the Diagnostic and
Management (DM) Interface, and the Configuration Planning (CP) Interface. Besides
from these three interfaces that expose well defined services to other components there
is a Local Interface that supports services depending from the particular application (e.g.
the communication with a particular temperature sensor). This allows e.g. a component
that encapsulates the services of the local interface and provides these services in a
generalized way to other components.
The following sections further describe the special properties of these interfaces:

2.1.1 Real-Time Service (RS) Interface
This is the interface that provides the intended service in a temporal predictable way to
the environment, namely the systems with which it interacts. The real-time service
interface is the most important interface for the user of the service. To keep the service
interface small and understandable, only those objects and functions that are required
for the intended emerging service should be visible at the service interface. It is
counterproductive for all internal objects of a component system to be visible at the
service interface.
In the CORBA world [Sie00], the (syntax of the) services that are provided by an object
are defined by the interface definition in a special interface definition language (IDL)
that can be mapped into a number of different programming languages. The interface
definition specifies the operations that can be performed by the object, the input and
output parameters, possible exceptions that may by raised by the object during
execution, and possibly, the declared state of the component.
In real-time systems, the purpose of the RS interface is the timely exchange of
observations among the component subsystems. An observation states that the state
variable possessed the stated value at the indicated instant or an event occurred at the
instant. In control applications, the temporal access pattern of information at the RS
interface is typically periodic, and a small delay and minimal jitter are important for the
quality of control. These temporal parameters must be stable in order to support the
composability at the RS interface. The user of the observations at the RS interface must
know only about the meaning of these observations but does not need any knowledge
about the internal structure or operation of the component system that delivers the
observation.

2.1.2 Diagnostic and Management (DM) Interface
The DM interface provides a communication channel to the internals of the component
system for the purpose of diagnosis and management.
A maintenance engineer who accesses the internals of a component system via the DM
interface must have detailed knowledge about the internal structure, the internal objects

 Sheet: 8 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

and the precise behavior of the system. The end-points of communication are the
internals of a component system on one side and some maintenance system or engineer,
possibly sitting at a remote terminal on the Internet, on the other side. The
communication pattern is, thus, point-to-point and the messages between the maintained
component system and the maintenance system or engineer must be routed transparently
through a set of networks. The DM interface should be independent from the service
interface, since these two interfaces are directed towards two different user groups and
require different knowledge.
In a real-time system, there is usually a need to support on-line maintenance and
management while a system is operational. To achieve this objective, any sporadic
maintenance and management traffic must coexist with the time-critical real-time traffic
without disturbing the latter. The traffic pattern across the DM interface is normally
sporadic and not time-critical, although precise knowledge about the instant when a
particular value was observed or modified can be important.

2.1.3 Configuration Planning (CP) Interface
The CP interface is used during the integration or reconfiguration phase to connect a
component system to other component systems of a system of systems.
The CP interface is typically point-to-point and not time-critical.

2.1.4 Local Interfaces
This interface realizes the connection between the component and some sensors or
actuators located nearby the component. This interface depends from the particular
application.

2.2 Communication Requirements for Transport
The interfaces denoted in the previous section are characterized by different
requirements regarding the transport layer:

2.2.1 Real-Time Service (RS) Interface
The RS Interface requires the communication of real-time data with known latency and
bounded jitter. The jitter can be translated in a measurement error if the gradient of the
observed variable is known. Thus it should be reasonable low.
Since the data is transferred in a periodic schema this interfaces requires an a priori
known bandwidth on the communication channel. Because of the nature of state
information where the new state obsoletes the previous state the loss of individual data
frames may be tolerated without degradation of service. For use in high risk
environments an architecture is required that is able to tolerate a single failure in an
arbitrary component in order to guarantee that no information is lost.

2.2.2 Event-Service (ES) Interface
Since the CP and the DM interface require similar temporal properties, they can be
merged on the transport layer to an Event-Service (ES) Interface. Nevertheless for the
application these interfaces should be available separately.
The CP Interface is mainly used in the initialization- and shutdown-phase and for
switching to another configuration. Although it is not time critical for a seamless
transition it is very important that the performance of the RS interface is not affected.

 Sheet: 9 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

The DM Interface is used for diagnostic purposes in order to check the internal state of
the node if the system does not operate in the intended way or for setting parameters
(e.g. calibration values). This interface allows full access to the internals of the node and
usually is not time critical.

2.2.3 Local Interfaces
Since this interface is used for realizing the connection between the component and
some sensors or actuators located nearby the component, using CORBA is not viable
for this interface. Thus the requirements of this interface are disregarded in the
remainder of this document.

2.3 Classification of Requirements

A candidate protocol must provide possibilities of integrating real-time traffic with its
special demands together with asynchronous non real-time communication without
disturbing the real-time communication. This requires guaranteed bandwidth with
known latency and minimal jitter to serve the purposes of the RS Interface. In addition
it must allow interleaving real-time traffic with non real-time traffic (e.g. asynchronous
requests for calibration).

In high risk environments highly dependable systems are required that must be able to
tolerate the presence of a single failed component. Further, the protocol must allow a
global notion of time and composability which means that the real-time properties of a
system are preserved even in the case of adding other components.

To be able to run some demanding tasks the protocol must be available on a platform
with sufficient CPU and memory resources. With respect to RT-CORBA it should be
available on a widely available platform.

3 Including RT-Protocols in CORBA
Since the HRTC project targets especially on identifying approaches of creating
CORBA based hard real-time applications this section identifies two approaches for
adding hard real-time protocols to nowadays CORBA by using the current specification
(CORBA 3).

3.1 Replacing the Protocol-Stack
Since the IIOP-protocol is mandatory for a CORBA-ORB communication between two
ORBs is usually performed as an IIOP communication on top of the TCP/IP protocol
which is often layered on top of the Ethernet protocol (see Figure 1: Commonly used
Protocol-Layers of CORBA).

 Sheet: 10 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

Figure 1: Commonly used Protocol-Layers of CORBA

By replacing some of these protocols from bottom to top by a protocol offering the
same services with specified temporal properties it is possible to enhance the temporal
behavior of CORBA:
Ethernet: The duration for the transmission of a message is highly dependent from the
current load of the system and is not limited if other nodes use the network
continuously. Replacing the Ethernet Layer with a packet service that provides
guaranteed bandwidth and constant latencies the communication of two ORBs becomes
independent from the communication of other nodes.
IP: The services of IP are Fragmentation of packets and Routing through the network. If
real-time communication takes place in one single cluster only, routing is not needed
anymore which simplifies a replacement IP-layer.
TCP: One source of indeterminism of the TCP layer is based on the retry mechanism for
lost packages. If the underlying packet service is based on a highly dependable
communication channel, the retry mechanism will not be used and this source of
indeterminism is eliminated. If the packets are provided in the proper order this also
eliminates a source of indeterminism.
This approach is compatible with every ORB since the IIOP protocol is mandatory for
all CORBA 3.0 compliant implementations. It can be performed with no changes of
existing implementations.
This approach is least intrusive since the existing CORBA specifications are not
touched. This approach allows RT-communication and

3.2 Extensible Transport Framework
Some members of the OMG have recognized the importance of replacing the TCP/IP
protocol with other protocols. Thus in 2000 an RFP (see [OMG00]) has been issued.
In response to this RFP a proposal for an Open Communications Interface (OCI) has
been submitted (see [OMG01]). Since the standardization progressed (and is still not
finished yet) today’s most recent interim document is [OMG02a].

 Sheet: 11 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

Although these submissions differ in details (e.g. the names of the interfaces) they both
describe the same core concepts and allow replacing the transport layer by the use of
plugins with a specified interface:
Information is stored in buffers as a sequence of octets. The ORB of the client requests
a connection from the server which allows reading and writing data stored in a buffer.
This connection is considered as stream of octets, that guarantees that data is received in
the same order as it is sent and no information gets lost. Thus the plugin has to include
mechanisms for retrieving lost packages for an unreliable, connectionless transport. If a
connection is not used anymore there are methods for closing the connection.

3.3 Evaluation
Neither of these possibilities allows solving all problems. By providing dedicated
virtual connections from one RT-ORB to the other these approaches allow
communication of other nodes without disturbing the behavior of the RT-ORBs.
As soon as a RT-ORB is involved in communication with a non real-time ORB it is
possible that the RT-ORB (or the task running on this machine) misses its deadline
because it has been interrupted by the non real-time ORB. Further, both approaches lack
mechanisms to adjust to deadlines or provide information how long the communication
of the data will need or about the delay because of well filled buffers.
For establishing a hard real-time system the following points should be considered:

? Reliable communication channel with bounded jitter and bounded transmission
delay that is accessed in an a priori known pattern.

? The worst case execution time (WCET) of the ORB has to be adjusted to this
pattern.

? The worst case execution time (WCET) of all tasks has to be adjusted to this
pattern.

Introducing these properties and the necessary hooks for configuring the transport
requires changes in several parts of the CORBA specification.

4 Overview of Protocols

Since there are a lot of protocols available the following comparison cannot be
exhausting but it emphasizes on the protocols that are widely used or provide special
features that qualify them for this purpose.

Some protocols (like TCP/IP) are layered on top of other protocols. Since the behavior
is heavily influenced by this protocol, statements about this protocol’s behavior are
based on assumptions of the underlying protocol as mentioned in the description.

Each Protocol is described according to a standard structure. It is judged how the
protocol meets the requirements established in the previous section.

4.1 Ethernet

The DIX Ethernet (the abbreviation DIX is for the developing companies: Digital, Intel,
Xerox) is based on a CSMA/CD project of Xerox that started in 1973.

IEEE 802.3 (see also [IEEE802.3]) is a standard of the Institute of Electrical and
Electronics Engineers (IEEE) for a Carrier Sense Multiple Access with Collision
Detection (CSMA/CD) Local Area Network (LAN) specifying several data rates from
1 MBit to 1 GBit. It supports the bus topology as well as the star topology. The first

 Sheet: 12 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

version of this standard has been published in 1983 and is based on the results of DIX
Ethernet.

An IEEE 802.3 Frame consists of a header (30 octets) and a payload (42-1500 octets)
resulting in a minimum packet length of 72 octets.

In half duplex mode (which is especially used for bus topology), a station waits before
transmitting for a quiet period on the medium (that is, no other station is transmitting)
and then sends the intended message in bit-serial form. If, after initiating a transmission,
the message collides with that of another station, then each transmitting station
intentionally transmits for an additional predefined period to ensure propagation of the
collision throughout the system. Since each node must be able to detect the collision the
length of cabling in bus topology is limited (depending on the data rate) and a minimum
packet length is required.

The station remains silent for a random amount of time (backoff) before attempting to
transmit again. Each aspect of this access method process is specified in detail in
subsequent clauses of this standard.

Without any further assumptions this standard is not usable for real time applications. It
is possible that the senders A and B send packages to the receiver C at a higher
combined transmitting bandwidth than C has as receiving bandwidth. Either the central
switch drops some packages or it is not possible to calculate an upper bound for the
latency.

Predictability can be established by using a bus access strategy that prevents collisions
and limiting the bandwidth for each node. The following is an example for a real-time
system based on Ethernet:

In the MARS approach (see [RSG89]) each node runs a set of statically scheduled real-
time tasks and an identical copy of the MARS operating system. All operating system
concepts that could lead to an unexpected delay or deadlock (e.g. dynamic resource
allocation) have been kept out. Communication is performed by the broadcast of
messages containing state variables on Ethernet. The bus is accessed in a TDMA
scheme in order to prevent collisions. They have been able to establish a hard real-time
system with a global time base, allowing a known synchronization accuracy of a few
microseconds.

Another example of preventing collisions is subdividing the collision domain of an
Ethernet network into several smaller collision domains by using an Ethernet Switch.
Although in switched Ethernet all nodes remain in the same broadcast domain a node
that is directly connected to a port of the switch is a collision domain of its own and
therefore might utilize all available bandwidth for communication with the target node
without disturbing communication between other nodes connected to the switch.
Determinism can be reached if priorities are used (see [HS02]).

4.2 Wireless

According to [IEEE802.11] Wireless LAN (WLAN) is specified for two fundamentally
different types of physical layers. The communication via diffuse infrared light is
specified but only used rarely. Further, the communication via radio waves is specified.
This medium is used by most network devices according to this standard.

 Sheet: 13 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

Like Ethernet without any further assumptions this standard is not usable for real time
applications.

By using an appropriate protocol on top of WLAN (e.g. as described in [NMG01]) it is
possible to use it for real-time applications but in addition to the problems of Ethernet
(see previous section) data loss can not be neglected in wireless communication which
makes it only usable for real-time applications where sporadic data-loss can be
tolerated.

In [LO01] is a discussion of other wireless communication mechanisms and a brief
overview of their real-time capabilities. In order to prevent problems because of
sporadic data loss and thus reduce complexity in debugging a wire bound
communication mechanism should be preferred.

4.3 Internet Protocol (IP)

Networking in UNIX Systems is based on the Internet Protocol (IP) which has been
developed in 1981 by the Information Sciences Institute (ISI) for the Defense Advanced
Research Projects Agency (DARPA) which is a part of the Department of Defense
(DoD) (see also [RFC791]).

The IP interfaces on one side to higher level protocols like TCP or UDP (see below) and
on the other side to a local network protocol like ethernet (see Figure 2: Internet
Protocol (IP) in relation to other protocols).

Figure 2: Internet Protocol (IP) in relation to other protocols

The IP serves mainly two purposes:

? Routing: Datagrams are transported from the source to the sink of the
communication even if there is no direct path and thus gateways have to be used.

? Fragmentation: If an intermediate network supports small packet sizes only the
datagrams have to be fragmented in smaller packages and reassembled at the
receivers side.

Data is communicated through datagrams consisting of the IP header and the payload.
The header length is at least 20 Bytes. For using fragmentation a packet must allow a
payload of at least 8 octets thus resulting in a minimum packet size of 28 Bytes. If

 Sheet: 14 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

TCP/IP is used with a packet size of just 28 Bytes even the header of the overlying
protocol is likely to be fragmented which could be a reason for problems with some
protocol implementations. According to [Cox96] IP requires at least 72 Bytes but for
acceptable performance at least 200 Bytes should be provided.

The temporal behavior of IP depends on the temporal properties of the Local Network
Protocol and on the load of the queues in the sender, the receiver, and intermediate
nodes.

4.4 User Datagram Protocol (UDP/IP)

The User Datagram Protocol (UDP) assumes that IP is used as underlying protocol
hence the name UDP/IP (see also [RFC768]).

It allows multiple processes to access the network independently by introducing the
concept of ports. Each UDP Packet contains the source port and the destination port and
the operating system provides a multiplexer and demultiplexer that assigns the datagram
to the application owning the respective port.

In addition a 16 bit checksum is provided in order to protect the datagram against bit
errors.

The UDP header adds to the IP header 8 bytes of header.

4.5 Transmission Control Protocol (TCP/IP)

The Transmission Control Protocol (TCP) assumes it can obtain a simple, potentially
unreliable datagram service from the lower level protocols. The TCP fits into a layered
protocol architecture just above the IP which provides a way for the TCP to send and
receive variable-length segments of information enclosed in internet datagram (see
also [RFC793]).

TCP is a connection oriented protocol introducing the following properties:

? Order: A stream of data is decomposed to packages. At the receivers side order
has to be re-established thus composing the stream of data.

? Reliability: TCP tolerates errors on the underlying datagram service (damaged,
duplicate or lost packages) by using a Positive Acknowledgement or
Retransmission (PAR) protocol with sequence numbers.

? Flow Control: TCP communicates information about the number of packages
the receiver may receive.

? Multiplexing: TCP allows multiple processes to access the network
independently by introducing the concept of ports. Each TCP Packet contains
the source port and the destination port thus allowing each packet to be assigned
to the application owning the respective port.

? Connections: TCP allows establishing and clearing of connections.

The temporal behavior of TCP relies on the underlying protocols (IP, Ethernet). Besides
from this the buffering of TCP introduces additional delays and the multiplexing
mechanism leads to unpredictable temporal behavior.

 Sheet: 15 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

4.6 General/Internet Inter-Orb Protocol (GIOP/IIOP)

In 1996 the Object Management Group (OMG) released version 2.0 of their Common
Object Request Broker Architecture (CORBA) specification. Among several other
extensions the specification included “out of the box” interoperability by introducing
the General Inter-Orb Protocol (GIOP) and its mapping to TCP/IP called Internet Inter-
Orb Protocol (IIOP). The latest version of GIOP includes the following features (see
also [OMG02b]):

? Common Data Representation (CDR): a representation of all data types of the
IDL is defined, that is independent from the computer’s byte order.

? Request Multiplexing: allows sharing one transmission channel between several
CORBA objects.

? Fragmentation: It is anticipated that value types may be rather large. Hence
breaking up the serialization into an arbitrary number of chunks is supported in
order to facilitate incremental processing.

? Connection Management: allows establishing and clearing of connections.

Since IIOP is a mapping of GIOP to a TCP/IP transport the temporal behavior depends
besides from the current workload of the ORB on the client’s side as well as on the
server’s side also on the temporal characteristic of TCP/IP (see previous section).

4.7 LIN
LIN is a single-wire serial communication protocol based on the UART interfaces
which are available as low cost silicon module on almost all micro-controllers and can
also be implemented as equivalent in software or as pure state machine for ASICs. The
medium access in a LIN network is controlled by a master node so that no arbitration or
collision management in the slave nodes is required, thus giving a guarantee of the
worst-case latency times for signal transmission.
The maximum transmission speed is 20 kbit/s which results from the requirements of
electromagnetic compatibility (EMC) and clock synchronization.
A node in LIN networks does not make use of any information about the system
configuration, except from the denomination of the master node which allows adding
nodes to the LIN network without requiring hardware or software changes in other slave
nodes. A LIN network comprises one master node and one or more slave nodes. All
nodes include a slave communication task that is split into a transmit task and a receive
task, while the master node includes an additional master transmit task. The
communication in an active LIN network is always initiated by the master task: the
master sends out a message header which comprises the synchronization break, the
synchronization byte, and the message identifier.
Exactly one slave task is activated upon reception and filtering of the identifier and
starts the transmission of the message response. The response comprises two, four, or
eight data bytes and one checksum byte. A message frame consists of the header and the
response part.
The size of a LIN network is typically under 12 nodes (though not restricted to this),
resulting from the small number of 64 identifiers and the relatively low transmission
speed. The clock synchronization, the simplicity of UART communication, and the
single-wire medium are the major factors for the cost efficiency of LIN.
Further details can be found in the LIN specification (see [Wen00]).

 Sheet: 16 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

4.8 Control Area Network (CAN) and TTCAN
The Control Area Network (CAN) is a serial communications protocol. It supports
prioritization of messages. This is achieved by a bit arbitration mechanism on the
identifier (it is assumed that there is a dominant and a recessive state on the bus and the
identifier consisting of dominant bits only has highest priority). Data rates up to 1 MBit
are supported.
CAN uses 4 different types of frames: data frames, remote frames, error frames, and
overload frames.
A data frame consists of the Start-of-Frame marker (a single dominant bit), arbitration
field, control field, data field, CRC field, ACK field, and End-of-Frame (a sequence of
seven recessive bits). The arbitration field contains the ID of the sender and the Remote-
Transmission-Request (RTR) Bit. The control field contains a Data-Length-Code of
4 Bits. The data field contains from 0 to 8 Bytes of payload. Thus a data frame consists
of 44 bit for the header plus 0-8 data bytes for payload.
A remote frame is similar to a data frame but contains no data field and is used by the
receiver in order to request data from the sender.
Error frames and overload frames are used for signaling error conditions or delaying the
transmission of further messages.
The bus access strategy is a Carrier Sense Multiple Access Collision Avoidance
(CSMA/CA) and assumes that the bus provides a dominant state. The identifier of the
node with highest priority consists of dominant bits only.
Further information is available in [Bos91].
TTCAN is a higher-layer protocol built on top of the unchanged standard CAN protocol
that synchronizes the communication schedules of all CAN nodes in a network that
provides a global system time. When the nodes are synchronized, any message can be
transmitted at a specific time slot, without competing with other messages for the bus.
Thus the loss of arbitration is avoided and the latency becomes predictable (see also
[Har00]).

4.9 Time Triggered Protocol Class A (TTP/A)
TTP/A is a member of the TTP protocol family that is intended for low cost networks of
sensors and actuators. TTP/A is ideally suited for integration with TTP/C into an overall
architecture where each and every sensor's reading and actuator's command is
completely predictable with respect to its temporal properties. This allows carrying out
all sensing and actuating action within hard real-time deadlines and minimal jitter.
TTP/A is a time-triggered protocol based on the TDMA bus access scheme. However,
in contrast to TTP/C it is a master/slave protocol, without redundant channels and with
limited fault-tolerance capabilities. The master is responsible for the clock-
synchronization and thus initiates the TDMA rounds. Since TTP/A is intended for low
cost systems, a standard UART and an 8 bit micro controller are sufficient for the
protocol. The communication protocol is integrated with the application software
running on an operating system.
Communication is performed by using Master-Slave (MS) rounds or Multi-Partner
(MP) rounds. While the MS rounds are used for the DM and CP interface the MP
rounds allow temporally predictable communication of data via the RS interface.
The maximum transmission speed depends on the physical layer. There are several
implementations based on UART frames at a data rate of 19.2 kbit/s. Data rates of up to
1 Mbit/s are specified on an RS485 physical layer or CAN physical layer. Since this

 Sheet: 17 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

protocol is not restricted to UART frames other data rates are possible (e.g. on a fiber
optic physical layer).
Due to the higher data efficiency the TTP/A protocol provides less jitter and better real-
time response compared to the LIN protocol on a physical layer with the same speed
(see [KEM00]).
Further details about this protocol can be found in [EEE+01].

4.10 Time Triggered Protocol Class C (TTP/C)
TTP/C is a member of the TTP protocol family that is intended as high speed network
for high dependability applications. TTP/C is ideally suited for integration with TTP/A
into an overall architecture where several fieldbus clusters have to be interconnected in
a temporally predictable manner. This allows carrying out all sensing and actuating
action within hard real-time deadlines and minimal jitter.
TTP/C is a time-triggered protocol based on the TDMA bus access scheme. However,
in contrast to TTP/A it is no master/slave protocol and provides fault tolerance by the
capability of tolerating one arbitrary faulty node or one faulty communication channel
in the system. This is reached by utilizing redundant channels and two central bus
guardians. Since TTP/C is intended for high dependable systems, the major part of the
protocol is available in hardware (the C1 communication controller and its successor,
the C2 communication controller). This controller provides to the microcontroller the
communication network interface (CNI), which is implemented as dual-ported RAM
and mapped into the address space of the microcontroller. This configuration acts as a
temporal firewall (see [KN97]) where only state data but no flow of control crosses the
boundary of the interface.
Communication is performed in a predefined TDMA schedule, called message
descriptor list (MEDL), which is stored in the flash memory of the communication
controller of each node. This protocol also provides a fault tolerant global notion of
time.
The current implementation of the TTP/C protocol supports data rates up to 25 Mbit/s.
Since the communication controller has to perform the protocol code in the inter frame
gaps (IFG) there is a minimum duration for the IFG which depends on the clock speed
of the controller and other parameters.
Further details of the TTP/C protocol can be found in [Kop02].

4.11 FlexRay
FlexRay is based on the TTP/C protocol, for this reason the fundamental concepts of the
time-triggered architecture can also be found in FlexRay. Thus it is also based on a
TDMA schedule for avoiding collisions, uses redundant communication channels which
are protected from babbling nodes by a bus guardian, and provides a fault tolerant
global notion of time.
Communication is done in a communication cycle consisting of a static and a dynamic
segment, where each of the segments may be empty. The sending slots are used
deterministically (in a pre-defined TDMA strategy) in the static segment. In the
dynamic segment there can be differences in the phase on the two channels. It is
possible to send different data in the same sending slot on different channels. Nodes that
are connected to both channels send their frames in the static segment simultaneously
on both channels. Two nodes, that are connected to one channel only, but not the same
channel, may share a slot in the static segment.

 Sheet: 18 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

To guarantee the consistency of the clock synchronization only nodes which are
received by all other nodes are allowed to participate. All nodes execute the clock
synchronization algorithm, but only the frames of the static segment are considered.
As described in [Kop01] the FlexRay protocol differs from the TTP/C protocol (see
previous section) by the point of view of the tradeoff between contradicting
requirements. While in TTP/C safety, composability, and flexibility (in this order) are of
outmost importance, the FlexRay protocol tilts away from safety and composability
towards flexibility.
Further details of the FlexRay protocol can be found in [BBE+02].

4.12 PROFIBUS
The history of the PROcess FIeld BUS (PROFIBUS) started in 1987 in Germany where
21 companies and institutes joined forces and aimed at realization and establishing of a
bit-serial fieldbus. The communication layer is specified in the standards IEC 61158 and
IEC 61784 for speeds of 9600 kBit/s – 12 MBit/s.
From the technological standpoint the lower level (communications) of the system
structure of PROFIBUS is based on the ISO/OSI reference model: It has a modular
design and offers several different communication technologies, application and system
profiles, as well as device management tools.
As bus access protocol, PROFIBUS allows the master-slave procedure, supplemented
by the token passing procedure for coordination of several masters on the bus. This
guarantees that each master may access the bus within an a priori known interval.
Further information about Profibus can be found at [PI02].
In Profibus the presence of stations with highly differing dynamics can cause high-
priority messages to miss their deadline if the workload increases (see [BM00]).

4.13 WordFIP / FIP
The WorldFIP protocol is based on a white paper defining the Flux Information Process
(FIP) concept that has been published in 1984 and is designed to satisfy the following
two communication requirements of process control systems: Operational
communication between sensors and actuators and automated equipment.
Communication of information between equipment in the control room and automated
devices, as well as communication between configuration and maintenance tools and
equipment in the system, including sensors and actuators. The entire WorldFIP protocol
is covered by the standards EN 50170-3 and EN 50254.
The Fieldbus Internet Protocol (FIP) combines the advantages of the Internet Protocol
and WorldFIP with supported data rates from 31.25 kb/s to 25 Mb/s. In addition to
compatibility with the installed base, it conserves all WorldFIP advantages such as
synchronization and availability. It also provides services offered by the Internet,
including true access to multimedia upon request.
Further information is available in [Wor01].

4.14 EN 50170, EN 50254, EN 50325

It has been tried to standardize a fieldbus protocol that included the best of the available
national standards. Since the favorites, PROFIBUS and FIP, have been completely
different it has been impossible to integrate both protocols in one single protocol. After
more than 10 years this standard included both protocols and some other protocols that
have been developed in the meanwhile.

 Sheet: 19 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

In order to make the standards easier to handle the available standards have been
bundled according to their primary application areas (see [FS02]): “General purpose
field communication systems” (EN 50170), “High efficiency communication
subsystems for small data packages” (EN 50254), and CAN based standards
(EN 50325).

Among these standards are PROFIBUS, WorldFIP, Foundation Fieldbus, P-NET,
ControlNet, INTERBUS, DeviceNet, SDS, and CANOpen.

4.15 SERCOS
The SErial Realtime COmmunications System (SERCOS) defines an open, digital
standardized interface for communication between digital controls, drives, sensors and
actuators for numerically controlled machines and systems.
Development began in 1988 and the physical layer and communications protocol were
accepted as international standard IEC 61491 in 1995.
The SERCOS interface uses fiber optics in ring topology as the communications
medium for high noise immunity and electrical isolation. It operates at standardized data
rates between 2 and 16 Mbit/s and allows up to 254 nodes per ring.
There are three types of data telegrams that are received simultaneously by all nodes
(the media is accessed in an a priori known TDMA schedule): Master-Sync-Telegram
(for distributing time information), Master-Data-Telegram, and Slave-Data-Telegram
(for communication between master and slave). Each Data-Telegram contains a field for
predefined cyclic data and a service-field for asynchronous requests.
It has been designed to include mechanisms to ensure the high level of determinism
required when synchronizing multiple axes of digital drives and directly supports
position, velocity and torque commands which can be set with a precision of about 1 µs.
The cycle time may be set to some specified values down to 62 µs.
For further details see [Ser99] or the standards mentioned above.

5 Comparative Evaluation

The temporal behavior of Ethernet is deterministic only when no collisions occur on the
media. If this can be guaranteed Ethernet provides low latency, constant delay, and
minimal jitter.

Wireless communication has similar restrictions as Ethernet but in addition the data rate
depends on external disruption as well as collisions because of other devices on the
same frequency spectrum.

The temporal properties of IP and UDP/IP are inherited from the underlying layer.

Since TCP/IP introduces retries in the case of lost packages, the temporal behavior is
unpredictable. If it can be assumed that the underlying network provides a high
dependability no retries are necessary and the temporal behavior of TCP/IP is similar to
the behavior of the IP layer.

GIOP/IIOP relies on TCP/IP or another stream oriented transport and inherits its
temporal properties from the underlying layer.

LIN is specified for 20 kbit/s only and suffers from its high jitter.

The worst case delay in a CAN network is too high because of the possibility of
collisions. If TTCAN is used the mandated temporal properties could be established.

 Sheet: 20 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

TTP/A is well suited from the point of view of the temporal properties but usually its
implementations lack the resources for running RT-CORBA.

TTP/C provides the necessary temporal properties on protocol level and is designed to
tolerate one arbitrary fault. In addition a global timebase is provided that allows
synchronization of tasks. At TTTech (see [TTT02]) there are several Motorola 68k
based computation nodes available as well as an implementation with more memory
based on the Power PC that provides enough resources for running some demanding
real-time tasks with CORBA.

In Profibus the presence of stations with highly differing dynamics can cause high-
priority messages to miss their deadline if the workload increases.

FlexRay provides similar properties than TTP/C but lacks composability due to its
event-triggered part.

The SERCOS is based on similar mechanisms as the TTP/A protocol. It is designed for
controlling digital drives and includes a lot of commands that are specific for this
domain. Transmission of CORBA messages is should be possible if a packet service is
established on top of SERCOS.

6 Conclusion
Apart from a predictable communication protocol with constant delay and minimal jitter
the TTP/C protocol also provides a common notion of time and provides a dependable
communication because of its capability of tolerating one arbitrary fault. Thus it is best
suited for implementing a predictable and dependable CORBA system. The
implementation based on the PowerPC could be used as a test bed for some demanding
tasks based on CORBA.
If the requirements for a precise global timebase and dependability are relaxed other
systems (e.g. flexray, switched Ethernet, etc.) become usable.

7 References

[BBE+02] Ralf Belschner, Josef Berwanger, Christian Ebner et al.; FlexRay:
Requirements Specification; BMW, DaimlerChrysler, Robert Bosch, General Motors,
and Opel, Germany, 2002.

[BM00] L. Lo Bello, O. Mirabella; Multi-Ring Scheduling Strategies for Profibus
Networks; Università di Catania, Facolta di Ingegneria, Italy, 2000.

[Bos91] Robert Bosch GmbH; CAN Specification Version 2.0; Robert Bosch GmbH,
Stuttgart, Germany, 1991.

[Cox96] Alan Cox; Network Buffers And Memory Management; Linux Journal,
issue 30, October 1996, available at http://www.linuxjournal.com/.

[EEE+01] Stephan Eberle, Christian Ebner, Wilfried Elmenreich et al.; Specification of
the TTP/A Protocol; Research Report No 61/2001; Institut für Technische Informatik,
Technische Universität Wien, Austria, 2001.

[Har00] Florian Hartwich, Bernd Müller, Thomas Führer et al.; CAN Network with
Time Triggered Communication; Robert Bosch GmbH, Germany, 2000, available at
http://www.can.bosch.com/.

 Sheet: 21 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

[HS02] Øyvind Holmeide and Tom Skeie; VoIP Drives Real-Time EtherNet; Industrial
Ethernet, Issue 5, 2002, available at http://ethernet.industrial-networking.com/.

[IEEE802.3] IEEE; Part 3: Carrier sense multiple access with collision detection
(CSMA/CD) access method and physical layer specifications; Institute of Electrical and
Electronics Engineers, New York, NY, U.S.A., 2000.

[IEEE802.11] IEEE; Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications; Institute of Electrical and Electronics Engineers,
New York, NY, U.S.A., 1999.

[JKK+01] Cliff Jones, Mark-Olivier Killijian, Hermann Kopetz et al.; Revised Version
of DSoS Conceptual Model; University of Newcastle upon Tyne, Technical University
of Vienna, LAAS-CNRS, and QinetiQ, 2001.

[KEM00] Hermann Kopetz, Wilfried Elmenreich, Christoph Mack; A Comparison of
LIN and TTP/A; 3rd IEEE International Workshop on Factory Communication Systems
(WFCS), 2000.

[KN97] Hermann Kopetz and Roman Nossal; Temporal Firewalls in Large Distributed
Real-Time Systems, 6th IEEE Computer Society Workshop on Future Trends of
Distributed Computing Systems, Tunis, Tunesia, 1997.

[Kop97] Hermann Kopetz; Real-Time Systems, Design Principles for Distributed
Embedded Applications; Kluwer Academic Publishers, Boston, Dordrecht, London,
1997.

[Kop00] Hermann Kopetz; Software Engineering for Real-Time: A Roadmap;
Proceedings of the 22nd International Conference on Future of Software Engineering
(FoSE) at ICSE 2000, 4th - 11th June 2000, Limerick, Ireland, 2000.

[Kop01] Hermann Kopetz; A Comparison of TTP/C and Flexray; Research Report
10/2001; Institut für Technische Informatik, Technische Universität Wien, Austria,
2001.

[Kop02] Hermann Kopetz; TTP/C Protocol – Version 1.0.0; TTTech Computertechnik
AG, Vienna, Austria, 2002, available at http://www.ttpforum.org/.

[Kru98] Philippe Kruchten; Modeling Component Systems with the Unified Modeling
Language; in Proceedings of the International Workshop on Component-Based
Software Engineering, 1998.

[Lee99] Edward A. Lee, Embedded Software – An Agenda for Research, University of
California, Berkely, CA, U.S.A., 1999.

[LO01] Thomas Losert, Roman Obermaisser; Wireless Real-Time Communication
Technologies: A Comparative Study; Proceedings of the IEEE Workshop on Real-Time
Embedded Systems, London, United Kingdom, 2001.

[NMG01] Edgar Nett, Michael Mock, Martin Gergeleit; Das drahtlose Ethernet; Der
IEEE 802.11 Standard: Grundlagen und Anwendung; Addison-Wesley, München,
Germany, 2001.

[OMG00] OMG; Extensible Transport Framework for Real-Time CORBA Request For
Proposal; document number orbos/2000-09-12, Object Management Group, Needham,
MA, U.S.A., 2000, available at http://www.omg.org/.

 Sheet: 22 of 22

 Reference: IST37652/
 Date: 2002-12-2 / 1. / Draft

© HRTC Consortium / Clearance: Consortium

[OMG01] OMG; The Open Communications Interface (OCI); Iona, U.S.A, Object
Oriented Concepts, Australia, 2001, available at http://www.omg.org/.

[OMG02a] OMG; Extensible Transport Framework Joint Revised Submission;
document number mars/2002-09-06, Borland, OIS, Vertel, U.S.A., 2002, available at
http://www.omg.org/.

[OMG02b] OMG; CORBA 3.0 Specification, chapter 15, document number
formal/2002-06-51, Object Management Group, Needham, MA, U.S.A., 2002, available
at http://www.omg.org/.

[PI02] Profibus International; Profibus: Technical Overview; Profibus User
Organization (PNO), Germany, 2002, available at http://www.profibus.com/.

[RSG89] Johannes Reisinger, Wolfgang Schwabl, Günter Grünsteidl; A Survey of
MARS; Research Report 16/1989; Department of Computer Science, Vienna University
of Technology, Austria, 1989.

[RFC768] Jon Postel, editor; User Datagram Protocol: DARPA Internet Program
Protocol Specification; Information Sciences Institute, Marina del Rey, California,
U.S.A., Aug. 1980.

[RFC791] Jon Postel, editor; Internet Protocol: DARPA Internet Program Protocol
Specification; Information Sciences Institute, Marina del Rey, California, U.S.A., Sep.
1981.

[RFC793] Jon Postel, editor; Transmission Control Protocol: DARPA Internet Program
Protocol Specification; Information Sciences Institute, Marina del Rey, California,
U.S.A., Sep. 1981.

[Ser99] Sercos; IEC 61491, EN 61491 SERCOS interface: Technische
Kurzbeschreibung; available at http://www.sercos.com/, 1999.

[Sie00] Jon Siegel, CORBA 3: Fundamentals and Programming, John Wiley & Sons,
New York, NY, U.S.A., 2000.

[TTT02] TTTech Webpage, available at http://www.tttech.com/, 2002.

[Wen00] H.-Chr. v. d. Wense; editor; LIN Specification Package: Revision 1.2;
Motorola, Munich, Germany, 2000.

[Wor01] WorldFIP Association; WorldFIP Summary; WorldFIP Association, available
at http://www.worldfip.org/, 2001.

