
www.hardrealtimecorba.org

IST-2001-37652

Hard Real-time CORBA

 Title HRT Protocol Specification

 Authors Miguel Segarra (SCILabs)
Carlos Moreno (SCILabs)
José A. Clavijo (SCILabs)

 Reference IST37652/008 Deliverable 2.2

 Date 2003-03-31

 Release 1.0

 Status Final

 Clearance Consortium

 Partners Universidad Politécnica de Madrid
Lunds Tekniska Högskola
Technische Universität Wien
SCILabs Ingenieros

 Sheet: 2 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

IST Project 2001-37652
HRTC
Hard Real-time CORBA

HRT Protocol Specification

Abstract:

The aim of this deliverable is find a suitable specification for easy plug-in
of new Transports in an ORB for hard real-time purposes. This document
describes the distinct alternatives for CORBA pluggable transports and
compares the existing proposals for them. The document also extends the
proposals to meet the requirements of hard real-time CORBA systems at
the protocol plug-in level.

Copyright

This is an unpublished document produced by the HRTC Consortium.
The copyright of this work rests in the companies and bodies listed below.
All rights reserved. The information contained herein is the property of
the identified companies and bodies, and is supplied without liability for
errors or omissions. No part may be reproduced, used or transmitted to
third parties in any form or by any means except as authorised by contract
or other written permission. The copyright and the foregoing restriction
on reproduction, use and transmission extend to all media in which this
information may be embodied.

HRTC Partners:

Universidad Politécnica de Madrid
Lunds Tekniska Högskola
Technische Universität Wien
SCILabs Ingenieros.

 Sheet: 3 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Release Sheet (1)

Release: 0.1 Draft
Date: 2002/12/26
Scope Initial version
Sheets All

Release: 0.2 Draft
Date: 2003/02/11
Scope Enhancements to HRTC plug-in description.
Sheets All

Release: 0.3 Draft
Date: 2003/03/14
Scope Content for temporal scopes and ETF registries has been

removed. C++ source code example added.
Sheets All

Release: 1.0 Final
Date: 2003/03/31
Scope Comments from Thomas Losert have been added.
Sheets All

 Sheet: 4 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Table of Contents

Release Sheet (1)___3

Table of Contents __4

1 Introduction __6

2 About the contents of this document _______________________7

3 Definitions, acronyms and abbreviations ____________________8

3.1 Definitions __ 8

3.2 Acronyms __ 8

3.3 Abbreviations__ 9

4 References to other documents___________________________10

4.1 References to project documents _____________________________ 10

4.2 References to OMG documents ______________________________ 10

5 Requirements for the Extensible Transport Framework RFP ___11

5.1 General Requirements _____________________________________ 11

5.2 Specific Requirements. _____________________________________ 14

6 Response Comparison to the Extensible Transport Framework
RFP ___17

6.1 Pluggable framework architectural overview_____________________ 18
CONCEPTS OF THE PLUGGABLE FRAMEWORK________________ 18
OCI ARCHITECTURE __ 20
ETF ARCHITECTURE __ 20

6.2 Common requirements _____________________________________ 22

6.3 Client side ___ 22
CLIENT SIDE FOR THE OCI __________________________________ 22
CLIENT SIDE FOR THE ETF __________________________________ 24

6.4 Server side __ 26
SERVER SIDE FOR THE OCI __________________________________ 27
SERVER SIDE FOR THE ETF __________________________________ 28

6.5 Factories __ 29
FACTORIES IN THE OCI _____________________________________ 29
FACTORIES IN THE ETF _____________________________________ 30

6.6 Zero Copy Interface__ 31

6.7 Interface Mapping Between Proposals _________________________ 32

7 Extension of the ETF/OCI for hard real-time CORBA applications34

 Sheet: 5 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

7.1 RS interface__ 35
CORBA COMMUNICATION MODEL ___________________________ 37
EVENT-TRIGGERED VS TIME-TRIGGERED SYSTEMS___________ 37
DRIVING THE SYSTEM FROM THE COMMUNICATIONS LAYER _ 38

7.2 Extensions to the Extensible Transport Framework _______________ 38
WHERE TO ASK FOR THE TIME IN THE PLUGGABLE TRANSPORT
FRAMEWORK? ___ 39
ASKING THE TIME IN THE ETF SUBMISSION __________________ 41
ASKING THE TIME FOR THE OCI _____________________________ 43
ASKING THE TIME FROM A CORBA APPLICATION _____________ 44
LIFE AS A RTObject__ 45
SETTING A DEADLINE ______________________________________ 46
REQUEST TIMESTAMPING___________________________________ 48

7.3 HRTC protocol properties ___________________________________ 49

7.4 C++ source code example __________________________________ 50

Appendix A: ETF module IDL ________________________________52

Appendix B: OCI module IDL ________________________________55

Appendix C: Messaging timeout policies ______________________61

 Sheet: 6 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

1 Introduction
This document studies the different responses to the Extensible Transport
Framework for Real-Time CORBA Request For Proposal (ETF RFP). The
objective is to analyse the existing transport plug-in framework proposals
in order to carry out a comparison of them and to learn about their
advantages an disadvantages. Once this is done, it is possible to build on
top of existing specifications new interface operations to deal with hard
real-time requirements without making unnecesary modifications to
existing OMG specifications.

As a starting point, the general and specific requirements that the ETF
proposals must comply with are presented. This is important in order to
understand if the actual proposals can be extended to match the
requirements of hard real-time. After this, a detailed analysis of the
specifications is carried out. The analysis describes IDL interfaces,
operations and call sequence in the client side as well as in the server side
of a CORBA system1 for the transport plug-in. Finally, modifications and
extensions to the proposals are presented in order to deal with hard real-
time requirements of distributed systems.

1 It is not our intention to raise here a discussion on what the terms client side and server
side mean. The terms are used in this document only to make clear the difference
between the caller object and the called object.

 Sheet: 7 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

2 About the contents of this
document

This document is centered in the properties of communication transport
plug-ins of CORBA brokers for hard real-time purposes. There are more
problems regarding end-to-end predictability in CORBA systems than that
of ensuring timely communication at the system network level. Those
problems are not considered in this document. However, throughout the
document some considerations are made regarding facilities that could be
provided by ORBs at the layers above the communication transport.

 Sheet: 8 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

3 Definitions, acronyms and
abbreviations

3.1 Definitions
Client Side: Part of a CORBA application from which a connection is
made.
Server Side: Part of a CORBA application from which a connection is
accepted2.

3.2 Acronyms
AMI: Asynchronous Method Invocation
CORBA: Common Object Request Broker Architecture
ETF: Extensible Transport Framework
GIOP: General Interoperability Protocol
HRT: Hard Real-Time
IDL: Interface Definition Language
Mars: Middleware and related services
OCI: Open Communications Interface
OMG: Object Management Group
ORB: Obejct Request Broker
Orbos: ORB and Object Services
OS: Operating System
POA: Portable Object Adapter
RFP: Request For Proposal
RT: Real-Time
ST: Smart Transducer
TTP: Time Triggered Protocol
UTC: Universal Time Coordinated

2 The client and server side definitions made are only valid for the scope of this
document.

 Sheet: 9 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

3.3 Abbreviations

 Sheet: 10 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

4 References to other
documents

4.1 References to project documents

• IST37652/029 Domain Analysis for CORBA-based Control Systems.
• IST37652/036 Real-Time Protocols for Real-Time Control.

4.2 References to OMG documents

• Orbos/2000-09-12 Extensible Transport Framework for Real-Time
CORBA Request For Proposal.

• The Open Communications Interface (OCI). IONA and OOC. Available
at http://www.omg.org/docs/orbos/01-01-05.pdf

• Mars/2002-09-06 Extensible Transport Framework Joint Revised
Submission.

• Mars/2002-04-03 Extensible Transport Framework Joint Revised
Submission.

• Formal/02-08-02 The Real-Time CORBA Specification v1.1
• Formal/02-12-02 Common Object Request Broker Architecture: Core

Specification version 3.0.2
• Formal/03-01-01 Smart Transducers Specification v1.0
• Time Service Specification v1.1 May 2002

 Sheet: 11 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

5 Requirements for the
Extensible Transport
Framework RFP

This section describes all the requirements for the Extensible Transport
Framework RFP. The set of requirements has been included in this
document as it is important that the modifications made for HRTC
protocol plug-ins comply with the basic requirements of all protocol plug-
ins. The requirements are presented in two different categories, General
Requirements and Specific Requirements.

5.1 General Requirements

• Proposals shall express interfaces in OMG IDL. Proposals should follow
accepted OMG IDL and CORBA programming style. The correctness of
the IDL shall be verified using at least one IDL compiler (and preferably
more than one). In addition to IDL quoted in the text of the submission, all
the IDL associated with the proposal shall be supplied to OMG in
compiler-readable form.

This document addresses this issue.

• Proposals shall specify operation behaviour, sequencing, and side-effects

(if any).

This document addresses this issue.

• Proposals shall be precise and functionally complete. There should be no
implied or hidden interfaces, operations, or functions required to enable an
implementation of the proposed specification.

 Sheet: 12 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

This document addresses this issue. There are no implied or hidden
interfaces.

• Proposals shall clearly distinguish mandatory interfaces and other

specification elements that all implementations must support from those
that may be optionally supported.

The optional functionality has been clearly distinguished.

• Proposals shall reuse existing OMG specifications including CORBA,

CORBAservices, and CORBAfacilities in preference to defining new
interfaces to perform similar functions.

We believe that this issue has been suffiently addressed. The
document relies on CORBA, Real-Time CORBA and the Smart
Transducers specifications.

• Proposals shall justify and fully specify any changes or extensions

required to existing OMG specifications. This includes changes and
extensions to CORBA inter-ORB protocols necessary to support
interoperability. In general, OMG favours upwards compatible proposals
that minimize changes and extensions to existing OMG specifications.

No changes are needed to existing CORBA specifications.

• Proposals shall factor out functions that could be used in different contexts
and specify their interfaces separately. Such minimality fosters re-use and
avoids functional duplication.

This issue has been sufficiently addressed.

• Proposals shall use or depend on other interface specifications only where

it is actually necessary. While re-use of existing interfaces to avoid
duplication will be encouraged, proposals should avoid gratuitous use.

This document relies on existing interfaces where appropriate.

• Proposals shall specify interfaces that are compatible and can be used with

existing OMG specifications. Separate functions doing separate jobs
should be capable of being used together where it makes sense for them to
do so.

This issue has been sufficiently addressed.

 Sheet: 13 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

• Proposals shall preserve maximum implementation flexibility.

Implementation descriptions should not be included, however proposals
may specify constraints on object behaviour that implementations need to
take into account over and above those defined by the interface semantics.

This issue has been sufficiently addressed.

• Proposals shall allow independent implementations that are substitutable

and interoperable. An implementation should be replaceable by an
alternative implementation without requiring changes to any client.

Independency of implementation is guaranteed by the use of IDL to
specify interfaces.

• Proposals shall be compatible with the architecture for system distribution

defined in ISO/IEC 10746, Reference Model of Open Distributed
Processing (ODP). Where such compatibility is not achieved, the response
to the RFP must include reasons why compatibility is not appropriate and
an outline of any plans to achieve such compatibility in the future.

We are not aware of any incompatibilities with ISO/IEC 10746. This
document does not use UTC representation of time from the
X/Open DCE Time Service used by the CORBA Time Service
Specification. UTC time units are hundreds of nanoseconds which
can a coarse granularity for certain hard real-time applications.

• In order to demonstrate that the service or facility proposed in response to
this RFP, can be made secure in environments requiring security, answers
to the following questions shall be provided:

• What, if any, are the security sensitive objects that are introduced
by the proposal?

• Which accesses to security-sensitive objects must be subject to
security policy control?

• Does the proposed service or facility need to be security aware?

• What CORBA security level and options are required to protect an
implementation of the proposal? In answer to this question, a
reasonably complete description of how the facilities provided by
the level and options (e.g. authentication, audit, authorization,
message protection etc.) are used to protect access to the sensitive
objects introduced by the proposal shall be provided.

 Sheet: 14 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

• What default policies should be applied to the security sensitive
objects introduced by the proposal?

• Of what security considerations must the implementers of your
proposal be aware?

 This document centers on the issue of providing hard real-time
properties for CORBA transport plug-ins. Although security in
this discussion is not a primary issue as most hard real-time
systems are closed systems, there is nothing in this specification
that precludes a plug-in developer to build a secure hard-real
time protocol plug-in.

• Proposals shall specify the degree of internationalization support that they
provide. The degrees of support are as follows:

a) Uncategorized: Internationalization has not been considered.

b) Specific to <region name>: The proposal supports the customs of the
specified region only, and is not guaranteed to support the customs of
any other region. Any fault or error caused by requesting the services
outside of a context in which the customs of the specified region are
being consistently followed is the responsibility of the requester.

c) Specific to <multiple region names>: The proposal supports the
customs of the specified regions only, and is not guaranteed to
support the customs of any other regions. Any fault or error caused
by requesting the services outside of a context in which the customs
of at least one of the specified regions are being consistently followed
is the responsibility of the requester.

 The extensions proposed in this document make no restrictions
on the internationalization support of CORBA.

5.2 Specific Requirements.

Scope of Proposals

• “Proposals responding to this RFP shall define the concepts behind a
separation of the messaging layer, such as GIOP, from the transport layer,
such as the TCP/IP layer of IIOP. This shall include a formal call model
between the layers.”

 Sheet: 15 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

The extensions of this document only affect to the transport layer of the
broker. The formal call model between transport (network protocol)
and message layer (GIOP) is not modified by this document.

• “Responses shall identify interfaces that make the real-time ORB core,

facility, and service layers independent of the transport technology.”

The extensions of this document are independent of the transport
technology used. However some features may not be provided by
some network protocols dependind on their capabilities (e.g. time
trigered vs. event trigered).

• “Submissions must clearly indicate what kinds of transports are supported

through these interfaces, including semantic restrictions.”

This issue has been addressed.

• “Responses must clearly show how the proposed framework is extensible,
permitting use of third-party transport solutions.”

This issue has been addressed.

Mandatory Requirements

Responses shall specify interfaces and the appropriate semantics for the following:

a. Profiles: Responses shall define the IOR profile architecture for
the non-TCP transports such that it is possible for a transport
author to create a transport plug-in for two different ORBs that
enable application interoperability across that transport.

This issue has been addressed.

b. Communication: Responses shall identify the interfaces and call
sequence between the real-time ORB and the transport plug-in.

This issue has been addressed.

c. Selection: Responses shall identify how the real-time ORB
selects a particular transport.

This issue has been addressed.

 Sheet: 16 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

 Sheet: 17 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

6 Response Comparison to
the Extensible Transport
Framework RFP

An study has been done of the most relevant responses to the OMG
Extensible Transport Framework for real-time CORBA RFP. These
responses have been either submitted or supported by some important
vendors of real-time CORBA products in the market.

All the submitting companies have a large experience in the development
and implementation of ORBs with plug-in transports.

As can be seen in the “Proof of Concept” column of the proposals table, all
submitted specifications are part of existing real-time CORBA products of
the submitting companies or have been tested in modifications of those
products. The IDL interfaces proposed have been verified and compiled in
the vendors’ IDL compilers.

Proposal
Number

Submission
Date

Submitting companies. Proof of
Concept

1 2001/01/05 IONA Technologies, PLC
Object Oriented Concepts, Inc.

ORBacus

2 2001/10/05 Highlander Engineering, Inc.
Vertel Corporation

VisiBroker for
Tornado

3 2002/04/03 Objective Interface Systems, Inc. ORBexpress
4 2002/09/06 Borland Software Corp.

Objective Interface Systems, Inc.
VERTEL Corporation
(with support from: Mercury
Computer Systems, Inc).

ORBExpress

 Sheet: 18 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

The next sections describe the comparison analysis of the submitted
proposals. Attention will be drawn only on the first and fourth proposals.
There are no comments to the second and third submissions due to the
fact that they were early proposals and the companies involved in the
responses joined efforts in the fourth proposal as is shown in the
submitting list of companies. Besides, the fourth proposal is based on the
concepts included in the second and third proposals.

Otherwise, the first proposal is somewhat different from others and is
based on the Open Communications Interface (OCI) although the concepts
handled by all of them are quite similar.

The following sections present and describe the interfaces needed to
allow a particular ORB to use an arbitrary transport protocol. In all the
responses, the author of the plugin must provide the implementation for
these interfaces.

6.1 Pluggable framework architectural overview
This section describes the relationships between the object and concepts
that appear in the OCI and in the ETF proposed specifications.

CONCEPTS OF THE PLUGGABLE FRAMEWORK

Figure 1 shows the basic structure of an ORB that uses a pluggable
transport framework. The figure shows the server side of an ORB in
which a Portable Object Adaptor (POA) and a threadpool to serve requests

Pluggable transport
protocol

Pluggable message
support

Pluggable protocol
framework

Acceptor

Connector

POA

threads

ORB

Service handler

Pluggable transport
protocol

Pluggable message
support

Pluggable protocol
framework

Acceptor

Connector

POA

threads

ORB

Service handler

Figure 1: Pluggable framework architecture overview

 Sheet: 19 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

are depicted. For the purpose of this document the interesting part of the
figure is that of the labeled elements of the figure. It shows that a
pluggable protocol framework can be composed of two different levels of
components:

• Components of the pluggable message protocol: For this
document, it must be understood that the message layer is the ORB
message layer. This means the GIOP message layer. It is not in the
scope of this document to introduce a pluggable framework for the
message layer (to allow the plugin of a Real-Time Interoperability
Protocol or RIOP). Introducing a RIOP plugin probably means that
interoperability with other CORBA brokers will be lost being this a
major handicap for message protocols different than GIOP.

• Components of the pluggable transport protocol: This layer is
placed under the message protocol layer (the GIOP message layer)
and it is here where we want to be able to introduce protocol
plugins for hard real-time communications. The transport protocol
layer sits on the network protocol and provides a way to hook a
transport protocol to the broker with independency of its
developer.

The transport protocol framework is responsible for the creation of the
acceptor and connector objects which in turn provide service handlers to
carry out communication through a given network protocol.

Acceptor objects are passive entities that wait for requests of connection.
Requests of connection are always initiated from the client side by
connector objects which play the active role. As a result of connection
acceptance by the acceptor, service handlers are created to carry on
communication. As will be seen in the next pages, for the OCI the service
handlers are mapped to the Transport object interface while for the ETF,
service handlers are part of the Connection interface. In the latter, the
Connection interface also defines the functionlity of connectors while for
the OCI, the connector functionality is defined in the Connector interface.
The role of acceptor is quite similar in both approaches, being called
Acceptor interface for the OCI and Listener interface in the case of ETF.

 Sheet: 20 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

OCI ARCHITECTURE
In the OCI architectural overview (Figure 2) there is a clear separation
between the client side and the server side framework objects. There is
also a “creates” relationship between the different objects of the
framework. As shown in the figure, the factory registry objects for
connector and acceptor factories can be related to n factory objects. Each of
this factory objects is able to create acceptors or connectors for a certain
type of transport protocol. At the same time, when a connection is
accepted by the acceptor at the server side, the connector at the client side
and the acceptor at the server side create a transport (service handler) that
is used to carry on the communication. Notice that this mechanism allows
to establish connections in advance which allows to avoid the overhead of
the first invocation on a server object. In the case of a standard CORBA
object the binding will be made at the time of the first invocation but in the
case of a real-time application it is possible to do it before the first
invocation is made. This will increase end-to-end predictability for the
first request.

ETF ARCHITECTURE
Figure 3 shows the proposed architecture of ETF. It greatly resembles the
OCI architecture but some objects are mirrored in the client and server
sides. Notice that the figure shows a factory registry object in the ORB but
no link between the registry and the factory objects is shown as they are
not in the scope of the ETF proposal.

ORB

Conn. Fact. Reg. Acc. Fact. Reg.

CLIENT SIDE SERVER SIDE

Conn. Fact. Acc. Fact.AcceptorConnector Transport

TCP/IP
Conn. Fact.

TCP/IP
Acc. Fact.

TCP/IP
Acceptor

TCP/IP
Connector

TCP/IP
Transport

1 1
n n

creates

ABSTRACT

ORB

Conn. Fact. Reg. Acc. Fact. Reg.

CLIENT SIDE SERVER SIDE

Conn. Fact. Acc. Fact.AcceptorConnector Transport

TCP/IP
Conn. Fact.

TCP/IP
Acc. Fact.

TCP/IP
Acceptor

TCP/IP
Connector

TCP/IP
Transport

1 1
n n

creates

ABSTRACT

Figure 2: OCI architecture

 Sheet: 21 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Both specification proposals OCI and ETF take advantage of symmetry in
a different way. For the OCI specification, there is conceptual symmetry
for all objects in the client and server sides, only their names change;
AccFactoryRegistry and ConnFactoryRegistry, AccFactory and
ConnFactory, etc. The Transport interface is the same for both sides as it is
the one in charge of communication. The only assimetry is seen in the role
of the connector and the acceptor objects which have different
functionality.

 In the case of ETF there is also symmetry, the factory object is the same in
the client and server side but there is also asymmetry due to the fact that
the server side is composed also by Connection objects. This is needed
because the Connection interface holds the operations to establish
connections and to carry on communication. These operations were
separated in the case of the OCI in the Connector and Transport interfaces.
The Connection interface provides a functionality at the server side (that
of establishing a connection) which does not belong to the server side as a
passive entity. Without being a major drawback for ETF, this makes the
OCI conceptually cleaner than ETF.

IMPLEMENTATION

ORB

Factory Reg. Factory Reg.

CLIENT SIDE SERVER SIDE

Factories FactoriesListenerConnection Connection

TCP/IP
Factories

TCP/IP
Factories

TCP/IP
Listener

TCP/IP
Connection

TCP/IP
Connection

creates

ABSTRACT

IMPLEMENTATION

ORB

Factory Reg. Factory Reg.

CLIENT SIDE SERVER SIDE

Factories FactoriesListenerConnection Connection

TCP/IP
Factories

TCP/IP
Factories

TCP/IP
Listener

TCP/IP
Connection

TCP/IP
Connection

creates

ABSTRACT

Figure 3: ETF architecture

 Sheet: 22 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

6.2 Common requirements
There are some common requirements that apply to all the proposals. This
requirements are made on the transport mechanism used under the
pluggable transport framework.

• Connection oriented: The undelying transport must be connection
oriented as seen by the pluggable transport interface.

• Reliable: Arbitrary messages of any length must be sent to the
remote endpoint. All internal details of the transport as packaging
or packet reordering or dropping must be hidden.

• Bi-direccional: replies to requests must be reliable received.

It must be noticed that there are transports that do not comply with these
features. The important point is that the above requirements are stated
from the point of view of the pluggable transport framework and it is
possible to build a transport plugin for unreliable transports by adding
code on top of the transport or protocol stack to add the functionality
which is missing.

6.3 Client side

In the client side, the ORB needs an interface to handle the connection and
the data exchange (read and write operations), as well as an interface to
manage profiles of any transport plugin, extract information from an IOR,
add profile data, and other auxiliary operations.

As said in the previous section, we will center our attention on the first
and fourth proposals. Both of them define operations to send and receive
messages (octets streams of any length) as well as to control and handle
the connections and time-outs.

CLIENT SIDE FOR THE OCI
The first submission (OCI) proposes the following interfaces:

• OCI::Buffer
This interface manages the arrays of data octets that will be sent or
received. The Buffer interface also holds a position counter so it is
possible to know the amount of octets sent or received.

o Advance: Increment the position counter by a quantity.
o Rest_length: returns the rest length of the buffer.

 Sheet: 23 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

o Is_full: checks if the buffer is full.

• OCI::Transport

This interface is similar to the fourth proposal “Connection”
interface. It has methods for sending and receiving messages. Also
we can specify timeouts and close the transport. There is a handle
to determine if the transport is ready to send and receive data. The
objective of the handle is to find out if the transport is ready to send
or receive messages.

o Close: Closes the transport. Should call shutdown before
closing. No further operation (read, write) can be executed
on this transport.

o Shutdown: This is a method to shutdown a transport. Upon
calling shutdown, threads blocked on receive operations will
return or throw an exception. After calling shutdown no
operations on the associated TransportInfo object can be
called.

o Receive, receive_detect and receive_timeout: the receive
method receives a buffer’s content. This can be done either
blocking until the buffer is full or just returning at the data
arrival. Receive_detect is also able to return FALSE in case of
a connection loss and receive_timeout can return before the
buffer is full by specifying a timeout parameter.

o Send, send_detect and send_timeout: these are the
matching operations of the receive interface. Send sends a
buffer contents blocking or not until the whole buffer has
been sent. Send_detect is also able to detect a connection loss
and send_timeout can return if the timeout expires before
the whole buffer has been sent.

o Get_info: returns the information object associated with the
transport.

• OCI::TransportInfo

Provides information about the Transport object. It has several
attributes describing the acceptor object that created the transport
(in the case of a server) or the connector object that created the
transport (in the case of a client). The info object also is able to
register a callback object in the case the transport is closed as well as
information regarding the identification of the transport plugin.

• OCI::CloseCB

 Sheet: 24 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Provides an interface for a callback object. The object holds a
callback function that will be executed before the transport is
closed.

o Close_cb: callback function to invoke.

• OCI::Connector
This interface defines the operations to allow clients establish a
connection to a server. In addition, it has functions to manage IORs
and extract profile information that satisfies the specified CORBA
policies. As a result of establishing a connection, a transport object
is created.

o Connect and connect_timeout: It is used by clients to
establish a connection to a server. It is possible with the
timeout function to establish a timeout and to check on
return whether a nil object reference for the transport was
obtained.

o Get_usable_profiles: This is a helper method that allows if
an IOR matches a set of profiles for this connector.

o Get_info: returns the informational object associated to this
connector.

o Equal: Determines whether this connector is interchaneable
with other connector.

• OCI::ConnectorInfo
Provides information about the Connector object. It is similar to the
TransportInfo object but for connectors. It provides means to add a
callback object that will be called upon connection.

o Connect_cb: calback operation to add a callback object that
will be called when a connection is made.

• OCI::ConnectCB

Defines a callback object for connectors. The callback function is
invoked when a new connection has been established.

CLIENT SIDE FOR THE ETF
In the fourth proposal, the funcionality described for the previous
interfaces is achieved by the “Connection” and “Profile” interfaces.

• Connection Interface

The fourth proposal includes the “Connection” concept. It is a link
between the GIOP layer and the Extensible Transport Framework

 Sheet: 25 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

layer. Such a “Connection” allows the GIOP layer to send and
receive any kind of message, without knowing any details of the
transport. The connection must be reliable (any arbitrary length
message can be sent to a remote endpoint) and bi-direcctional (thus,
we can send reliable requests). The transport must provide these
characteristics, otherwise the plugin has to include support for
these requirements in a layer on top of the transport and inside the
plugin.

There are operations defined to:

o Exchange data: read and write functions. These operations

must be completed successfully. In case of failure an
exception is raised. It is also important to guarantee the
integrity of the GIOP stream, so in the case a timeout occurs
the plugin can decide to close the connection. In the case of
read, the plugin cannot close the connection as the GIOP
level is the only one which can determine the integrity of the
GIOP stream.

As stated in the submission, ORBs are allowed to call the
write/read operations only from one thread at a time on the
same connection object. However, multiple threads may call
write/read operations simultaneously on different
connections at the same time.

o Connection Handling: This interface also resembles the

functionality of the OCI::Connector. The connect operation
allow to establish a 1-to-1 connection with a server, by means
of the endpoint supplied by the “Listener” object at the
server side. There are also, close and is_connected
operations. The close operation closes the connection using
the transport mechanism for disconnection and releasing the
associated resources. Is_connected is a helper operation to
find out the state of a connection.

o Reading the Server Profile: In order to be able to connect to

the”Listener” object at the server side, it is necessary to
provide the connection with the server endpoint
information. This is done by means of Profile instances
which are created by the Listener objects and supplied to the
connect operation. Sometimes, it is also useful to locate an
established connection by looking at the profile stored by the

 Sheet: 26 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

connection. The get_server_profile operation provides this
service.

o Request Dispatching Support: read and write operations

described so far match a “thread per connection/session”
model of request handling. Dispatching models distinct from
this can benefit from the operations is_data_available and
wait_next_data. It allows a “temporary mapping of request
execution objects to connections”. The first operation returns
immediately if data is available whereas the second is able to
wait for a specified timeout to wait for the arrival of new
data.

There are other auxiliary attributes in the connection that allow to
specify an identifier for the connection, to check for new data and
for specific information regarding functionality of the GIOP version
used.

• Profile Interface

All the information of a particular transport is managed in the
plugin via profile instances. The basic information stored in the
profile is that of the server contact endpoint, so a client is able to
connect to a server. The Profile interface defines the operations
needed to process the profile data and to store it in IORs. It contains
conversion operations such as marshal which is used to insert the
transport specific information (byte order, GIOP version, endpoint
address and other components) into a TaggedProfile which will be
stored in an IOR.

Also, there are other useful methods for matching (is_equivalent)
and copying profiles (copy)as well as a hash function to improve
the management of large sets of profiles. The GIOP version
supported by the profile is indicated by the version attribute.

6.4 Server side

The ORB server side needs interfaces to handle client connection requests
and to manage IOR profiles.

 Sheet: 27 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

SERVER SIDE FOR THE OCI
In the first proposal (OCI) the following interfaces are in charge of
performing this funcionality:

• OCI::Acceptor.

Used by CORBA servers to accept client connection requests. To do
this, the listen, accept, connect_self and close methods must be
used. The Acceptor creates a Transport when a new connection to
the server is accepted. It also includes operations to extract
information from the IOR and add new profiles that match the
object policies.

o Close: closes the acceptor, accept or listen may not be called
after the object has been closed.

o Listen: prepares the acceptor to listen for new incoming
connection requests. Until an acceptor is listening attempts
of connection will result in communications failure
exception.

o Accept: accept is used to accept connection requests. This
method can be blocked until a new connection is accepted.
When a new connection has been accepted the operation
returns an object reference to a transport object that can be
used to send or receive octet streams.

o Connect_self: this is a helper method used to unblock
threads that are waiting blocked for incoming connection
requests in the accept operation. It is useful when the
acceptor is blocked waiting for connections in the accept call.

o Add profiles: this methods adds new profiles that match the
acceptor to an IOR.

o Get_profiles: extract the profiles from an IOR which are
local to the acceptor.

o Get_info: retrieves an AcceptorInfo object with the
information associated to this acceptor.

• OCI::AcceptorInfo.

Information about the Acceptor object. This object allows to set a
callback object that is invoked whenever a new connection is
accepted by the acceptor. It allows also to consult the transport
identification and a human readable description of the transport.

o Add_accept_cb: Add a callback to be called when a new
connection is requested.

• OCI::AcceptCB. Callback object. The callback operation is

automatically invoked when a new connection has been accepted.

 Sheet: 28 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

SERVER SIDE FOR THE ETF
In the fourth proposal (ETF) the interfaces involved are: Connection,
Profile, Handle and Listener. The “Listener” will manage the endpoints
for the client requests. These endpoints will be encapsulated in the profile
and will be used by clients to request a new connection.

• Listener Interface.

When a client needs to make a request to a particular CORBA
server, it asks for a new connection. This interface provides
operations to accept a new connection, allowing to block until the
connection has been accepted and close the object (it implies all
opened connections will be closed).

The Listener interface has operations for the following
functionality:

o Setup: The set_handle, accept and destroy functions. The
set_handle method establishes the link between the ORB
and the server endpoint of the plugged transport (see the
description of the Handle Interface). The method must not
be invoked before any call to the accept operation. Accept
returns an instance of the connection and blocks until the
client connects to the server. Destroy closes the endpoint and
destroys all the connections managed by it.

o Dispatch: The proposal includes operations to manage idle

connections. It is possible for the ORB to carry out some sort
of “virtual disconnection” via the completed_data
operation, the connection can be returned from the ORB to
the listener and incoming data will be signalled to the handle
by the listener. This means that the Listener object is the one
in charge of handling idle connections. By means of the
is_data_available operation it is possible to determine the
state of the connection.

o Profile Data: The “Listener” has an attribute that returns a

copy of the profile that contains the endpoint address.

• Handle Interface.

 Sheet: 29 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

The fourth proposal uses the “Handle” interface to provide the
operations that allow interaction between the ORB and the
plugged-in transport.

o Add new Connections: A “Handle” instance contains

functionality to announce a new client connection to the
ORB. The add_input operation serves for this purpose and
it gives a chance to the ORB to reject the connection.

o Signalling Incoming Data: The signal_data_available

function is used by the plugged-in transport when data
arrives to the server endpoint. It initiates a new request
dispatching cycle in the ORB. Any other incoming data for
this connection is ignored until the connection is returned to
the Listener by means of the completed_data method.

o Client Side Close: It is used by the plugin to signal the

Handle that the client has closed the connection.

6.5 Factories

In the previous sections, we have described the interfaces the plugin
transport needs to interact with the ORB. The instances of the objects that
implement these interfaces are created by “Factories”.

FACTORIES IN THE OCI
In the OCI Module there exist the following interfaces for the management
of factories:

Acceptor Connector
OCI::AccFactory
OCI::AccFactoryInfo
OCI::AccFactoryRegistry

OCI::ConFactory
OCI::ConFactoryInfo
OCI::ConFactoryRegistry

These interfaces contain operations to create the Acceptors and
Connectors which are suitable for the particular parameters of the
Transport. It is important to notice that this specification supports the
concept of registry. So it is possible to register a factory for a specific
transport and later refer to it.

 Sheet: 30 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

The factory objects allow to create acceptors for an specific type of
transport in the case of the server side while in the case of the client side
allow to create connectors. For this, the create_acceptor and
create_connector operations of the respective factories are used.

The factory registries provide means to register new connector or acceptor
factories for an specific transport. This is done by using the add_factory
operation of either interface. It is possible to retrieve a factory interface
(get_factory) by its protocol identifier or to get the sequence of registered
factories by a call to the get_factories operation.

FACTORIES IN THE ETF
There is also a factory interface definition in the fourth proposal. For this
specification, all the creation operations are collected under the same
factory interface. There are three creation funtions:

• Create_connection(in RTCORBA::ProtocolProperties props);
This function will be used to create an instance of the “Connection”
interface for a particular transport. As it is indicated in the
submission, the connection properties are expressed in standard
real-time CORBA form (as ProtocolProperties) and can be fixed
either from client side or the server side (and exposed to the clients
by IORs).

• Create_listener(in RTCORBA::ProtocolProperties props);

This operation is called to create an instance of the “Listener”
object. When the function returns, a new endpoint to listen for
requests has been created. The profile associated to the listener will
be accesible just after calling this operation. The ProtocolPolicies
applied at the server side that are used in this operation have been
set on the related Portable Object Adaptor (POA).

• Demarshall_profile(inout IOP::TaggedProfile data, out

IOP::TaggedComponentSeq components);
The objective of this operation is to create a new profile for this
plugin by demarshalling the information found in the tagged
profile.

There is a factory instance per plugged-in transport. The identifier of the
factory for a transport is that of the transport and is identified by its profile
tag number.

 Sheet: 31 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

The fourth proposal does not provide a mechanism to register factories
into the ORB and leaves the implementation details of these interfaces out
of the proposal.

6.6 Zero Copy Interface
One of the basic things to do in order to improve performance is to avoid
unnecessary copying of data objects. The ETF proposal makes provision
for an optional zero copy interface for the connection object. This is useful
in the case that the transport or communications library grants access to
the buffers used in the protocol stack or is able to use buffers provided by
the application or ORB. At least in the case that there is no access to the
protocol stack advantage is taken as the copy between ORB and transport
plugin buffers can be avoided.

The zero copy interface is implemented by inheriting from the connection
interface and providing a BufferList interface representing either the data
to be sent to the remote peer or the data received by the connection
instance.

• BufferList interface
The BufferList interface is a list of pointers to octet sequences which
can be manipulated by the ORB or the transport layer without the
need of copying their contents.

o Add_buffer. This is the way used by the ORB to allocate a
zero copy buffer. The returned buffer is identified by an
index. This way it is possible to make further references to
the buffer by its index.

o Get_buffer. Retrieves a buffer by its index.

The BufferList also contains an attribute to identify the number of buffers
that the BufferList is currently holding.

• ConnectionZeroCopy
This interface contains the methods used to read and write data in a
connection object with support for the zero copy mechanism.

o Write_zc. This operation writes a zero copy buffer list to the
transport. It supports the timeout mechanism basically to
comply with real-time CORBA specifications.

o Read_zc. This operation reads data into plug-in supplied
buffer. It also supports the timeout mechanism.

o Create_buffer_list. This method creates a buffer list.

 Sheet: 32 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

6.7 Interface Mapping Between Proposals
In this section a mapping between both proposals is made as to show that
they are basically similar and that both are built around the same concepts
and patterns. Factories, connectors, acceptors and transports along with
several data holder entities are all the concepts that need to be
implemented to provide a pluggable transport framework to an object
request broker.

 The fourth proposal (Borland’s) has a smaller amount of IDL code and
interfaces but this is because in the OCI there is a clear separation between
the client and the server side.

In the case of the ETF, an optional interface for zero copy buffers is
provided. This can also be achieved in the OCI as the Buffer interface can
be written to use as the protocol stack buffers. The following table shows
the relationship between both specifications:

ETF module OCI module
Profile ProfileInfo
Buffer Buffer
Connection Connector

Transport
Handle AcceptCB

ConnectCB
CloseCB

Listener Acceptor
Factories AccFactory

ConnFactory
Not provided by the specification AccFactoryRegistry

ConFactoryRegistry
Zero-copy interface Can be provided by the Buffer

implementation

The ETF leaves out the scope of the specification the definition of the
registry object used to register new plugins into the ORB. Also, the ETF
provides a zero-copy interface which can be resembled in the OCI by a
proper implementation of the Buffer interface. Notice that it is not possible
to implement a zero-copy interface if the underlaying network protocol
stack does not allow to share a buffer with the application.

 Sheet: 33 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

The OCI module provides the same interfaces in a different way ETF does.
ETF interfaces provide the same functionality as the OCI in a more
simplified way. Further, the ETF module makes use of the real-time
CORBA ProtocolPolicies interface as a way to configure the transport
plugin. One reason for this, is that the OCI is a much earlier proposal than
ETF and ETF has taken benefit from this situation. Initially, OCI was not
designed thinking in real-time CORBA but in adding a pluggable protocol
framework to CORBA. This can also be seen as drawback for the ETF as it
will not be possible to use the ETF plugin in a non real-time CORBA
broker (because it is configured by the use of real-time CORBA protocol
policies). On the other hand, OCI can be used either in standard or real-
time CORBA brokers.

 Sheet: 34 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

7 Extension of the ETF/OCI
for hard real-time CORBA
applications

In IST37652/036 RT-Protocols for real-time control, an identification of
real-time systems interfaces has been done. Also the necessity to deal with
time at the level of interfaces appears as a conclusion from that document.
As stated before the so called real-time systems often rely on the concept
of priority as a form of task precedence or thread elegibility of execution.
Being this an intuitive concept, its mapping on time does not ensure any
temporal properties of the system. This is why it is needed to directly deal
with time in the components interface of real-time systems. Three unique
interfaces existing in most real-time scenarios have been identified: the
Real-time Service (RS) interface, the Diagnostic and Management (DM)
interface and the Configuration and Planning (CP) interface. The
separation of these interfaces is useful as the level of service or Quality of
Service (QoS) provided by them is different in every case. Interfaces are
separated according to the properties they offer as a component to the rest
of the system architecture.

As stated in IST37652/029 Domain Analysis for CORBA-based Control
Systems, there are several important issues that CORBA and RT-CORBA
are lacking:

• Deterministic transports. IIOP (GIOP over TCP/IP) which is the
most commonly used transport for CORBA brokers does not give
any end-to-end timing guarantees. A minimal requirement of an
upper bound for the end-to-end latency is needed.

• Periodic activities. In real-time communications a common case is
that in which the sender periodically transmits messages to one or
more receivers. There is a need in CORBA to specify periodical
client invocations to servers.

• Scheduling. In order to guarantee communication timing
contraints it is necessary to schedule access to the network. To be

 Sheet: 35 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

able to achieve this, a global knowledge of network accesses must
be available from the ORB level. Considering an static approach, a
usual case in hard real-time systems, scheduling could be achieved
by knowing the network time-slot asigned to a node or the
maximum send rate for a node.

• ORB footprint. Close to the process resources are small. In many
cases, hard real-time applications are close to the process so it is
important to have a small ORB footprint. RT-CORBA sits on top of
CORBA which size is not appropriate for this type applications.
HRT-CORBA should be built on top of minimum CORBA with a
modular approach in which features could be plugged-in.

• Backward compatibility: In order to preserve vertical integration
with other CORBA implementations, interoperability must be
maintained. This means at least keeping the GIOP layer and/or
TCP/IP in a transport plugin used for non real-time services. GIOP
and other ORB message protocols could be maintained in the case
an ORB pluggable message framework is implemented.

7.1 RS interface
This interface is in charge of providing its service in a predictable
temporal way to the rest of the environment. In the case of real-time
CORBA the transport plugin is a component of the system architecture
responsible for the communication of an octet stream between peer
endpoints. Current interface definition (ETF or OCI module) is based on a
best-effort approach where no control over the temporal behaviour of the
transport layer can be exercised.

Communication activity is carried out by means of the ETF::Connection
or by the OCI::Transport interfaces. The IDL excerpt shown below is the
interface specification for Connection object of ETF.

// locality constrained
 local interface Connection
 {
 void write(in boolean isFirst,
 in boolean isLast,
 in Buffer data,
 in unsigned long offset,
 in unsigned long length,
 in TimeBase::TimeT time_out);

 void read(inout Buffer data,
 in unsigned long offset,
 in unsigned long min_length,

 Sheet: 36 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

 in unsigned long max_length,
 in TimeBase::TimeT time_out);
 // transport needs to set data.length() to
 // offset + number of bytes actually read

 void flush();

 void connect(in Profile server_profile,
 in TimeBase::TimeT time_out);

 void close();

 boolean is_connected();

 Profile get_server_profile();

 boolean is_data_available();

 boolean wait_next_data(in TimeBase::TimeT time_out);

 readonly attribute long id;
 readonly attribute boolean supports_callback;
 readonly attribute boolean use_handle_time_out;
 };

The basic functionality of this interface is provided by the methods read
and write. As a consequence of the real-time CORBA timeout policy
(which is the Messaging specification RelativeRoundtripTimeoutPolicy)
the TimeBase::TimeT time_out parameter is part of the operations
signature. But the degree of temporal control this kind of interface
provides is very low. It is only possible to notice that a request cannot be
delivered or a reply received after the timeout (e.g. deadline) has expired.
This is not an acceptable approach for a hard real-time system.

Instead of this, functionality should be added to learn if it will be possible
to deliver a request without occurring the timeout or reaching the
deadline. Real-time CORBA 1.0 imposes the restriction of fixed priority
scheduling. In practice, this means that to develop a real-time application
with CORBA, a relationship between the priorities and deadlines of the
system must be established. While, as said, the use of priorities is intuitive,
it is certainly difficult to determine the level of determinism of a system or
to say that the deadline will be met just because priorities have been
assigned. In the best case, determinism will not be possible without global
knowledge of the mapping of priorities in the whole system. And this
means not only to CORBA priorities, it means from CORBA to native OS
priorities and how these are handled by the OS. In general, real-time
application developers perform off-line scheduling analysis to provide
deterministic behaviour and base the core of the system on periodic tasks

 Sheet: 37 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

with a time constant many times smaller than that of the system. It is also
needed to handle aperiodic or sporadic tasks as a consequence of
incoming events in the system. There are neither real-time CORBA nor
Extensible Transport Framework tools to do this. The reason for this, is
that the management of time poses difficult problems so CORBA does not
address them at all. This is also true for most programming languages
where usually there is only support for timers. To deal with the notion of
time in real-time systems, there must exist hooks in the programming
interface that let us deal with time at least in the following ways:

• Access to clock.
• Delaying of tasks.
• Handling of timeouts
• Deadline specification and scheduling.

CORBA COMMUNICATION MODEL
Most CORBA systems are based around the client-server model in which a
client makes a request and blocks until a reply from the server is received.
This is the synchronous two-way communication model commonly used
in CORBA. The other most commonly used communication model in
CORBA is the oneway communication in which the client does not wait
for a reply. A drawback of oneway invocations in CORBA is that,
although it is not possible to specify user exceptions for oneway
invocations, the ORB is able to throw standard system exceptions which
could be raised at the server side and catched at the client side.

The Messaging specification of CORBA introduced the AMI with which
operations can be called asynchronously using the static invocation
interface. The AMI offers two ways of invoking an object operation non-
blocking the client, being most appealing to us the callback or reply handler
model in which the ORB will invoke an application defined reply handler
upon reply form the server. This concept of callback is common in event
driven systems and has been widely implemented in different types of
systems (MS Windows for instance).

EVENT-TRIGGERED VS TIME-TRIGGERED SYSTEMS
There is a great conceptual difference between time-triggered and event-
triggered systems. In a time-triggered architecture, system activities are
initiated by the progression of a globally synchronised time base while in
an event driven system, activities are driven by other events different than
the progression of time. In the previous section, the reply handler callback
model is a pure event-triggered system as the handler is not activated

 Sheet: 38 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

until the request from the server (the event) has been received. The
callback model or the oneway invocation communication model are
suitable for real-time applications in which the communication plug-in is
event-driven. Unfortunately, this communication model alone is not good
for time-triggered systems as activities are initiated synchronised with a
global time base3. In a system with a time-triggered communication layer,
the system activities must be driven from the communications layer and
the transport plugin which must be time-aware. An event-triggered
system is more flexible than a time-triggered system but the latter is more
predictable. In a time-triggered approach all activities and communication
take place at predetermined instants of time.

DRIVING THE SYSTEM FROM THE COMMUNICATIONS
LAYER
For hard real-time applications the ORB must be aware of the progression
of time. This must hold for the distributed system. With this requisite and
for a time-triggered network protocol, the time should be obtained from
the communication layer and made available to the application or the
ORB. This can be achieved by extending current definitions for the OCI or
the ETF submission.
A pluggable transport must be able to tell the application what time it is as
well as a measure of time precision and accuracy. It is also needed for the
application to learn when the next period or cycle of execution begins.
Again this service must also be provided from the transport plug-in.
It must be noticed that time-awareness for the ORB or the application
might be less precise than that of the transport protocol being then
necessary to downgrade the time for the application.

7.2 Extensions to the Extensible Transport Framework
In order to drive the ORB/system activities from the communications
layer it is needed to incorporate the notion of time into the pluggable
protocol framework. The representation of time becomes then a crucial
point as it should be simple and consume as less processing power as
possible. In the OMG document Formal/03-01-01 Smart Transducer
Specification a time instant is represented in IDL as

 typedef long long TimeInstant;

3 Actually, it is not needed to be aware of the time of the global time base. Only the
difference of time with the time base and the accuracy/precision of the time base in the
nodes is needed.

 Sheet: 39 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

and its data representation is the following:

typedef long long TimeInstant:
This type is used for timestamps. The 40 upper bits represent the number of
seconds (all 34841 years an overflow will occur) while the remaining 24 bits
represent the fractions of a second, allowing an accuracy of 60 ns. In a system
with external clock synchronization the 40 upper bits are initialized with the
value 0 at 00:00:00 UTC on January 6, 1980, which is also the reference starting
point (the epoch) for GPS-time. In this way every point in time 17420 years before
and 17420 years after January 6, 1980 can be uniquely represented with an
accuracy window of 60 ns. Stand-alone systems without external clock
synchronization are set to 0 during initialization.

Formal/03-01-01 also defines a time duration typedef long long
TimeDuration as:

typedef long long TimeDuration:
This type is used for durations that are represented in units of 2 -24 seconds (about
60 ns).

There is also a representation for periodic instants:

struct Instants {

TimeInstant instant;
TimeDuration period;

};

struct Instants:
The first value (subfield instant) informs about the next instant when the most
recent of the denoted events will occur. The second value (subfield period) is the
period of the named data item.

This representation of time can be used in the pluggable protocol
framework to add a service that allows the real-time system/ORB to learn
when the next cycle of processing/execution must begin.

WHERE TO ASK FOR THE TIME IN THE PLUGGABLE
TRANSPORT FRAMEWORK?
The pluggable transport is the entity in the CORBA architecture that is
aware of global time. The pluggable/extensible transport framework must
provide means to forward time to the ORB. Notice that forwarding the
time to the ORB does not mean that the real-time application is time-

 Sheet: 40 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

aware. The communication plugin interfaces are not available at the real-
time CORBA application level. It will be necessary also to provide an
interface for the application to gain knowledge of the progression of time.

Regarding the extensible protocol framework and as explained in the
sections of the OCI and ETF, a pluggable protocol framework handles the
concepts of registry, factory, connector, transport and acceptor. Only the
transport is used when the system is working to communicate data. The
reminding entities are used for configuration and setup of connections.
Once a connection has been established, it is the transport object the one in
charge of communications. This means the interface related to the
transport either in the OCI or in the ETF submission should be extended to
let the ORB ask about the progression of time. It is not possible to ask for
the time without being connected to a tranport.

Figure 4 shows the layered architecture of a real-time ORB with an
extensible transport framework. The time arrow shows how propagation
of time occurs in the ORB and in the CORBA application. In this approach,
the global progression of time is only known by the transport layer (e.g.
the TTP protocol) and the extensible prtocol framework interface provides
means to allow the ORB ask for the time. The figure also shows that it is
the message layer of the ORB (the GIOP layer) the one with complete
access to the plugin interface (e.g. to the transport object) so it is not
possible for the CORBA application to access directly to the transport to
learn the time.

(RT)ORB

RT Eth. TTP

GIOP

Stubs/Skels

OCI/ETF
ORB

Transport
Layer

Network Transport Layer

Vendor independent
interface

Ti
m
e

(RT)ORB

RT Eth. TTP

GIOP

Stubs/Skels

OCI/ETF
ORB

Transport
Layer

Network Transport Layer

Vendor independent
interface

Ti
m
e

Figure 4: Propagation of time in the real-time ORB

 Sheet: 41 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

ASKING THE TIME IN THE ETF SUBMISSION
To ask for the time in the ETF submission, the interface which defines the
role of the transport must be identified. In the ETF, this role is represented
by the Connection interface. The Connection interface also serves as a
connector and is able establish connections to servers. The following IDL
code is the ETF Connection interface extended with operations to ask the
global time as seen by communications protocol.

module ETF{

// declaration of time types
typedef long long ProtocolTime; // a time instant
typedef long long ProtocolDuration; // a duration
struct ProtocolInstant{ // current time and period
 octet messageID; // message identifier
 ProtocolTime instant;
 ProtocolDuration period;
 octet precision; // precision
};

// locality constrained
 local interface Connection
 {
 void write(in boolean isFirst,
 in boolean isLast,
 in Buffer data,
 in unsigned long offset,
 in unsigned long length,
 in TimeBase::TimeT time_out);

 void read(inout Buffer data,
 in unsigned long offset,
 in unsigned long min_length,
 in unsigned long max_length,
 in TimeBase::TimeT time_out);
 // transport needs to set data.length() to
 // offset + number of bytes actually read

 void flush();

 void connect(in Profile server_profile,
 in TimeBase::TimeT time_out);

 void close();

 boolean is_connected();

 Profile get_server_profile();

 boolean is_data_available();

 boolean wait_next_data(in TimeBase::TimeT time_out);

 Sheet: 42 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

 readonly attribute long id;
 readonly attribute boolean supports_callback;
 readonly attribute boolean use_handle_time_out;

 // protocol time
 attribute readonly ProtocolInstant protocol_time;
 ProtocolInstant protocol_period(in octet messageID);

 };
};

In this IDL, time is represented as in the Smart Transducers Specification.
This representation of time has the advantage that it is possible to
synchronize a site with a signal from a GPS receiver (the time
representation has a granularity of 60 ns) as the epoch is synchronised
with that of GPS..

The ProtocolTime and ProtocolDuration have the same interpretation as
in the Smart Transducers Specification. The same holds for the precision
octet which represents the number of significant bits in the timestamp.

Time Precision (from formal/03-01-02):
The Precision represents the number of significant bits in the timestamp. This
concludes in an error window of 2 39-PREC seconds. Valid values are from 0 (no
precision; the timestamp might be a random value) to 63 (an error window of
about 60 nanoseconds). Note that this parameter refers to precision within an ST
system, not to the accuracy between the clocks within an ST system and the
external time reference.

The ProtocolInstant structure is able to provide information for the
current time, a period of time and the precision of the time measure. This
can be done for a certain message identifier which will be mapped to a
state variable of the system. With this data type, it is possible to add an
attribute and an operation to the Connection interface.

The protocol_time attribute gives the global time as seen from the
communication protocol and the precision of this data. The period and
messageID fields are unused in this case.

For the protocol_period operation, the messageID informs the pluggable
framework to obtain timing information for a certain message (messages
occur periodically and are used to read/write state variables of the
system), the instant data member of the struct is the time instant in which
the next period for this message id will begin, precision is the precision of
this measure and period is the period of update. Knowing the period of

 Sheet: 43 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

update of the different messages of the application, the CORBA clients can
be synchonised to make requests at proper times.

ASKING THE TIME FOR THE OCI
In the case of the OCI, the roles of the connector and the transport are
clearly separated. The OCI has a Connector and a Transport interface so
the additional interface for the time must be placed into the Transport
interface. The IDL for this extension is the following.

//IDL

module OCI{

// declaration of time types
typedef long long ProtocolTime; // a time instant
typedef long long ProtocolDuration; // a duration
struct ProtocolInstant{ // current time and period
 octet messageID;
 ProtocolTime instant;
 ProtocolDuration period;
 octet precision; // precision
};

interface Transport {

readonly attribute ProtocolId id;
readonly attribute ProfileId tag;
readonly attribute OCI::Handle handle;
void close();
void shutdown();
void receive(in Buffer buf, in boolean block);
boolean receive_detect(in Buffer buf, in boolean
block);
void receive_timeout(in Buffer buf, in unsigned long
timeout);
void send(in Buffer buf, in boolean block);
boolean send_detect(in Buffer buf, in boolean block);
void send_timeout(in Buffer buf, in unsigned long
timeout);
TransportInfo get_info();

 // protocol time
 attribute readonly ProtocolInstant protocol_time;
 ProtocolInstant protocol_period(in octet messageID);

};

};

The meaning of the data types and operations is the same as in the ETF
submission case.

 Sheet: 44 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

ASKING THE TIME FROM A CORBA APPLICATION
With the extensions for the Extensible Transport Framework it is possible
for the ORB to request to the underlying communications layer the time in
which a certain message must be written or read to/from the network. But
the ORB is aware of neither the purpose or the messages handled by the
application on top of it. The ORB cannot be laden with the task of actively
informing the application about timing information. This task should be
initiated by the application. In real-time CORBA, the CORBA::Object can
be configured to used a certain set of communications protocols. This is
called protocol configuration in real-time CORBA. At the client-side the
policies for protocol configuration can be applied at the object level. This
means that it is possible to establish a relationship between instances of
protocols and objects in the client side of a real-time CORBA application.
It then necessary to extend the object interface to let the application ask for
the time.

As the field of application for timing operations is vertical rather than
horizontal it is not a good idea to extend the CORBA::Object interface.
Instead of this, it is better to extend the functionality of the object in the
RTCORBA module so non real-time applications do not have the
additional operations regarding handling of time.

Using pseudo-IDL the object interface can be extended in real-time
CORBA as follows:

module RTCORBA{

local interface RTObject{
// protocol time

 attribute readonly ETF::ProtocolInstant protocol_time;
 ETF::ProtocolInstant protocol_period(

in octet messageID
);

};

};

In the case of the RTObject the time type appears as ETF::ProtocolInstant,
As the ETF also depends on Real-Time CORBA for the declaration of
protocol policies it is better if the ProtocolInstant type is defined in the
RTCORBA module. In the case of the ETF or the OCI the declaration of the
time types should be removed from the IDL specification and an #include
“RTCORBA.idl”directive should be used at the beginning of the file. The
IDL follows for the RTCORBA module:

 Sheet: 45 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

module RTCORBA{
// declaration of time types
long long ProtocolTime; // a time instant
long long ProtocolDuration; // a duration
struct ProtocolInstant{ // current time and period
 octet messageID;
 ProtocolTime instant;
 ProtocolDuration period;
 octet precision; // precision
};

local interface RTObject{

// protocol time
 attribute readonly ProtocolInstant protocol_time;
 ProtocolInstant protocol_period(

in octet messageID
);

};

};

The RTCORBA::RTObject interface is not derived from the
CORBA::Object interface as we are using pseudo IDL for which
inheritance is not defined. Nevertheless, RTObject is conceptually an
extension of the CORBA::Object interface. There is a single instance of
RTCORBA::RTObject per instance of CORBA::Object. Notice that the
interface extension has been declared to be local. The extension of the
interface adds functionality only for handling of time purposes and this
information shall only be valid for a given node.

LIFE AS A RTObject
Narrowing to a RTObject is not free, there are some rules when an object
reference is a reference to a RTObject.

• RTObject instances are client-side objects.
• All CORBA::Object instances may become RTObject instances.
• A RTObject instance cannot be passed as a parameter of an IDL

operation nor can it be stringified. Any attempt to do so shall return
in a MARSHAL system exception with a Standard Minor Exception
Code of 4 (attempt to marshal a local object).

• Once an object is narrowed to an RTObject it remains to be an
RTObject even if it narrowed to other types. If the object is
narrowed to a CORBA::Object, it is no longer a RTObject.

Making an RTObject a local object helps resolve the problem of
implementing _narrow() and _is_a(). Remember that all CORBA clients

 Sheet: 46 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

are based in the CORBA::Object interface. Although we can represent a
client object as an RTObject, the server side will only be an Object.
However, this artifact allows us to know the time for the pair
object/protocol without modifying the existing CORBA specification.

SETTING A DEADLINE
Deadline support can be related to timeout support in CORBA. Real-Time
CORBA uses the CORBA Messaging::RelativeRoundtripTimeoutPolicy
to allow a timeout to be set for the receipt of a reply to an invocation. But
for Real-Time CORBA the timeout policy is only used where it is set, on
the client side. This means that the policy is not propagated with the
request, making it impossible for the transport protocol plug-in or the
ORB at the server side to decide on what request to execute first (it can
only use request priorities). Only value information or priority
information is transmitted, temporal information does not travel with the
request. The relative roundtrip timeout policy interface is as follows:

const CORBA::PolicyType

RELATIVE_RT_TIMEOUT_POLICY_TYPE = 32;
local interface RelativeRoundtripTimeoutPolicy : CORBA::Policy {

readonly attribute TimeBase::TimeT relative_expiry;
};

Fortunately, the messaging specification of CORBA allows the policy to be
propagated with the request within a PolicyValue in an
INVOCATION_POLICIES service context. The pType of the PolicyValue
has the value REPLY_END_TIME_POLICY_TYPE and the pValue is a
CDR encapsulation containing the relative_expiry converted into a
TimeBase::TtcT end time.

The messaging specification allows for other types of request and reply
timeout and deadlines: RequestStartTimePolicy, RequestEndTimePolicy,
ReplyStartTimePolicy, ReplyEndTimePolicy and
RelativeRequestTimeoutPolicy. All these policies allow the application to
specify a series of deadlines and timeouts in which requests and replies
should happen. These policies are suitable for hard real-time applications
except for the granularity of time used. Lifetime of requests and replies is
specified in terms of structures from the CORBA Time Service
Specification. Time is described as a 64-bit value which is the number of
100 nanoseconds from 15 October 1582 00:00 along with innacuracy and
time zone information. This poses the problem that the precision of the
global time used by the ORB in previous sections is up to 60 ns.

 Sheet: 47 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

A HRTC ORB can decide either to implement only the Messaging
specification reply and request timeout policies with a time granularity of
100 ns or to implement the following additional interfaces in module
RTCORBA to decrease granularity to 60 ns. Instead of using the CORBA
Time Service representation of time, hard real-time CORBA should use the
same time representation of the network layer. Real-Time request lifetime
policies can be defined in module RTCORBA as :

 interface RT[Request/Reply][Start/end]TimePolicy{
 readonly attribute long long [start/end]_time;
 };

or

 interface RTRelative[Request/Roundtrip]TimeoutPolicy{
 readonly attribute long long relative_expiry:

};

and the RTORB shall provide methods for creating each of the policy
types:

module RTCORBA{
 interface RTORB{

RT[Request/Reply][Start/end]TimePolicy create_
RT[Request/Reply][Start/end]TimePolicy(

 in long long [start/end]_time
);

 RTRelative[Request/Roundtrip]TimeoutPolicy create_
RTRelative[Request/Roundtrip]TimeoutPolicy(in long long
relative_expiry);

};

};

It is important to notice that the time/timeout values handled by the
invocation lifetime policies can be used by the ORB in order to schedule
requests. They can also be used by the Extensible Transport Framework as
the ORB will select either the methods of the ETF submission:

void write(in boolean isFirst, in boolean isLast, in Buffer data,
 in unsigned long offset, in unsigned long length,
 in TimeBase::TimeT time_out);

 Sheet: 48 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

void read(inout Buffer data, in unsigned long offset,
in unsigned long min_length, in unsigned long max_length,
in TimeBase::TimeT time_out);

or the methods of the OCI:

void receive_timeout(in Buffer buf, in unsigned long timeout);
void send_timeout(in Buffer buf, in unsigned long timeout);

The Time Service Specification defines TimeBase::TimeT as:

typedef unsigned long long TimeT;

For the sake of clarity in the ETF, the signature of the operations shall read
unsigned long long instead of TimeT just to make it clear that UTC time
is not being used. For the OCI, the timeout argument should be changed
to unsigned long long.

It should also be noticed that while the client part of the pluggable
protocol plug-in is time-aware, the server part at this level is not. This is so
because the time/timeout policy is embedded in a service context list in
the GIOP message which is not accessible from the transport level. It is
matter of the implementation to provide means to forward timing
information to servers at the plug-in level.

REQUEST TIMESTAMPING
An RTObject can be requested to timestamp requests on arrival. This
allows the application to have not only value information. The instant of
arrival of a reply to a request can be known.

An RTObject must be instructed to timestamp replies to requests so the
overhead of timestamping can be avoided if it is not necessary. For this a
TimestampPolicy must be created by the RTORB.

module RTCORBA{
 local interface TimestampPolicy:CORBA::Policy{

};
 interface RTORB{
 TimestampPolicy create_timestamp_policy();
 };
};

 Sheet: 49 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

The TimestampPolicy can be used to configure a client-side real-time
object via the CORBA::Object set_policy_overrides operation. The policy
is applied only at the client side. After setting the policy subsequent
invocations by the client object will be timestamped by the ORB. An object
only has access to the timestamp of the last invocation. For this, an
operation is provided in the RTObject interface.

module RTCORBA{

// declaration of time types
long long ProtocolTime; // a time instant
long long ProtocolDuration; // a duration
struct ProtocolInstant{ // current time and period
 octet messageID;
 ProtocolTime instant;
 ProtocolDuration period;
 octet precision; // precision
};

local interface RTObject{

// protocol time
 attribute readonly ProtocolInstant protocol_time;
 ProtocolInstant protocol_period(

in octet messageID
);

 ProtocolInstant time_stamp();
};

};

The timestamp operation shall be called just after an invocation has been
issued. Attempt to invoke time_stamp without setting the policy for the
object shall result in a INV_POLICY system exception with
MINOR_CODE of 1.

7.3 HRTC protocol properties
Protocol properties as specified by real-time CORBA can be described in
IDL for HRTC protocols. The following is the IDL for
HRTCProtocolProperties.

local interface HRTCProtocolProperties{
 attribute long min_delay; // minimum delay in microseconds
 attribute long avrg_delay; // average delay in microseconds
 attribute long max_delay; // maximum delay in microseconds
 attribute double packet_loss; // packet loss as probability

 Sheet: 50 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

};

7.4 C++ source code example

The following excerpt of code shows how the client side of an application
is able to ask the time associated to an specific network protocol.

//// bbuuiilldd ffaaccttoorryy oobbjjeecctt ffoorr tthhee nneeww ttrraannssppoorrtt
////((iinnhheerriitteedd ffrroomm OOCCII ffaaccttoorryy ccllaasssseess))
//// oonnllyy ccoonnnneeccttoorr iiss nneeeeddeedd aatt tthhee cclliieenntt ssiiddee
HHRRTTCCCCoonnFFaaccttoorryy CCoonnFFaaccttoorryy __HHRRTTCC;;

//// GGeett aa rreeffeerreennccee ttoo tthhee RRTTOORRBB
CCOORRBBAA::::OObbjjeecctt__vvaarr oobbjj == oorrbb -->> rreessoollvvee__iinniittiiaall__rreeffeerreenncceess((""RRTTOORRBB""
));;
RRTTCCOORRBBAA::::RRTTOORRBB__vvaarr rrttoorrbb == RRTTCCOORRBBAA::::RRTTOORRBB::::__nnaarrrrooww((oobbjj));;

//// GGeett aa rreeffeerreennccee ttoo tthhee OOCCII CCoonnFFaaccttoorryyRReeggiissttrryy
CCOORRBBAA::::OObbjjeecctt__vvaarr oobbjj22 == oorrbb -->> rreessoollvvee__iinniittiiaall__rreeffeerreenncceess((
""OOCCIICCoonnFFaaccttoorryyRReeggiissttrryy""));;
 OOCCII::::CCoonnFFaaccttoorryyRReeggiissttrryy__vvaarr CCoonnFFaaccttRReegg ==
OOCCII::::CCoonnFFaaccttoorryyRReeggiissttrryy::::__nnaarrrrooww((oobbjj22));;

//// AAdddd aann aacccceeppttoorr ffaaccttoorryy oobbjjeecctt
 CCoonnFFaaccttRReegg -->>aadddd__ffaaccttoorryy((CCoonnFFaaccttoorryy __HHRRTTCC));;

//// RReessoollvvee tthhee oobbjjeeccttss iinn tthhee NNaammiinngg SSeerrvviiccee
CCOORRBBAA::::OObbjjeecctt__ppttrr nnmm == rrttoorrbb-->>
rreessoollvvee__iinniittiiaall__rreeffeerreenncceess((""NNaammeeSSeerrvviiccee""));;

CCoossNNaammiinngg::::NNaammiinnggCCoonntteexxtt__vvaarr nncc ==
 CCoossNNaammiinngg::::NNaammiinnggCCoonntteexxtt::::__nnaarrrrooww((nnmm));;

//// rreessoollvvee tthhee oobbjjeecctt bbyy iittss nnaammee
CCoossNNaammiinngg::::NNaammee nnaammee__rrttOObbjj;;
nnaammee__rrttOObbjj..lleennggtthh((11));;

nnaammee__rrttOObbjj [[00]]..iidd == CCOORRBBAA::::ssttrriinngg__dduupp((""RRTT__OOBBJJEECCTT""));;
nnaammee__rrttOObbjj [[00]]..kkiinndd == CCOORRBBAA::::ssttrriinngg__dduupp((""""));;

CCOORRBBAA::::OObbjjeecctt__vvaarr oobbjjeecctt == nncc -->>rreessoollvvee((nnaammee__rrttOObbjj));;
RRTTCCOORRBBAA::::RRTTOObbjjeecctt rrtt__oobbjjeecctt == RRTTCCOORRBBAA::::RRTTOObbjjeecctt::::__nnaarrrrooww((oobbjjeecctt));;
RRTTOObbjjeeccttTTeesstt__vvaarr rrtt__tteesstt__oobbjj == RRTTOObbjjeeccttTTeesstt::::__nnaarrrrooww((rrtt__oobbjjeecctt));;

//// sseett aann oobbjjeecctt pprroottooccooll ccoonnffiigguurraattiioonn ppoolliiccyy oovveerrrriiddee
HHRRTTCCPPrroottooccoollPPrrooppeerrttiieess pprrooppss;; //// aassssiiggnneedd bbyy ddeeffaauulltt
RRTTCCOORRBBAA::::PPrroottooccoollLLiisstt PPrroott__lliisstt;;
PPrroott__lliisstt..lleennggtthh((00));;
PPrroott__lliisstt[[00]]..pprroottooccooll__ttyyppee == TTAAGG__HHRRTTCC;;
PPrroott__lliisstt[[00]]..ttrraannssppoorrtt__pprroottooccooll__pprrooppeeeerrttiieess == pprrooppss;;
//// PPrroott__lliisstt[[00]]..oorrbb__pprroottooccooll__pprrooppeeeerrttiieess –– ddeeffaauullttss ttoo GGIIOOPP
RRTTCCOORRBBAA::::CClliieennttPPrroottooccoollPPoolliiccyy__vvaarr ccllPPooll == rrttoorrbb-->>
ccrreeaattee__CClliieenntt__pprroottooccooll__ppoolliiccyy((PPrroott__lliisstt));;

 Sheet: 51 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

//// aassssiiggnn tthhee pprroottooccooll ppoolliiccyy ttoo aann oobbjjeecctt
//// aafftteerr tthhiiss tthhee oobbjjeecctt uusseess tthhee HHRRTTCC pprroottooccooll
rrtt__tteesstt__oobbjj-->>sseett__ppoolliiccyy__oovveerrrriiddeess((ccllPPooll));;

//// ttoo aasskk ffoorr tthhee ttiimmee aa ccoonnnneeccttiioonn mmuusstt bbee vvaalliiddaatteedd
PPoolliiccyyLLiisstt__vvaarr iinnccoossiisstteenntt__ppoolliicciieess;;
rrtt__tteesstt__oobbjj-->>vvaalliiddaattee__ccoonnnneeccttiioonn((iinnccoonnssiisstteenntt__ppoolliicciieess));;

//// ggeett tthhee ppeerriioodd
RRTTCCOORRBBAA::::PPrroottooccoollIInnssttaanntt__vvaarr pprroott__ppeerriioodd;;
pprroott__ppeerriioodd == rrtt__tteesstt__oobbjj-->>pprroottooccooll__ppeerriioodd((SSPPEEEEDD__MMGGSS__IIDD));;

//// ggeett tthhee ttiimmee
RRTTCCOORRBBAA::::PPrroottooccoollIInnssttaanntt__vvaarr pprroott__ttiimmee;;
PPrroott__ttiimmee == rrtt__tteesstt__oobbjj-->>pprroottooccooll__ttiimmee(());;

Notice that for the protocol_period operation the argument SSPPEEEEDD__MMSSGG__IIDD
is passed. This supposes that application handles a message to read/write
a state variable that measures the speed of an element of the system.

 Sheet: 52 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Appendix A: ETF module IDL

#include "orb.idl"
#include "IOP.idl"
#include "GIOP.idl"
#include "RTCORBA.idl"
#include "TimeBase.idl"

module ETF
{
 typedef sequence<octet> Buffer;

 // locality constrained
 local interface Profile
 {
 void marshal(inout IOP::TaggedProfile tagged_profile,
 ionout IOP::TaggedComponentSeq
components);
 // marshal() must set data.profile_data.length()
 // to the index of the last octet marshalled + 1

 unsigned long hash();

 Profile copy();

 boolean is_equivalent(in Profile prof);

 readonly attribute GIOP::Version version;
 };

 // locality constrained
 local interface Connection
 {
 void write(in boolean isFirst,
 in boolean isLast,
 in Buffer data,
 in unsigned long offset,
 in unsigned long length,
 in TimeBase::TimeT time_out);

 void read(inout Buffer data,
 in unsigned long offset,
 in unsigned long min_length,
 in unsigned long max_length,
 in TimeBase::TimeT time_out);
 // transport needs to set data.length() to
 // offset + number of bytes actually read

 void flush();

 Sheet: 53 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

 void connect(in Profile server_profile,
 in TimeBase::TimeT time_out);

 void close();

 boolean is_connected();

 Profile get_server_profile();

 boolean is_data_available();

 boolean wait_next_data(in TimeBase::TimeT time_out);

 readonly attribute long id;
 readonly attribute boolean supports_callback;
 readonly attribute boolean use_handle_time_out;
 };

 // locality constrained
 local interface Handle
 {
 boolean add_input(in Connection con);
 // tells the ORB that a new connection has come in
 // ORB returns false if it rejects new connection

 void signal_data_available(in Connection conn);

 void close_by_peer(in Connection conn);
 };

 // locality constrained
 local interface Listener
 {
 void set_handle(in Handle up);

 Connection accept();

 void destroy();

 void completed_data(in Connection conn);

 boolean is_data_available(in Connection conn);

 readonly attribute Profile endpoint;
 };

 // locality constrained
 local interface Factories
 {
 Connection

 create_connection(in RTCORBA::ProtocolProperties
props);

 Listener

 Sheet: 54 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

 create_listener(in RTCORBA::ProtocolProperties
props);

 Profile

 demarshal_profile(inout IOP::TaggedProfile
tagged_profile,

 out IOP::TaggedComponentSeq
components);

 readonly attribute IOP::ProfileId profile_tag;
 };

 // Optional zero copy connection interface
 // locality constrained
 local interface BufferList
 {
 unsigned long add_buffer(in unsigned long size,
 inout Buffer buf);
 // adds an additional buffer to the list.
 // returns the zero-origin index of the added buffer.
 // buf.length() should be set to the actual size of
the
 // memory allocated whether more or less than size

 readonly attribute unsigned long num_buffers;

 void get_buffer(in unsigned long index,
 inout buffer buf);
 // populates the buf argument with the pointer to the
data
 };

 local interface ConnectionZeroCopy : Connection
 {
 BufferList create_buffer_list();

 void write_zc(inout BufferList data,
 in TimeBase::TimeT time_out);

 void readZC(inout BufferList data,
 in unsigned long min_length,
 in TimeBase::TimeT time_out);

 };
};

 Sheet: 55 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Appendix B: OCI module IDL

module OCI
{

interface TransportInfo;

interface ConnectorInfo;

interface AcceptorInfo;

interface AccFactoryInfo;

interface ConFactoryInfo;

interface Transport
{
 readonly attribute ProtocolId id;

 readonly attribute ProfileId tag;

 readonly attribute OCI::Handle handle;

 void close();

 void shutdown();

 void receive(in Buffer buf, in boolean block);

 boolean receive_detect(in Buffer buf, in boolean block);

 void receive_timeout(in Buffer buf, in unsigned long timeout);

 void send(in Buffer buf, in boolean block);

 boolean send_detect(in Buffer buf, in boolean block);

 void send_timeout(in Buffer buf, in unsigned long timeout);

 TransportInfo get_info();
};

interface CloseCB;

interface TransportInfo
{
 readonly attribute ProtocolId id;

 readonly attribute ProfileId tag;

 readonly attribute ConnectorInfo connector_info;

 readonly attribute AcceptorInfo acceptor_info;

 string describe();

 Sheet: 56 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

 void add_close_cb(in CloseCB cb);

 void remove_close_cb(in CloseCB cb);
};

interface CloseCB
{
 void close_cb(in TransportInfo transport_info);
};

typedef sequence< CloseCB > CloseCBSeq;

interface Connector
{
 readonly attribute ProtocolId id;

 readonly attribute ProfileId tag;

 Transport connect();

 Transport connect_timeout(in unsigned long timeout);

 ProfileInfoSeq get_usable_profiles(in IOR ref,
 in CORBA::PolicyList policies);

 boolean equal(in Connector con);

 ConnectorInfo get_info();
};

typedef sequence< Connector > ConnectorSeq;

interface ConnectCB;

interface ConnectorInfo
{
 readonly attribute ProtocolId id;

 readonly attribute ProfileId tag;

 string describe();

 void add_connect_cb(in ConnectCB cb);

 void remove_connect_cb(in ConnectCB cb);
};

interface ConnectCB
{
 void connect_cb(in TransportInfo transport_info);
};

typedef sequence< ConnectCB > ConnectCBSeq;

 Sheet: 57 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

interface Acceptor
{
 readonly attribute ProtocolId id;

 readonly attribute ProfileId tag;

 readonly attribute OCI::Handle handle;

 void close();

 void listen();

 Transport accept(in boolean block);

 Transport connect_self();

 void add_profiles(in ProfileInfo profile_info, inout IOR ref);

 ProfileInfoSeq get_local_profiles(in IOR ref);

 AcceptorInfo get_info();
};

typedef sequence< Acceptor > AcceptorSeq;

interface AcceptCB;

interface AcceptorInfo
{
 readonly attribute ProtocolId id;

 readonly attribute ProfileId tag;

 string describe();

 void add_accept_cb(in AcceptCB cb);

 void remove_accept_cb(in AcceptCB cb);
};

interface AcceptCB
{
 void accept_cb(in TransportInfo transport_info);
};

typedef sequence< AcceptCB > AcceptCBSeq;

exception InvalidParam
{
 Param p;
 string reason;
};

interface AccFactory
{

 Sheet: 58 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

 readonly attribute ProtocolId id;

 readonly attribute ProfileId tag;

 Acceptor create_acceptor(in ParamSeq params)
 raises(InvalidParam);

 AccFactoryInfo get_info();
};

typedef sequence< AccFactory > AccFactorySeq;

interface AccFactoryInfo
{
 readonly attribute ProtocolId id;

 readonly attribute ProfileId tag;

 string describe();
};

exception FactoryAlreadyExists
{
 ProtocolId id;
};

exception NoSuchFactory
{
 ProtocolId id;
};

interface AccFactoryRegistry
{
 void add_factory(in AccFactory _factory)
 raises(FactoryAlreadyExists);

 AccFactory get_factory(in ProtocolId id)
 raises(NoSuchFactory);

 AccFactorySeq get_factories();
};

interface ConFactory
{
 readonly attribute ProtocolId id;

 readonly attribute ProfileId tag;

 ConnectorSeq create_connectors(in IOR ref,

in CORBA::PolicyList policies);

 boolean equivalent(in IOR ior1, in IOR ior2);

 unsigned long hash(in IOR ref, in unsigned long maximum);

 ConFactoryInfo get_info();

 Sheet: 59 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

};

typedef sequence< ConFactory > ConFactorySeq;

interface ConFactoryInfo
{
 readonly attribute ProtocolId id;

 readonly attribute ProfileId tag;

 string describe();

 void add_connect_cb(in ConnectCB cb);

 void remove_connect_cb(in ConnectCB cb);
};

interface ConFactoryRegistry
{
 void add_factory(in ConFactory _factory)
 raises(FactoryAlreadyExists);

 ConFactory get_factory(in ProtocolId id)
 raises(NoSuchFactory);

 ConFactorySeq get_factories();
};

interface Current : CORBA::Current
{
 TransportInfo get_oci_transport_info();

 AcceptorInfo get_oci_acceptor_info();
};

}; // End module OCI

 Sheet: 60 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

 Sheet: 61 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

Appendix C: Messaging
timeout policies

Module Messaging{

// Timeout Policies
const CORBA::PolicyType
REQUEST_START_TIME_POLICY_TYPE = 27;
local interface RequestStartTimePolicy : CORBA::Policy {
readonly attribute TimeBase::UtcT start_time;
};

const CORBA::PolicyType REQUEST_END_TIME_POLICY_TYPE = 28;
local interface RequestEndTimePolicy : CORBA::Policy {
readonly attribute TimeBase::UtcT end_time;
};

const CORBA::PolicyType REPLY_START_TIME_POLICY_TYPE = 29;
local interface ReplyStartTimePolicy : CORBA::Policy {
readonly attribute TimeBase::UtcT start_time;
};

const CORBA::PolicyType REPLY_END_TIME_POLICY_TYPE = 30;
local interface ReplyEndTimePolicy : CORBA::Policy {
readonly attribute TimeBase::UtcT end_time;
};

const CORBA::PolicyType
RELATIVE_REQ_TIMEOUT_POLICY_TYPE = 31;
local interface RelativeRequestTimeoutPolicy : CORBA::Policy
{
readonly attribute TimeBase::TimeT relative_expiry;
};

const CORBA::PolicyType
RELATIVE_RT_TIMEOUT_POLICY_TYPE = 32;
local interface RelativeRoundtripTimeoutPolicy :
CORBA::Policy {
readonly attribute TimeBase::TimeT relative_expiry;

 Sheet: 62 of 62

Reference: IST37652/008
 Date: 2003-03-31 / 1.0 / Final

© HRTC Consortium / Clearance: Consortium

};
};

