
HARD REAL-TIME CORBA (HRTC) FOR
PROCESS CONTROL SYSTEMS 2

Santos Galán, Mariano Alonso, Manuel Rodŕıguez,
Ricardo Sanz 1

ASLAB, Universidad Politécnica de Madrid, Spain

Abstract: Control systems for process plants are complex applications running in
several interacting computers with varying degrees of integration. The construc-
tion, deployment and maintenance of the software system is a difficult problem and
distributed object oriented technology offers a good way to deal with it. The open
standard CORBA provides flexible middleware capable of integrating complex
applications in heterogeneous environments, but was originally designed with large
business applications in mind and is not perfectly suited for the construction
of control systems. Even with recent advances in the real-time specification for
CORBA, it is only suitable for soft real-time applications and do not deal with the
tight requirements of closed control loops. In this paper, the building of a process
control testbed to unveil the hurdles toward the goal of CORBA control systems,
with both predictable and event-driven transports, is presented. The benefits of
such technology are discussed.

Keywords: Hard Real-Time, CORBA, Process Control, Distributed Object
Computing

1. INTRODUCTION

Most present-day plant-wide control systems are
very complex, constituted by diverse hardware
and software components which interact with each
other. With the incorporation of intelligent sen-
sors, the computers reach even the lower level of
the control hierarchy. They are also distributed
systems, different tasks run on different processors
(computers, networks interfaces, PLC’s...) and
common resources are shared between processors.
Distributed systems are designed to improve per-
formance and increase system reliability in order
to meet timing, resources and concurrency con-
straints on each node.

1 corresponding author, ricardo.sanz@aslab.org
2 The project is funded by the European Commission as

IST-37652, “HRTC, Hard Real-Time CORBA”.

Control systems have been traditionally separated
into several levels:

(1) Field level. This level is dedicated to the in-
struments (sensors and actuators) and basic
regulatory control. It is communicated via
fieldbus.

(2) Process control level. This level takes over the
advanced and supervisory control, including
local optimization. It is communicated via an
ethernet based protocol.

(3) Business level. The upper level is dedicated
to global optimization, scheduling and plan-
ning. It is communicated via ethernet.

Although these levels have been always present in
the process industry the control implementation
has been evolving along the years. From the first
direct digital control where all the devices were
connected separately to the control room where



the control was centralized to a single computer;
to the traditional Distributed Control System
(DCS) implementation where several devices are
linked to a controller and there are several dis-
tributed controllers that are connected to the DCS
console; to the future where the control is totally
distributed to field with the loops in individual
devices. Nowadays we are still in the traditional
DCS but migrating slowly to the future

To implement these coming distributed systems
efficiently and with enough flexibility, middleware
seems to be the most appropriate tool to simplify
the task. The construction, deployment and main-
tenance of the software system is an extremely
difficult problem. Even though there are no silver
bullets, object oriented technology offers a good
way to build complex systems and when they
are running in several, networked computers, dis-
tributed object technology has been demonstrated
as a feasible way to cope with this complexity
while keeping costs under control.

CORBA (Common Object Request Broker Archi-
tecture, (OMG, 2000; OMG, 1999; OMG, 1998))
is an open standard which provides developers
of distributed systems with a flexible middleware
capable of integrate complex applications in het-
erogeneous environments. It should not matter
the programming language or operating system
chosen to be part of the system, CORBA makes it
possible through a feature called interoperability.

In the global Distributed Object Computing
(DOC) landscape, CORBA is a well known frame-
work for the construction of modularised, object
oriented, distributed applications. It was designed
from the perspective of surpassing heterogeneity
barriers and provide support for modularity and
reuse. CORBA, however, was originally designed
with large business applications in mind and is not
perfectly suited for the construction of embedded
control applications. This has changed recently
because the RT (Real-Time) SIG (Special Interest
Group) inside the OMG is very active in the
development of specifications for this field: Real-
time CORBA has found its place into mainstream
CORBA specifications. This makes CORBA a
specification that deals with real-time issues from
the very core (a real difference from other dis-
tributed objects technologies).

CORBA is used by the process industry. RiskMan
(Sanz et al., 2000) (based on the ICa (Sanz et
al., 1999a) broker) is a system for emergency man-
agement in a chemical complex with nine plants
(see Figure 1). The system supports the whole life-
cycle of emergencies: prevention, detection, firing,
diagnosis, handling, follow-up and cancellation.
The application is composed by a collection of
CORBA objects running on heterogeneous plat-
forms (VAX/VMS, Alpha/UNIX, x86/Windows

NT) performing an heterogeneous collection of
functions: expert systems, user interfaces, wrap-
pers of real-time plant databases, data filters
based on fuzzy rules, predictors based on neural
networks, etc.

InfoPlus

Updater

ORB

DOB Logger

Master
Control

ICa
Monitor

Slave

ValidatorPredictor Emergency
Server

Fault
Detector

Emergency
Client

Informer

ICa

Fig. 1. Some of the CORBA objects that com-
pose the RiskMan application. Informer and
Updater are wrappers of external systems.

HRTC uses a Real-time Object Request Bro-
ker (developing a prototype implementation of
a hard real-time network transport), to build a
Process Control Testbed (PCT) that address is-
sues of hard real-time composability in heteroge-
neous applications, identifying the requirements
for hard real-time distributed control systems us-
ing CORBA technology. The testbed experiments
should be able to prove some of the benefits that
such distributed object computing can bring to
the process control field.

The paper is organized as follows: Section 2 sum-
marizes the basic concepts of Real-Time CORBA.
Section 3 discusses the changes proposed in
CORBA needed to achieve hard real-time per-
formance. Section 4 presents the Process Control
Testbed and the experiments to identify require-
ments for HRTC. Section 5 concludes the paper
discussing the expected benefits of the technology.

2. CORBA, REAL-TIME AND REAL-TIME
CORBA

2.1 What is CORBA?

CORBA is an open standard that allows program-
mers to specify interfaces as contracts between
servers and clients (these roles are classic in dis-
tributed applications). These interfaces are speci-
fied using a language called IDL (Interface Defini-
tion Language). IDL is used naturally with object
oriented programming languages, which map IDL
types to their native types after passing IDL files
through an IDL compiler. Basically, an interface
is an object service contract, implemented by a
server, and a way to decouple it form its imple-
mentation so that changes to an implementation
do not involve a whole re-compilation of the sys-
tem.



CORBA’s key entity is called Object Request
Broker (ORB). An ORB is a software bus capable
of transmitting messages through a network, from
clients to servers, in a transparent way. Clients in-
voke server methods through a proxy or stub; the
ORB locates the server, transmits the invocation
from client to server and after the server executes
the operation, brings back the results to the client.
The servant is a server object which implements
an IDL interface and is plugged to the ORB via
an object adapter; the most common being the
Portable Object Adapter (POA).

2.2 What is Real-Time?

A good definition of the field of hard real-time
systems is provided by Douglas Locke (Locke,
2000) from TimeSys:

”What is real-time? A real-time system (as
defined by IEEE) is a system whose correctness
includes its response time as well as its func-
tional correctness. In other words, in a real-time
system, it not only matters that the answers are
correct, but it matters when the answers are
produced. Note that by this definition, systems
requiring a defined Quality of Service are usu-
ally real-time systems, although they might not
use those words to describe themselves.

What is hard real-time? Hard real time means
that the system (i.e., the entire system includ-
ing OS, middleware, application, HW, commu-
nications, etc.) must be designed to GUARAN-
TEE that response requirements are met. It
doesn’t matter how fast the requirements are
(microsecond, millisecond, etc.) to be hard real-
time, just that they MUST be met EVERY
TIME.”

Some applications like cellular phones, web servers
or digital television need real-time behaviour but
in most cases they do not need hard real-time.
Other applications like aircraft or process control
are presently built as soft real-time but in its very
nature, they pose hard real-time requirements to
systems developers.

2.3 Real Time CORBA

RT CORBA is an extension of the CORBA stan-
dard whose intention is aiding the design of real-
time distributed applications. RT CORBA de-
fines CORBA priorities which have corresponding
native priorities on each operating system. The
interface PriorityMapping is responsible of this
conversion. There are two priority models of dis-
tributed priority handling:

• Client Propagated: The server honours the
priority requested by the client, who sends it
along with the invocation.

• Server Declared: The server establishes its
own priorities and ignores client requested
priorities.

What a client can do using RT CORBA is:

• Set a priority or band of priorities for a given
connection.

• Obtain a private transport (non demulti-
plexed connection) to a servant, so that the
connection is not shared with other clients.

• Set a timeout on an invocation.

What a server can do:

• Manage execution of threads through Thread-
pool interface. Threads can be preallocated
(so that server is limiting the number of in-
coming requests with the possibility of buffer-
ing requests that cannot be dispatched) and
partitioned in priority lanes responsible of
managing requests with a priority bounded
to a certain range.

• Select a priority model (Client propagated
vs. Server declared).

• Create a Mutex so that the client can prevent
other server threads to access certain piece of
code of the server.

Both client and server can select a communication
protocol and configure certain protocol parame-
ters.

RT CORBA also defines a service called Schedul-
ing Service. This service is designed to work in a
closed environment, where clients and servers can
be considered a static set, with fixed priorities.
Scheduling service provides global scheduling poli-
cies, associating names with scheduling parame-
ters. RT CORBA 1.0 does not provide dynamic
scheduling. A new extension (RT CORBA 2.0)
specifically addresses dynamic scheduling.

3. HARD REAL-TIME CORBA

The CORBA object model (and the development
processes and tools associated with it) is ex-
tremely adequate for the construction of complex
distributed applications and hence the interest in
extending it to be useful in the real, embedded
control domain. But there is a problem. Present
day CORBA specifications are suitable only for
soft real-time applications. CORBA and its ex-
tension RT CORBA are not fully suitable to im-
plement these systems because:

• They have only been designed to build sys-
tems with soft real time requirements.

• CORBA lacks of a real-time interoperable
protocol, necessary to integrate control and



real time systems. Neither GIOP nor IIOP
are reliable or predictable enough.

• The Scheduling Service is incomplete, can
not be dynamically reconfigured and does
not provide a wide range of scheduling al-
gorithms.

• Most real time systems are also embedded
ones. There is an effort called Minimum
CORBA to build a small ORB, tailoring it
to fit in embedded systems, but this seems
to exclude RT CORBA which increases ORB
size.

• Interface specification needs to be extended
to express temporal issues.

The analysis of hard-real time requirements posed
by CORBA-based distributed control systems
shows the necessity to develop theory and tech-
nology for hard-real time applications, extending
the set of CORBA specifications with interfaces
that deal with hard real-time issues.

3.1 What does CORBA need to be Hard Real-Time
CORBA?

Some authors claim that advances in real-time
distributed object computing can be achieved only
by systematically pinpointing performance bot-
tlenecks; optimising the performance of networks,
ORB endsystems, common services, and applica-
tions; and simultaneously integrating techniques
and tools that simplify application development.
We believe that a sound engineering approach to
system design is also necessary.

Building hard real-time systems with stringent
constraints requires the election of an appropriate
environment which includes:

• Choosing real-time operating systems for
critical nodes: with real-time I/O subsystems
and with real-time scheduling.

• Choosing predictable (usually high-speed)
network interfaces, communication protocols
or industrial backplanes suitable for real-time
applications like ATM, CAN, VME, switched
fabric, fieldbuses, etc. They must be highly
predictable and provide flexibility of control
(because TCP/IP, GIOP or IIOP are not
very suitable).

RT CORBA 1.0 is thought to be used with static
systems, where processes, clients, servers and
tasks are perfectly known and let us determine
the best policies for our system. This not flexi-
ble enough and does not provide needed recon-
figuration capabilities. RT CORBA 2.0 includes
dynamic scheduling but it is still not enough.

In our opinion, CORBA needs to be extended in
certain aspects because:

• CORBA requires a deterministic transport
and a reliable and interoperable RT proto-
col, whose QoS parameters can be modified
through CORBA interfaces.

• RT Scheduling need support for dynamic al-
gorithms and support for advanced feedback
scheduling.

• CORBA interfaces must be specified not only
in the value domain but also in the temporal
domain.

• Another problem is global time synchro-
nization. Deployment over time triggered
platforms can provide enhancements in dis-
tributed time.

• Meeting hard real time requirements includes
validating them. This can be done with in-
terceptors, but it is a time consuming way.
Maybe some other method should be used to
do this.

CORBA allows the use of pluggable transports,
and scheduling service can be reconfigured. So this
seems not to be a hard job, and can be done by an
end user of an ORB. In contrast, providing flexible
ways to change and dynamically reconfigure the
ORB is a harder task for vendors.

4. PROCESS CONTROL TESTBED

In order to identify (mainly hard real-time) re-
quirements for distributed control systems and
perform experiments in conditions of systems het-
erogeneity and legacy integration a Process Con-
trol Testbed is used. Experiments will be done
using conventional IIOP and a new real-time pro-
tocol.

Figure 2 shows the complete topology of the
proposed testbed. This final structure should be
reached in several stages of increasing difficulty
where different experiments are run. Some of the
partial schemas for the tests are described in the
following subsections.

The PCT tries to represent the basic charac-
teristics of a process plant control system net-
work with advanced features not found in cur-
rent designs, like the flat two control networks
(ethernet and TTP/C (TTTech Computertech-
nik, 1999; Kopetz, 1997)) where all the elements
are linked. Several instruments (sensors and ac-
tuators) are connected to a (actual or simulated)
process plant in three different ways:

(1) Trough a typical industrial distributed con-
trol system (DCS), in this case the TPS from
Honeywell that constitutes a legacy system in
this context, with its own controller and user
interface. The TPS communicates with the
ethernet control network.



TTP/C Network

Sensor Actuator

Database

HMI

Controller

Ethernet Network

HMI

TPS

PROCESS PLANT

SensorSensor

GUS

ActuatorActuator

DatabaseControllerSimulation Bridge

Fig. 2. Schema of the Process Control Testbed

(2) Directly connected to an ethernet control
network.

(3) Directly connected to a time-triggered net-
work (TTP/C).

Apart from the TPS monitoring and control-
ling devices, both networks include controllers,
human-machine interfaces (HMI) and history
databases. This is not the typical configuration
in industrial practice, where separate networks
are used. Finally, one or several simulation nodes
are included on the ethernet network. The eth-
ernet and time-triggered networks communicate
through a brigde.

4.1 Closing control loops through networks

A simple regulatory control loop with three com-
ponents: Sensor, Actuator and Controller, built as
independent nodes connected through the ether-
net and the TTP/C networks are tested (figure 3).
Also there should be two additional nodes: HMI
and History Database. For the TT network the
HMI and the controller are in the same node.

In the experiment, an operating elemental process
plant, such as a neutralization tank with a pH
sensor is controlled by the adition of a reactant
with a volumetric pump. The time series of values
of the process variables are recorded on the history
database and shown on real time on the HMI.
The operator can change the setpoint through this
HMI node.

This is apparently a simple experiment but its
success will demonstrate the use of CORBA for
control systems. When designing a distributed
real-time system, scheduling of common resources
is a key problem. For distributed control systems
where control loops are closed over a communica-
tion network or a field bus, the network can be a
bottleneck.

Ethernet Network

HMI

PROCESS PLANT

Sensor Actuator

DatabaseController

Fig. 3. Control loop with CORBA components
over ethernet

A similar experiment will be run over a TTP/C
network, comparing both results.

4.2 Legacy system integration

This experiment is aimed to demonstrate the
possibility of integrating legacy systems in a CCS
(figure 4). As indicated above, a Honeywell TPS,
with its graphical user interface (GUS) is used.

4.3 Interaction of simulation objects with control
agents

A test for the integration of heterogeneous com-
ponents over the same network is the connection
of simulation modules that interact with other
objects in the system (figure 5). The use of mathe-
matics models in control and monitoring functions
is continuously increasing and control systems
should accommodate easily this components.



Ethernet Network

HMI

TPS

PROCESS PLANT

SensorSensor

GUS

ActuatorActuator

DatabaseController

Fig. 4. Schema of the PCT for integration of DCS
(legacy system)

Ethernet Network

HMISimulation

PROCESS PLANT

Sensor

Controller

Actuator

Database

Fig. 5. Integration of simulation objects in control
network

5. CONCLUSIONS

CORBA provides the middleware capable of in-
tegrating complex applications but it needs to
be upgraded to hard real-time to be applied in
process control systems.

Perhaps the main question is: Why do we need the
integration provided by HRTC in process control
systems? Beyond many obvious answers (simplic-
ity of flat network, use of heterogeneous compo-
nents like optimization or simulation, vendor in-
dependence, reduction in cost, etc.) we would like
to stress one: The modular approach fostered by
CORBA will let us develop true modular control
systems.

The second point we want to mention is design
freedom. Design freedom is necessary in the com-
plex control systems domain to explore alternative
controller designs. Excessively restrictive tech-
nologies will collapse - unnecessarily - dimensions
of the controller design space (Shaw and Gar-
lan, 1996). This is, for example, the case of some
fieldbus technologies that support several slaves
but only one master. While design restrictions (in
the form of prerequisite design decisions) simplify
development, they sacrifice flexibility. Can we get

both, simple development and flexibility? The key
are frameworks where design dimensions are still
open even when pre-built designs are available.
To continue the example of the fieldbus, the one-
master/several-slaves approach is one type of pre-
built, directly usable, design; but the underlying
fieldbus mechanism should allow for alternative,
multi-master designs. This can be done by means
of the development of agent libraries that provide
predefined partial designs in the form of design
patterns (Sanz et al., 1999b), and a transparent
object-oriented real-time middleware like the one
proposed in HRTC. This approach will let de-
velopers construct their own agencies to support
their own designs.

REFERENCES

Kopetz, Hermann (1997). Real-Time Systems –
Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers.

Locke, Douglas (2000). Real-time linux – what
is it, why do you want it, how do you do
it?. At6090565653.html. LinuxDevices.com.
http://www.linuxdevices.com/articles/.

OMG (1998). A discussion of the object manage-
ment architecture. Technical report. Object
Management Group. Falls Church, USA.

OMG (1999). Real-time CORBA adopted specifi-
cation. Technical Report orbos/99-06-02. Ob-
ject Management Group. Falls Church, USA.

OMG (2000). Common object request bro-
ker architecture and specification. Release
2.4. Technical report. Object Management
Group. Falls Church, USA.

Sanz, Ricardo, Miguel J. Segarra, Angel de Anto-
nio and José A. Clavijo (1999a). ICa: Middle-
ware for intelligent process control. In: IEEE
International Symposium on Intelligent Con-
trol, ISIC’1999. Cambridge, USA.

Sanz, Ricardo, Miguel J. Segarra, Angel de An-
tonio, Fernando Mat́ıa, Agust́ın Jiménez and
Ramón Galán (1999b). Design patterns in in-
telligent control systems. In: Proceedings of
IFAC 14th World Congress. Beijing, China.

Sanz, Ricardo, Miguel Segarra, Angel de Antonio,
Idoia Alarcón, Fernando Mat́ıa and Agust́ın
Jiménez (2000). Plant-wide risk management
using distributed objects. In: IFAC SAFE-
PROCESS’2000. Budapest, Hungary.

Shaw, Mary and David Garlan (1996). Software
Architecture. An Emerging Discipline. Pren-
tice-Hall. Upper Saddle River, NJ.

TTTech Computertechnik (1999). Specification of
the TTP/C Protocol.


