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Resumen

Los sistemas técnicos se enfrentan a exigencias cada vez mayores, con tareas que crecen
en complejidad e incertidumbre. Cada vez se buscan más sistemas autónomos por razones
de rendimiento, coste o seguridad. Sin embargo, sus capacidades a menudo se quedan
cortas, exigiendo la intervención humana o limitando su aplicabilidad. Esta investigación
explora el conocimiento explícito como medio de gestionar las perturbaciones durante el
funcionamiento.

Para ello, integramos elementos de tres ámbitos aparentemente no relacionados. En primer
lugar, la ingeniería de sistemas ofrece un enfoque holístico, con la ingeniería basada en
modelos (MBSE), que aboga por la representación del sistema a lo largo de todo el ciclo
de vida. En robótica, los modelos formales desempeñan un papel crucial en el diseño de
robots. Sirven de base para lograr propiedades holísticas, como la fiabilidad funcional o la
resiliencia adaptativa, y facilitan la producción automatizada de módulos. Esta investigación
propone ampliar las conceptualizaciones formales más allá de la fase de ingeniería, utilizando
modelos en tiempo de ejecución.

El segundo ámbito, Representación del Conocimiento y Razonamiento (KR&R), se refiere a
la descripción de la información en formatos computacionales que permitan a los agentes
utilizarla para deducir hechos implícitos. De este modo, tendemos un puente entre la
ingeniería y la adaptación en tiempo de ejecución, mediante el uso de estas técnicas para
explotar la información disponible desde el diseño hasta el funcionamiento del robot.

El tercer pilar es la Teoría de Categorías (CT), una teoría general de estructuras matemáticas
que sirve como herramienta para razonar en diferentes niveles de abstracción. Proponemos
utilizar estos formalismos para representar aspectos MBSE del sistema a través de la com-
posicionalidad.

Aplicando estos principios, hemos desarrollado un metamodelo que sirve como lenguaje
para definir aspectos de diseño relevantes para la adaptación del sistema. El modelo se
basa en cuatro conceptos fundamentales: capacidad, componente, objetivo y valor, para
garantizar que los sistemas aporten los beneficios necesarios a su propietario. El uso de CT
para este lenguaje facilita el razonamiento a niveles superiores de abstracción. Por ejemplo,
proporciona diferentes nociones de equivalencia dependiendo de la perspectiva o diversas
granularidades en las relaciones conceptuales.

El metamodelo utiliza los resultados del lema de Yoneda—por el cual dos objetos son iguales
si están relacionados con las mismas entidades—para identificar el candidato de adaptación
más adecuado y con menor impacto en el funcionamiento. Además, utiliza el concepto de
“pushout” para mejorar la explicabilidad. Al propagar información sobre cómo han cambiado
los objetos y las relaciones, se puede informar a las partes interesadas sobre los cambios
previstos en las métricas de desempeño. Por ejemplo, el cambio de un componente por otro
puede aumentar la seguridad o reducir la precisión prevista. Estas métricas son relevantes
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para el operador, que recibirá notificaciones sobre estos ajustes.

Este metamodelo se hace operativo a través de un metacontrolador. Este instrumento busca
completar los objetivos de la misión de forma similar a como los controladores clasicos
persiguen mantener la señal de referencia. El metacontrolador se integra en la ejecución del
robot razonando sobre su estado actual y las capacidades disponibles. Por tanto, cuando
surge una emergencia, no hay formas preestablecidas de adaptar el sistema; se seleccionan
en función de sus necesidades y disponibilidad.

La amplia aplicabilidad y versatilidad de este enfoque se demuestran a través de dos platafor-
mas de pruebas—un robot minero y un robot móvil—en cinco escenarios. Al abordar retos
como los fallos de los sensores, las capacidades insuficientes y la pérdida de comunicación,
nuestra solución muestra robustez y posibilidad de reutilización. En conclusión, nuestra
investigación, que formaliza diseños y recuperaciones, presenta un enfoque prometedor para
mejorar la autonomía de los robots. El metacontrolador y su metamodelo sirven de marco
universal y neutral para representar formalmente y razonar sobre sistemas autónomos. La
solución avanza en la fiabilidad de los robots mediante el auto-conocimiento de los sistemas
robóticos complejos.
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Abstract

Technical systems face increasing demands, with tasks that grow in complexity and uncer-
tainty. Autonomous systems are increasingly sought after for performance, cost, and safety
reasons. However, their capabilities often fall short, requiring human intervention or limiting
their applicability. This research explores understanding as a means of handling disturbances
during operation.

For this purpose, we integrate insights from three apparently unrelated domains. First, Sys-
tems Engineering offers a holistic approach, with Model-Based Systems Engineering (MBSE)
advocating system representation throughout the life cycle. In robotics, formal models play
a crucial role in robot design. They serve as the basis for achieving holistic properties, such
as functional reliability or adaptive resilience, and facilitate the automated production of
modules. We propose to extend formal conceptualizations beyond the engineering phase in
the system life-cycle, providing accurate models for runtime operation.

The second domain, Knowledge Representation and Reasoning (KR&R), concerns capturing
knowledge in computational formats so that agents can use it to derive implicit facts. We
bridge the gap between engineering and runtime adaptation, using these techniques to
exploit information available from design to the robot operation.

The third pillar is Category Theory (CT), a general theory of mathematical structures that
serves as a tool for reasoning on different levels of abstraction. We propose using this
formalism to represent MBSE aspects of the system through compositionality.

Applying these approaches, we have developed a metamodel which serves as a language
to define relevant design aspects for system adaptation. The model is rooted in four core
concepts—capability, component, goal, and value—to ensure that the systems provide the
required benefits to its acquirer. The use of CT for this language facilitates reasoning at
higher levels of abstraction. For example, it provides different notions of sameness depending
on the perspective or various granularities in conceptual relationships.

The metamodel uses the results of the Yoneda lemma—by which two objects are the same
if they are related to the same entities—to identify the most suitable adaptation candidate
with less impact on operation. This renders a formalization of mission-oriented functional
equivalence of systems. Additionally, it uses the concept of “pushout” to enhance explainability.
By propagating information on how objects and relationships have changed, stakeholders can
be informed of expected changes in performance metrics. For example, the substitution of
one component for another may result in increased expected security or decreased accuracy.
These metrics hold major relevance for the human operator, who will receive notifications
about these adjustments.

This metamodel is operationalized through a metacontroller; an application-agnostic instru-
ment to pursue mission goals similar to classical controllers pursue set-point references. The
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metacontroller is integrated into robot execution by reasoning about its current state and
available capabilities. Therefore, when a contingency arises, there are no pre-established
ways to adapt the system; they are selected based on its necessities and availability.

The broad applicability and versatility of this approach is demonstrated through two testbeds
—mining robots and mobile robotics—across five scenarios. Addressing challenges such as
sensor failures, insufficient capabilities, and loss of communication, our proposed solution
exhibits robustness and reusability. In conclusion, our research formalizing designs and
recoveries presents a promising approach to enhancing robot autonomy and the engineering
processes to attain it. The metacontroller and its metamodel serve as a neutral universal
framework for formally representing and reasoning about systems. The solution advances in
the topic of robot dependability through the self-awareness of complex robotic systems.
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Chapter 1
Introduction and Objectives

Technical systems are designed and built to perform a variety of activities in pursuit of user
needs. In many cases, we want these systems to operate without human intervention for
performance, cost or safety reasons. Autonomy requires the ability to accomplish the assigned
task without external help. The autonomous car shall be able to negotiate an intersection
and the autonomous space probe shall be able to reorient itself. However, autonomy alone
is insufficient without resilience. A truly effective autonomous system must possess the
resilience to withstand various disturbances that may occur during operation. Traditional
control systems are designed to handle only limited forms of disturbance, but autonomy
should handle a broader range of circumstances.

1.1 Problem Statement

The growth of computational capabilities, as well as the increase in data availability, has
shown enormous potential to improve system performance. In principle, greater access to
information and processing resources should contribute significantly to the development
of autonomy, but it also poses strong risks. The recent wave of artificial intelligence (AI)
based on machine learning has serious issues that shall be addressed to build dependable
autonomous systems: (i) lack of quantity and/or quality of data, (ii) lack of transparency,
(iii) lack of reproductability, (iv) lack of explainability, (v) ethical concerns, etc.

To overcome these issues and achieve AI-driven robot efficiency, robustness, safety, adapt-
ability, and dependability, we shall endow the robot with a better understanding about the
situation it faces, what capabilities the robot has, and the tools to act and react properly to
uncertain situations. However, a mere increase in the resources used is not sufficient to gain
true awareness of their actions. As stated by Brachman [1], transitioning from the age of
information to the age of cognition requires adopting new perspectives.

We can’t afford merely to increase the speed and capacity of our computer
systems. We can’t just do better software engineering. We need to
change our perspective on computational systems and get off the current
trajectory [1].
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Chapter 1. Introduction and Objectives

Our vision supports Brachman’s statement in the sense that just improving existing methods
is not enough. However, Software Engineering, or more generally, Systems Engineering
provides valuable tools and practices to handle complexity. These tools help avoid omissions,
mitigate the dependence on invalid assumptions, and facilitate effective change management
throughout the engineering process [2].

Autonomy can greatly benefit from a novel perspective when applying Systems Engineering.
Using these approaches, one can effectively tackle the variability that systems face throughout
their entire life cycle. Such insights can potentially be used during operation to effectively
manage and mitigate disruptions. This research aims to bridge the gap between system
design and its operation as a means to reach robust autonomy.

1.2 Research Scope

This research is framed on the use of declarative knowledge to represent and reason about
the cross-cutting elements of the robot, such as its mission, its design, and its operation in
open environments. By exploiting this information at runtime, robots can make informed
decisions to keep pursuing their goals, even in unexpected situations.

The concept of self-awareness is used to provide the system with the ability to observe itself in
order to meet the requirements of autonomous systems in terms of robustness and reliability.
Self-awareness makes it possible for deployed systems to be able to decide how to act;
adapting if necessary. These features contribute to a fundamental motivation of the research:
to deploy systems capable of controlling themselves, shifting the responsibility of adaptation
from engineers at design time to the control system at runtime.

Models are the enablers of self-awareness. Model-Based Systems Engineering is a promising
methodology that uses system representation throughout the entire life cycle, which has
gained traction in robotics engineering due to the critical role that models play in robot
design, enabling the achievement of holistic properties such as functional reliability and
adaptive resilience while facilitating automated module production. However, to support
the deployment of autonomous robots in real-world scenarios, a deeper understanding is
needed beyond the engineering phase. We propose the use of formal conceptualizations
using Category Theory as a mathematical framework to describe abstractions and produce
accurate robot models.

The last fundamental aspect of this research is generality. This thesis aims to generate reusable
assets and metamodels for managing system self-knowledge with broad applicability. While
other control approaches leverage system knowledge to enhance robustness, such as fault-
tolerant control or adaptive control, the are often suitable for specific faults or a particular
operational region, relying on ad-hoc algorithms or predefined configurations. In contrast,
our approach may be less focused on optimization for specific components or tasks, but is
directed towards enhancing the overall operation of a diverse range of systems and domains.
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1.3 Objectives

Our research focuses on using robust models at runtime as a means to attain a better
understanding of complex situations and respond effectively in unstructured environments.
This goal can be encapsulated in the following research question:

“How can we enhance autonomous robots self-awareness from a systemic
perspective to make them more robust?”

This question can be translated into specific objectives to create a software asset that can be
used at runtime.

1. Analyze existing approaches in technical systems and explore available methods for
improving their dependability.

2. Explore the domain of system modeling and knowledge-driven robots to extract func-
tional value for designing reconfigurable and adaptive systems.

3. Examine abstract mathematical domain for describing general structures that can serve
as formal ground to systems conceptualizations.

4. Conceptualize elements and functions to drive system adaptation. This conceptualiza-
tion shall establish a common basis for self-aware systems, addressing key autonomous
system capabilities such as perception, reasoning, planning, actuation, explanation,
learning, and reconfiguration.

Definitions shall adhere to formal standards, using concepts and relationships validated
in the literature and abstract mathematical models.

5. Build reusable software assets that exploit robot system models at runtime. The solution
shall be of general applicability to autonomous systems, independently of the domain,
and have different possibilities depending on the extent to which the system can be
reconfigurable.

6. Demonstrate the validity of the solution by developing testbed applications. Evaluate
different aspects of the architecture using diverse testbeds, including both simulations
and real robots.

1.4 Methodology

The methodology best suited for this thesis, given its multidisciplinary nature and the
ambition of a general solution without losing sight of the engineering application, is iterative.
We have followed Boehm’s spiral model of software processes [3], in which the project is
represented as a spiral rather than a linear sequence of activities.
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Figure 1.1: Methodology phases of the iterative process followed in this thesis, main milestones to
achieve.

In this model, each loop of the spiral represents a phase. Figure 1.1 shows the specific stages
considered in this research. The inner loop focuses on analysis, the next loop on development,
and the external loop on validation. This structure constitutes a hybrid methodology that
integrates elements of both the scientific method and the engineering process. Each loop
in the spiral consists of four sectors: (i) definition of objectives, which determines specific
goals, constraints, and plans for the process; (ii) analysis of alternatives and identification
of needs; (iii) development of concepts and prototypes based on the previous stage; and
(iv) evaluation and discussion of these concepts. Note that each sector affects each spiral
loop—analysis, development, and validation—resulting in an iterative process. The main
milestones to achieve are as follows:

1. Analysis

• Proposal of the problem to be solved.

• Definition of problem statement and research scope.

• Literature review based on the problem statement.

• Prototype of the literature-based model to determine the gaps in current ap-
proaches.

• Evaluation of the literature-based prototype.

2. Development

• Proposal for improvement based on lessons learned from the previous stage.
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• Theoretical framework and design principles to address the founded gaps.

• Conceptualization of a model for dependable autonomy.

• Operationalization of the model and consistency evaluation.

3. Validation

• Planning of evaluation processes.

• Identification of tesbeds needs.

• Implementation of testbeds to determine the viability of the proposed solution.

• Discussion and analysis of results.

1.5 Outline

The research work developed follows a spiral process, as introduced above. However, for
enhanced readability, we have structured the discussion by unwinding the spiral. This
dissertation is organized into four parts and ten chapters, outlined as follows:

• Part I consists of two chapters that contextualize the research problem.

– Chapter 1 introduces the motivation and objectives of the thesis, along with the
methodology employed.

– Chapter 2 delineates the framework in which the problem is located, i.e., au-
tonomous systems and various techniques to enhance their dependability, includ-
ing fault tolerance, self-adaptation, and formal methods.

• Part II explains the core topics in the research and provides an in-depth review of
projects that employ similar approaches. This part is subdivided into four chapters.

– Chapter 3 presents the domain of Systems Engineering to address complex en-
gineering challenges and demonstrates its value in robotics. We also analyze
the semi-formalized methodology of Model-Based Systems Engineering, which
furnishes foundational concepts for the models developed in this research.

– Chapter 4 introduces Knowledge Representation and Reasoning as a means for
deliberative action selection. This chapter describes symbolic representation,
logic reasoning, and the most popular approaches for knowledge-based robotics.

– Chapter 5 delivers a systematic review of the use of ontologies in robotics and
how conceptualizations of its functional competencies support action selection.

– Chapter 6 describes Category Theory, a mathematical domain for describing
general structures used as baseline for the models developed in this research.

• Part III offers the core contribution of this thesis: the model-based framework for
self-aware and self-adaptive autonomous systems.
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– Chapter 7 presents the concepts necessary for a formal language to determine the
most appropriate adaptation action using explicit engineering knowledge.

– Chapter 8 details how to encode the aforementioned information so that the
system can reason on it during robot execution.

– Chapter 9 describes the evaluation of this approach through deployment in two
testbeds across five scenarios, discussing the results in terms of reusability, appli-
cability and performance.

– Chapter 10 concludes this thesis, highlighting the main contributions achieved
and suggesting future directions for this research.

• Part IV includes reference materials such as the bibliography, the scientific dissemination
results of this research, and implementation details when the conceptual framework
that precedes this thesis was evaluated.

1.6 Notation

This dissertation uses various terms in different domains. To enhance the clarity of the
discourse, two text styles are used to disambiguate the context.

• Concepts in the theoretical framework.

• Specific elements for the model and metamodel.

Additionally, when there is a clarification on a concept or framework, the following separator
is used.

▶ CLARIFICATION

Lastly, to aid in the explanation of abstract concepts and generalizations, examples are
provided throughout the text. The following text style is used in a gray box.

Example: This is an example text.
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Chapter 2
Context and State of the Art

Technical systems have become an integral part of our everyday lives, spanning from smart
watches that monitor our daily activities to the electrical grids that power our homes, along
with critical infrastructures in hospitals, manufacturing and transportation industries. As
we increasingly rely on technology, ensuring dependability and trust becomes of utmost
importance; especially when human intervention is limited.

This research project aims to address the challenge of enhancing the robustness of au-
tonomous operation in these technical systems. This chapter serves as an introduction to
systems, in particular autonomous systems, and highlights crucial aspects for improving their
dependability, including fault tolerance, self-adaptation, and formal methods to guide its
development. By examining these core elements, we aim to establish the context for our
research.

2.1 General Systems Theory

The concept of system dates back to early Western philosophy and later to science [4].
Ludwig von Bertalanffy defined system as a “whole” consisting of interacting “parts” [5]. The
configuration of these parts leads to attributes or behaviors that cannot be achieved by parts
in isolation. As a result, certain holistic properties emerge from (i) the individual elements
of the system and their properties, and (ii) the relationships and interactions among the
parts, other systems, and the environment.

Bertalanffy aimed to bring together models, principles, and laws applicable to generalized
systems, regardless of their specific nature. This perspective aimed to build a theory of
universal principles applying to systems in general [5]. Boulding envisioned General Systems
Theory (GST) as a theoretical model-building between highly generalized constructions of
mathematics and the particular theories of specialized disciplines [6]. Klir highlighted the
significance of a theory with the optimal degree of generality, a balance between content
and its practical applications [7]. For him, such theory should not be exclusively limited
to mathematicians, but rather serve as a tool for practitioners across various domains. The
integration of theory and practice, grounded in a mathematical framework, is a fundamental
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element of this research.

Klir provides two requirements for applying the term system. It must consist of a set of things
of some kind, and they must be connected in some recognizable manner [8]. This broad
definition is often bounded with an associative noun (e.g., medical system, robotic system,
electrical system) or a context-dependent synonym (e.g., cardiac pacemaker, robot, power
plant). As stated by Rosen [9], certain properties are subsumed under the modifier attribute,
and others under the system conception, while still others may depend on both.

The definition of system differentiates a specific element of interest from anything external
to it, known as the environment. Note that the boundaries between system and environment
can sometimes be ambiguous within certain classifications. This idea is reinforced by the
fact that systems generally cannot be studied in all its complexity; we observe or measure
values of certain quantities relevant for the given purpose.

The system may refer to a unique object or may include some other relevant parts. Figure 2.1
illustrates an engineered system, which the International Council on Systems Engineering
(INCOSE) defines as “a system designed or adapted to interact with an anticipated operational
environment to achieve one or more intended purposes while complying with applicable
constraints” [4]. The figure represents a system composed of (i) a device with software and
hardware and (ii) an external sensor. Note that the choice of system definition is based on
the observer and their interests. Moreover, the system may be viewed as a whole in one
context and as an component subsystem in another.

In conclusion, systems offer diverse perspectives that can be used effectively in problem-
solving scenarios. Most system challenges typically align with at least one of the following
categories:

• Analysis: The process of dissecting a system with identifiable parts and established
relationships to understand their behavior, as often occurs in sciences such as biology.

• Synthesis: In systems whose behavior and requirements are understood, the objective
becomes uncovering the optimal structure to achieve the desired outcome, as in
engineering domains.

• The Black-Box Problem: Addressing this challenge involves dealing with systems whose
behaviors and structures are partially unknown, yet external factors provide observable
insights into their properties, allowing for the determination of behavior, and inferring
a hypothetical structure. This challenge is not limited to one domain but applies
wherever information is incomplete.

The concept of system sets a common ground to tackle a wide array of challenges, providing
tools and patterns for problem-solving and innovation from different perspectives.
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Figure 2.1: An engineered system and its environment. The system comprises a device and some external
sensors in the environment. The device is further decomposed into software and hardware; the hardware
includes actuators and sensors for both the device and its surroundings. The external sensors are used by
the device’s software.

2.2 Autonomous Systems

Autonomy means, etymologically, being governed by the laws of itself, rather than conforming
to external directives. The concept of system autonomy has garnered multiple definitions.
Here we present some viewpoints:

• Bekey characterizes autonomy as the capacity of systems to function in the real world
without any form of external control for extended periods of time [10].

• Franklin defines an autonomous agent as a system located within a part of an environ-
ment that senses and acts on it over time, in pursuit of its own agenda and to effect
what it senses in the future [11].

• Beer conceptualizes autonomy as the extent to which a robot can sense its environment,
plan based on that environment and act on that environment with the intention of
reaching some task-specific goal (either given or created by the robot) without external
control [12].

• Sanz declares that a system is autonomous in relation with a task and a context, if it
can fulfill this task in this context without external help [13].
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The core idea underlying these perspectives is that autonomy implies the capability to operate
without external governance. A related, systems-oriented perspective pursued in our lab is
to consider autonomy as a relation between system, task, and context. From an engineering
standpoint, our focus is on achieving a level of autonomy that allows the system to pursue
objectives without requiring human intervention. These objectives can either be commanded
or fixed by the system itself to provide further value.

2.2.1 Levels of Autonomy

An autonomous system exhibits the inherent capacity to make choices. It is expected to
select a course of action and subsequently adhere to it; opposed to automatic systems in
which the choices are pregiven and it must only focus on following them. When evaluating
autonomy, the viewpoint is often on how well a system performs tasks or, even better, how
well the system development of tasks provides the expected benefits to the user.

Although stakeholders such as engineers, users, and acquirers may not always seek full
autonomy due to practical reasons, they typically expect systems to function as independently
as possible for specific activities in certain environments. This interplay between the system,
task, and environment defines the challenge of engineering autonomous systems [13]. A
scale of autonomy can provide a common language to describe requirements and standard
metrics for assessment. However, the complexity arises from the multifaceted nature of
autonomy.

Numerous attempts have been made to evaluate how autonomous the operation of different
systems can be. One of the efforts to quantify autonomy was made by the Air Force Research
Laboratory (AFRL). They focused on creating a set of measures that could cover all sorts of
autonomous systems, especially Unmanned Aerial Vehicles (UAV). These measures needed
to be detailed enough to show how technology investments were paying off, but simple
enough for upper management to understand. This led to the creation of a tool called the
Autonomous Control Levels (ACL) scale [14].

The ACL scale has ten levels, ranging from 0 (remotely piloted vehicle) to 10 (fully au-
tonomous). In between, there is level 3, which means the system can handle small faults or
events in real-time, and level 7, where there is a coordination between multiple systems. The
first attempt evaluated three things: how well the system understands its surroundings (per-
ception and situational awareness), how it makes decisions (analysis and decision making),
and how it communicates with others (cooperation and communication). However, they
realized that the metrics were not broad enough to cover the type of systems managed in the
AFRL group. In particular, they found out that these metrics only measured tactical thinking,
but did not quantify the achievement of strategic results. They also noticed that the last
metric mixed “what” the system does (cooperation) with “how” it does it (communication).
Consequently, they decided to adopt the Observe, Orient, Decide and Act (OODA) loop [15] as
a framework to evaluate autonomous systems. This model, originally devised to understand
how to get into human enemies decision loops—given the AFRL military background—was
applied to understand unmanned systems decision loops. Therefore, the revised ACL scale is
structured around four distinct aspects:
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1. Observe: How well the system can understand what is happening around it, i.e.,
perception and situational awareness. It measures models, data and sensor fusion in
the system.

2. Orient: How the system decides what is happening and how to work with others, i.e.,
analysis and coordination. It measures the capability to make inferences and diagnosis
once a goal is provided.

3. Decide: How good is the system at selecting next actions, i.e., decision making. It
evaluates if it is capable of avoiding obstacles; formulate plans, either independently
or collaboratively; optimize them or replan.

4. Act: How well the system can actually execute actions to achieve its goals and the level
of human intervention required on those actions.

Another approach to quantify systems self-govern was made by the Autonomy Levels for
Unmanned Systems (ALFUS) Working Group. Their motivation was to establish a shared
set of precise definitions which facilitated comparisons between diverse systems and their
capabilities. This framework was also designed to determine the degree of autonomy required
for each system development. The ALFUS model adopts three key points of view as pivotal
parameters to evaluate autonomy levels. These viewpoints include mission complexity,
environmental challenges, and the extent of human intervention [16]. Each of these points
of view corresponds to a different axis within the framework metrics (Figure 2.2).

Figure 2.2: ALFUS model in which each axis corresponds to a metric value for mission complexity,
environmental complexity, and human intervention (inverse).

To derive the different metric values for each axis, mathematical models or established
standards were currently unavailable. Consequently, the framework proposed the following
process [17]:

1. Establish metric sets for each axis, such as collaboration and performance for mission
complexity; decisions per time ratio and trust per skill for human independence; and
for environmental difficulty, factors per type of terrain and density of dynamic object.
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2. Decompose missions to generate a task structure that can be broken down to the lowest
skill levels.

3. Assign relative weights:

a) To each sub-task based on their significance to parent tasks or the overall mission.

b) To each of the metrics for each axis based on specific requirements or critical
objectives.

4. Evaluate and Score:

a) Task and skills are evaluated against each metric.

b) Composite scores for sub-tasks are determined using metric weights.

c) Scores are aggregated with task weights to produce upper-level task scores. This
process can be iterated until the entire mission is evaluated.

This methodology generates a rank from 0 to 10, quantifying autonomy levels based on
factors such as human intervention, mission complexity, and environmental challenges.
However, while ALFUS is theoretically applicable to all types of unmanned systems, it
primarily centers around ground vehicles. Nevertheless, there are limited examples of the
framework’s implementation, and those available are partial. For example, planning metrics
are proposed for mission complexity and workload metrics for human independence, but a
metric for environmental complexity is absent [16].

While these methods tackle the complex challenge of quantifying autonomy within the system-
task-environment triad, certain limitations are apparent. Both the ACT and ALFUS methods
lack a standardized subjective evaluation criteria for the proposed metrics. Additionally,
they do not provide a standard method for task decomposition and do not account for
interdependencies among metrics.

These frameworks aim to evaluate autonomy in context, i.e., depending on the mission and
the environment in which it is deployed. However, Durst et al. [18] propose to focus solely
on the system. They present the Non-Contextual Autonomy Potential (NCAP) model, which
introduces an explicit differentiation between autonomy and autonomous performance. This
separation of concerns strives for a simplified approach, with the aim of a less subjective
scale of autonomy.

NCAP introduces a four-tier categorization for assessing autonomy. Level 0 is attained once
the physical sensors are tested and capable of perceive. Level 1 is reached with modeling
software such as mapping, localization, target detection, etc. Level 2 is attained if the system
is capable of direct its actions towards a goal, which depends on the availability of functions
such as path planning, behavior generation, etc. Lastly, level 3 is reached when the system is
capable to execute the previous capabilities, i.e., after testing the platform and its controls,
the human interface, its mobility, etc.

However, these levels only quantify the capabilities of the platform itself. To determine
autonomous performance, it is imperative to evaluate the mission outcomes and the envi-
ronment in which it is deployed. A context-independent method can only provide some
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potential autonomy. NCAP is limited to individual component performance such as bench
testing cameras or SLAM algorithms. These scores are subsequently combined into one single
performance metric that corresponds to the potential autonomy.

Therefore, the NCAP model has limited application in comparing between systems deployed
in different environments or performing in a variety of systems. It is a valuable solution to
compare similar platforms intended for specific contexts.

The three assessment methods—ACT, ALFUS, and NCAP—were developed in the context of
military autonomous systems. As such, their conceptualization of a “mission” often equates to
the system’s ability to change location. However, the focal point of this thesis is on reaching
autonomy for complex missions and environments. Our objective is to provide a general
formal framework with broad applicability across diverse systems, particularly within complex
and open settings. An example mission within this framework involves a robot performing
selective extraction of minerals in flooded mines (Section 9.1). Therefore, our proposed
approach aims to facilitate resilient adaptations in the face of unforeseen contingencies.
Although we abstain from directly quantifying levels of autonomy, the consequences of this
thesis can be seen as a tool to enhance the system’s autonomy level.

2.2.2 Concepts Related to Autonomy

Autonomy is a broad term that covers a range of capabilities, from function independently
or adaptation to changing conditions until the effective competition of tasks. The following
concepts refer to possible requirements for the system operation:

• Functionality: The first requirement for an autonomous systems is having the capability
of doing what is expected from it. The rest of the requirements refer to this one.

• Reliability is the ability of a system or a system element to perform its required functions
under specific conditions without failure for a given period of time. These conditions
can include the environment, the mission load, and any other factor affecting it which
had been explicitly defined. Increasing autonomy could introduce complexities or risks
that could affect reliability, as it emphasizes consistent and predictable performance
under normal conditions.

The term reliability requires a failure—considered as a departure from the specifica-
tion—and the appropriate time scale to be specified [19]. It is often measured as a
probability.

• Availability is the probability of a system or a system element to be operational at a
given point in time, under a given set of environmental conditions [19]. Availability
refers to the extent to which a system is accessible and able to function, accounting for
factors such as downtime and maintenance. A system with greater autonomy might
identify problems in component availability and perform corrective actions to continue
functioning.
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• Safety is a property of a system which depends on how it behaves when used and
sustained in a specific way in a specific environment [4]. In most cases, an autonomous
system shall operate with safety, i.e., without causing unintended harm or damage to
other systems, individuals, or the environment. Safety involves both the prevention of
incidents and the mitigation of their effects if they do occur.

• Security is the ability to protect against intentional subversion or forced failure. It
is a composite of four attributes—confidentiality, integrity, availability, and account-
ability—with the objective of assure usability [19]. An autonomous system shall be
equipped with the necessary security measures to protect against threats while allowing
them to effectively perform their intended functions.

• Dependability is the ability to provide the intended services of the system with a
certain level of assurance, including factors such as availability, reliability, safety,
and security defined above. Dependability ensures consistent performance that goes
beyond reliability, as it also considers factors such as fault tolerance, error recovery,
and maintaining service levels.Fisher et al [20] defines survivability as an aspect of
dependability that focuses on the preservation of the core services of the system when
systems are compromised.

• Resilience is the ability to maintain capability in the face of adversity, either by avoiding
the cause of stress, endure this degradation or recover from it [4]. It includes the
capacity to recover to continue functions in the presence of disruptions. Autonomy is
reinforced in a resilient system, as it enables decision-making and adaptation.

• Robustness is the ability to resist degradation of capabilities under adverse condi-
tions [19]. This property implies that the system can handle a range of conditions,
deviations, or disturbances while still functioning adequately. It can be considered a
component of resilience; however, it does not include the capacity to recover. A system
exhibits higher autonomy when its robustness is enhanced, as the system can proac-
tively address issues and continue its operations even in the presence of uncertainties
or disruptions.

• Maintainability refers to the probability that a system or system element can be repaired
in a defined environment with defined resources within a specified period of time.
Increased maintainability implies shorter repair times [19]. A system that has higher
maintainability is considered to be more available.

Moreover, other attributes are often associated with highly autonomous systems.These factors
are not requirements but characteristics of systems that may become useful during the design
phase of such systems.

• An intelligent system is capable of producing appropriate behavior with incomplete,
non-formal knowledge; this definition was provided by McCarthy [21]. However,
certain authors break down the definition to include capabilities such as process and
analyze information, adapt to changing circumstances, make informed decisions, learn
from experiences, and effectively achieve the system goals.

16



2.3. Autonomous Robots

• A cognitive system is based on knowledge. We use the etymological meaning as opposed
to the common use in the domain of intelligent systems, which is “imitating human
thought processes.” This conceptualization aligns with the notion of rationality, where
the system orients decision-making towards obtaining the best expected outcome, even
when it faces uncertainty or contingencies.

• The system value is the amount of benefit, feature, or capability provided to various
stakeholders. It considers the optimal set of requirements to deliver customer satis-
faction [19]. Autonomous systems seek to perform tasks on behalf of some user. Its
goals are commonly understood as the expected change in the world to complete these
tasks. However, artificial systems are designed with a purpose; the real objective of
any artificial system is to provide some value to the user [22]. We might think of value
as the “ends” while system goals as the “means.”

In this research, our primary focus is on cognitive systems, which, as a result, leads to the
development of intelligent systems. Our approach centers around increasing dependability
and resilience of these systems, with a specific emphasis on delivering the expected value.

2.3 Autonomous Robots

Although all processes developed during this research are applicable to systems and based on
their methodologies, all the evaluation is done within a particular type of system, autonomous
robots. Robots are physical agents that perform tasks by manipulating the world. All robots
are agents, which is any entity, physical or virtual, that acts. Robots are equipped with
effectors such as legs, wheels, joints, and grippers to interact with the environment. They
also have sensors which enable them to perceive their surroundings. Sensors such as cameras,
radars, lasers, and microphones can get information about the environment or other systems
around them—e.g., other robots, people, technological stations, etc. Robots can also measure
its own state with, propioceptive sensors such as gyro-scopes, strain and torque sensors,
and accelerometers [23]. In this section, we deepen in the essential capabilities required to
achieve autonomy.

Building upon the concepts introduced in Section 2.2.2, rational agents use sense-decide-act
loops to select the best possible action. Vernon highlights the interplay between cognition and
autonomy [24]. For him, cognition includes six attributes: perception, learning, anticipation,
action, adaptation, and, of course, autonomy.

Following this approach, Langley breaks down the main functional competencies that au-
tonomous robots must demonstrate [25]. He describes knowledge as an internal property to
achieve the following aspects:

• Recognition and categorization to generate abstractions on percepts and past actions.

• Decision-making and choice to represent alternatives to select the best possible action
considering the situation.

17



Chapter 2. Context and State of the Art

• Perception and situation assessment to combine perceptual information from different
sources and provide an understanding of the current circumstances.

• Prediction and monitoring to evaluate the situation and the possible effects of actions.

• Problem solving and planning to specify the desired intermediate states and the actions
required to reach them.

• Reasoning and belief maintenance to use and update knowledge.

• Execution and action to support reactive and deliberative behaviors.

• Interaction and communication to share knowledge with other agents.

• Remembering, reflection, and learning to store past executions as experiences. Then,
they can be used in future operations.

Similarly, Brachman believed that real improvements occur when systems know what they
are doing, i.e., when the agent can understand the situation: what it is doing, where and
why. He establishes practically the same foundations listed above, emphasizing the necessity
of coordinated teams and robust infrastructure to improve autonomy [1].

The three authors acknowledge the significance of the mentioned capabilities, each with
different levels of granularity. This shared understanding of the processes that enable
autonomy provides us with a robust basis to further explore them.

2.3.1 Perception

A percept is the belief produced as a result of a perceptor sensing the environment in an
instant. Perception involves five entities: sensor, perceived quality, perceptive environment,
perceptor, and the percept itself.

A sensor is a device that detects, measures, or captures a property in the environment. Sensors
can measure one particular aspect of the physical world, such as thermometers; or capture
complex characteristics, such as segmenting cameras.

A perceived quality is a feature that allows the perceptor to recognize some part of the
environment—or the robot itself. Note that this quality is mapped into the percept as
an instantiation, a belief produced to translate physical information to the system model.
Perceived qualities are temperature, or visual images of the environment; but also the rotation
of a wheel measured by a rotative encoder placed in a robot.

A perceptive environment is the part of the environment that the sensor can detect. The
perceptive region can be delimited not only by sensor resolution but also to save memory or
other resources.

A system that perceives is a perceptor. The perceptor constitutes the link between perception
and categorization, since it takes the sensor information and processes it to categorize it.
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Usually, the perceptor embodies the sensor, as is the case in autonomous robots, but could
be decoupled if the system processes information from external sensors. Finally, the percept
is the inner entity—a belief—that results from the perceptual process.

2.3.2 Categorization

Percepts are instantaneous approximate representations of a particular aspect of the physical
world. To provide the autonomous robot with an understanding of the situation in which
it is deployed, the perceptor has to abstract the sensor information and recognize objects,
events, and experiences.

Categorization is the process of finding patterns and categories to model the situation
in the robots’ knowledge. It can be done at different levels of granularity. Examples of
categorizations appear everywhere: at sensor fusion processes from different types of sensor,
with its corresponding uncertainty propagation; at the classification of an entity as a mobile
obstacle when it is an uncontrolled object approaching the robot; or, in a more abstract level,
when a mobile miner robot recognizes the type of mine ore depending on its geo-chemical
properties.

In general, this step corresponds to a combination of information about objects, events,
action responses, physical properties, etc. to create a picture of what is happening in the
environment and in the robot itself. For this purpose, the robot shall incorporate other
processes, such as reasoning and prediction.

2.3.3 Decision-making

An autonomous robot must direct its actions towards a goal. When an action cannot be
performed, the robot shall implement mechanisms to make decisions and select among the
most suitable alternatives for the runtime situation.

Note the difference between decision-making and planning. Decision-making has a shorter
time frame because it focuses on the successful completion of the plan. An example of a
decision at this level could be to slightly change the trajectory of a robot to avoid an obstacle
and then return to the initial path. Planning, on the other hand, is concerned with achieving
a goal; it has a longer time horizon to establish the action sequences to complete a mission.
For example, the miner robot presented above has to examine the mine, detect the mineral
vein, and dig in that direction.

Decision-making acts upon the different alternatives that the robot can select, for example,
in terms of directions and velocity, but also in terms of what component with functional
equivalence can substitute for a defective one. The execution of the action—how it is
done—changes slightly, but the plan—the action sequence that achieves the goal—remains
the same.
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2.3.4 Prediction and Monitoring

Once the robot has an internal model, it can supervise the situation. This model can be given
a priori or created before stating the task; it could also be learned. The model reflects the
understanding of the robot about its own characteristics, its interactions with the environment,
and the relationships between its actions and its outcomes. At runtime, the robot can use
the model to predict the effect of an action. It can also anticipate future events based on the
way the situation is evolving.

This mechanism also allows the robot to monitor processes and compare the result obtained
with the expected response. In the event of inconsistencies, it can inform an external operator
or use adaptation techniques to solve possible errors. For example, if a robot is stuck, it may
change its motion direction to get out; and if this is not possible, alert the user.

The prediction process can also benefit from a learning procedure to improve the models
from experience and refine them over time. Furthermore, monitoring can be used during
learning, as it detects errors that can help improve the model.

2.3.5 Reasoning

Reasoning is the process of using existing knowledge to draw logical conclusions and extend
the scope of that knowledge. It requires solid definitions and relationships between concepts.
It uses instances of such concepts to ground them to the robot operation and to be used
during the mission.

The reasoning process can be used to infer events based on the current percepts, such as the
dynamic object approaching to the robot; or to infer the best possible action to overcome
it based on its background knowledge, such as reducing speed and slightly changing the
direction. Lastly, as robots operate in dynamic worlds—specifically, they operate by changing
it—the knowledge shall evolve over time.

Reasoning includes two processes: (i) infer and maintain beliefs, and (ii) discard beliefs that
are no longer valid. Logical systems support assertions and retractions for this purpose; how-
ever, they must be handled carefully to maintain ontological consistency. Truth maintenance
is a critical capability for cognitive agents situated in dynamic environments.

2.3.6 Planning

Planning is the process of finding a sequence of actions to achieve a goal. To reach a solution,
the problem has to be structured and well defined, especially in terms of the starting state,
which the robot shall transform into a desired goal state. The system also needs to know
the constraints to execute an action and its expected outcome, i.e., preconditions and
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postconditions. These conditions are also used to establish the order between actions and
the effect that they may have on subsequent actions.

The required information is usually stored in three types of models: environment, robot,
and goal models. Most authors only mention the environmental model, which includes the
most relevant information about the robot world and its actions, tasks, and goals; however,
we prefer to isolate the three models to make explicit the importance of proprioceptive
information and performance indicators for a more dependable autonomous robot.

Plans can completely guide the behavior of the robot or suggest a succession of abstract
actions that can be expanded in different ways. This can result in branches of possible
actions, depending on the result of previous states.

Planning is also closely related to monitoring; the supervision output can conclude the
effectiveness of the plan or detect some unreachable planned actions. In this case, the plan
may need adjustments, such as changing parameters or replacing some actions. Re-planning
can use part of the plan or draw a completely new structure depending on the progress and
status of the plan and the available components.

Lastly, successful plans or sub-plans can be stored for reuse. These stored plans can also
benefit from learning, especially with regard to the environmental response to changes and
action constraints and outputs.

2.3.7 Execution

A key process in robotic deployments is the execution of actions that interact with the en-
vironment. The robot model must represent the motor skills that produce such changes.
Execution can be purely deliberative or combined with more reactive approaches; for ex-
ample, a patrolling robot may reduce its speed or stop to ensure safety when close to
a human—reactiveness—but it also needs a defined set of waypoints to fully cover an
area—deliberation.

Hence, an autonomous robot must facilitate the integration of both reactive and deliberative
actions within a goal-oriented hierarchy. A strictly reactive approach would limit its ability
to direct the robot actions towards a defined objective; while an exclusively deliberative
approach might be excessively computationally intensive and lead to delayed responses to
instantaneous changes.

Another aspect of execution is control. Robots use controllers to overcome small deviations
from their state. These controllers can operate in open-loop or closed-loop mode. Open-loop
controllers apply predetermined actions based on a set of inputs, assuming that the system
will respond predictably. Although they lack the ability to correct runtime deviations, they
are often simpler and faster. Closed-loop controllers provide a more accurate and precise
action based on the inputs and the feedback received. Control grounds the decision-making
process by specifying the final target value for the robot effectors. It constitutes the final
phase of action execution.
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2.3.8 Communication and Coordination

In many applications, robots operate with other agents—humans or robots of a different
nature. Communication is a key feature to organize actions and coordinate them towards a
shared goal. Moreover, in knowledge-based systems, communication provides an effective
way to obtain knowledge from other agents’ perspectives.

Shared information provides means to validate perceived elements, fusing it with other
sources, and providing access to unperceivable regions of the world. However, this requires
a way to exchange information between agents in a neutral, shared conceptualization that is
understandable and usable for both. In this research, we exploit ontologies as a common
baseline for system knowledge.

Once the communication is established, we shall coordinate the actions of the systems
involved. Decision-making and planning processes should take into account the capabilities
and availability of agents to direct and sequence its actions toward the most promising
solution. For example, in multi-robot patrols, agents shall share its pose and planned path to
avoid collisions. Another example could be exploring a difficult access mine; in which we
could use a wheeled robot for most of the inspection and a leg robot for the unreachable
areas.

2.3.9 Interaction and Design

Interaction and design are often omitted when analyzing autonomous capabilities. Although
they are part of the design phase, this engineering knowledge hold considerable influence
over the robot’s performance and dependability.

Interaction between agents can be handled through coordination; however, embodiment of
robots can produce interactions between software and/or hardware components. Robots
should be aware of the interaction ports and the possible errors that arise from them.
This concern is presented by Brachman [1], as awareness of interaction allows the robot
to step back from action execution and understand the sources of failure. This becomes
particularly significant during the integration of diverse components and subsystems, where
the application of Systems Engineering techniques proves to be highly beneficial.

Hernández et al. [26] argues about the need to exploit functional models to make explicit
design decisions and its alternatives at runtime. These models can provide background
knowledge about requirements, constraints, and assumptions under which a design is valid.
With this knowledge, we can endow robots with more tools for adaptability; providing
the capability to overcome deviations or contingencies that may occur. For example, a
manipulator robot with several tools may have one optimal tool for a task; but if this
component is damaged, it can use an alternative tool to solve the problem in a less than
optimal way.
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2.3.10 Learning

Most of the processes described above can improve their efficacy through learning: catego-
rization, decision-making, prediction and monitoring, planning, execution, coordination,
design, etc. Learning can be divided into three steps: remember, reflect, and generalize.

• Remember is the ability to store information from previous executions.

• Reflect involves analyzing that remembered information to detect patterns and establish
relationships.

• Generalize is the process of abstract conclusions derived from reflection and subse-
quently extended to use them in future experiences.

Our focus in this analysis has been on knowledge-based robots, precisely the category that
our work address. In this research, our emphasis is on adaptation, involving fundamentally
the capabilities of reasoning, execution, and design. Learning is beyond the scope of this
thesis.

2.4 Fault Tolerance

The common strategy to achieve system dependability is straightforward: identify potential
disruptions—whether internal or external—and design, build, and deploy system capabilities
to manage them. In general, a fault is something that changes the behavior of a system
so that it no longer satisfies its purpose [27]. When considering faults, the first thing that
usually comes to mind is something that is wrong inside the system itself, such as a wheel
suddenly stopping or a problem with the communication subsystem. However, faults can
also be triggered by changes in environmental conditions such as an increase in the ambient
temperature or an unexpected presence of water. Moreover, faults might stem from design
errors, such as unresolved maneuverability issues for specific setups or errors in parameter
settings. In all of these cases, the fault eventually leads to considerable degradation in
performance or even the loss of a system function.

There are three methodologies for handling system faults [28]:

• Fault prevention: This method anticipates faults and aims to prevent their occurrence.
It does not require component redundancy since it assumes that all components will
consistently operate as designed to ensure proper functioning of the system.

• Fault repair: As anticipating all possible faults is impossible, this technique assumes
that failures will happen occasionally. In such cases, manual maintenance procedures
are considered during the design phase and implemented when necessary during
operation.
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• Fault tolerance: To reduce maintenance-related downtime and increase the reliability
of the system beyond anticipation, fault tolerant systems are designed to provide the
service even in the presence of faults. A common strategy to achieve this is the use of
redundancies.

For complex systems where manual repairs are impractical due to factors such as inaccessi-
bility, high costs, or time constraints, fault tolerance is the optimal choice. This approach is
typically complemented with fault prevention, as the components must be reliable. Fault
tolerance is the engineering domain dedicated to developing methodologies for preventing,
minimizing, and recovering from faults. When a malfunction occurs, it is crucial to quickly
identify the source and make the appropriate decisions to avoid its propagation and reduce
its effects.

In this domain, we shall distinguish three closely related concepts [28]. A system fails when
it cannot provide the desired service. Therefore, a failure is a deviation in the behavior of
the system from its specified requirements. This specification is a crucial process of Systems
Engineering (SE) which is further elaborated in Chapter 3. An error is a property of the
system state which may result in a failure. As errors are inherent attributes, they can be
observed and evaluated. Conversely, since failures are not directly observable, they are
typically inferred by identifying certain errors in the system state. Lastly, a fault represents
some defect with the potential to produce an error. Faults cause changes in component
and system characteristics, which produce undesired modes of operation or performance
outcomes [27]. When an error arises, there is a fault involved; however, the mere presence
of faults does not ensure the occurrence of an error.

2.4.1 Redundancy

Redundancy is a crucial aspect in fault-tolerant systems. Jalote defines redundancy as those
system parts that are not essential for correct system operation, but come into play when
fault-tolerant mechanisms are required [28]. Redundancy can manifest itself in various
forms: hardware, software, or time [29].

Hardware redundancy, often called physical redundancy, involves the inclusion of additional
hardware components to ensure system operation in the presence of faults. These components
are commonly used in safety-critical systems and complex distributed systems, including
spare elements, such as processors, memories, and power supplies. For example, in aircrafts,
a well-known approach is Triple Modular Redundancy (TMR) where three hardware copies
run in parallel, and their outputs are compared for consensus. Another approach is dynamic
redundancy, where spare components are available to replace defective ones. In addition,
coding plays a crucial role in fault tolerance, particularly in enhancing communication
reliability. This approach involves detecting bit errors in transmitted information and,
whenever possible, correcting them based on the applied encoding [28].

Software redundancy covers all programs and instructions designed to support fault tolerance.
One straightforward method is to execute a repetition of a sequence of instructions to
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overcome a fault, at the cost of reduced time performance. However, a widely adopted
approach is analytical redundancy, in which an explicit mathematical model is used to
diagnose the faulty system. This diagnostic information is then used to adjust the model
and redesign the controller to meet the system specifications again [27]. This approach
offers a cost-effective, reusable means of enhancing dependability through fault-tolerant
control. Lastly, Time redundancy refers to the additional time needed to complete tasks
when employing fault-tolerant techniques. A well-known software fault-tolerance strategy
is N-version programming, where a critical algorithm is implemented in different ways to
tolerate potential design o programming errors in any of the implementations.

2.4.2 Fault-Tolerant Control

From a SE perspective, achieving fault tolerance involves a close integration between the
system and its controller. In systems-theory, we commonly refer to the model of the system
as the “plant.” In the context of fault-tolerant control, the term “controller” has a broader
meaning. It extends beyond the traditional role of feedback or feed-forward control law,
providing an additional decision-making process responsible for the selection of the system
configuration [27].

The rationale behind this approach is a control layer that continuously monitors the behavior
of the system and adjusts the controller to ensure that the system continues to fulfill its
objectives. In this case, even though a fault may persist, its impact is effectively masked
because the system maintains an acceptable level of performance. This method is referred to
as active fault-tolerant control.

Active fault tolerant control involves five phases:

1. Fault detection: This phase recognizes the presence of a fault based on an observed
error in the state of a system component.

2. Fault diagnosis: This phase entails the identification of the fault’s nature.

3. Control redesign: Following fault detection, the control loop structure is adapted
and appropriate algorithms and parameters are selected to accommodate the altered
system.

4. System reconfiguration: In this phase, the system leverages the adapted controller to
ensure it operates properly despite the fault.

5. Application: In the final phase, the system returns to regular operation.

However, in classical control theory, controllers are typically designed with the assumption of
a faultless plant, although they are often engineered to accommodate faults to some extent.
This approach is known as passive fault-tolerant control. Classical control techniques for
passive fault tolerance include robust and adaptive control strategies.
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Robust control provides a fixed controller that tolerates changes in plant dynamics without
a change in its parameters. It is designed to explicitly handle uncertainty [30]. However,
the scope of faults it can effectively handle is limited [27]. Moreover, its parameters are
typically set with a trade-off between performance and robustness, making it less suitable for
scenarios where maximizing performance during normal operation is the primary objective.

Some of these limitations can be addressed by adaptive control, where the controller parame-
ters are adjusted in real time as the system parameters evolve. This principle is particularly
efficient for dealing with slowly changing parameters in linear models [27].

Adaptive control shares a structural similarity to fault-tolerant control. However, faulty
behaviors in adaptive control are often induced by non-linearities, as this approach often
involve larger variations, and are not uniquely restricted to parameter changes. Therefore,
fault-tolerant control becomes necessary for complex scenarios that may require altering the
controller type, its algorithm, or the plant model.

In this research, we leverage the foundational concepts of fault-tolerant control to support
model-based system adaptation. This approach extends beyond addressing parameter and
controller changes and cover other aspects of adaptation, such as the structural reconfigu-
ration of system components or even the change of mission tasks. Although fault-tolerant
control seeks to complete task goals, we aim to ensure the delivery of the expected value.

2.4.3 Fault Tolerance in Operation

The implementation of fault-tolerant systems is closely tied to their architecture. Fault
tolerance is a feature that must be integrated into the system during its design phase.

When applied to fault-tolerant control, as proposed by Blanke [27], the phases of error
detection and damage confinement are consolidated into fault diagnosis, involving the
detection and identification of faults. The stages of fault treatment and continued service are
grouped into control redesign, which aims to adapt the controller to ensure that the overall
system continues its operation. Figure 2.3 illustrates the architecture of a fault-tolerant
control system employing this approach. As mentioned above, the separation of concerns
between operation and reconfiguration is a fundamental aspect of the research conducted in
this thesis.

Fault-tolerant control constitutes an important field for enhancing the reliability of systems.
It has the capacity to address more substantial faults and disturbances compared to classical
control techniques and is a cost-effective alternative to traditional physical redundancy
solutions. However, in practical applications, fault-tolerant control solutions tend to be
ad-hoc, tailored to specific anticipated problems. For this reason, the focus of our research
is to develop a systematic methodology with an architectural approach that can effectively
address faults and other contingencies.
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Figure 2.3: Architecture of a fault-tolerant control system, adapted from [27].

2.5 Self-Adapting Systems

Dynamic adaptation and fault tolerance are similar, yet distinct concepts that contribute to
ensure system reliability and robustness. While both share the goal of preserving system
performance, they address different aspects of system behavior. Self-adaptation focuses
on performance optimization in response to changing conditions, while fault tolerance
centers on maintaining system operation despite faults and failures. However, fault-tolerant
techniques are typically predetermined during the development phase, limiting their ability
to address unforeseen contingencies and leverage real-time information for identifying and
implementing corrective actions.

Cheng et al. [31] define self-adaptation as the capability of a system to dynamically adjust its
behavior at runtime in response to its perception of both the environment and its internal
state. However, from our perspective, there is an additional triggering factor for adaptation:
the recognition that the delivered value does not align with the specified requirements.

Self-adaptive systems rely on feedback loops as a fundamental mechanism to comprehend
various aspects of self-adaptation. As described in [31], self-adaptation can be understood
through four interrelated dimensions:

• Goal: Primary objectives that the system must accomplish.

• Change: Triggering event for adaptation. When there are variations on the operational
context, the system must decide on how to face them. In this domain, context includes
any computationally accessible information on which behavioral variations depend [32].
This involves aspects related to the environment, entities that interact with the system,
and the system itself.

• Mechanism: Adaptation process that defines the relationship between the triggering
change and the system’s response to it.

• Effect: Impact and consequences of adaptation on the system.
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In the domain of systems, the prefix “self” indicates that systems decide autonomously how
to adapt or accommodate changes in their context and environment [33]. Nonetheless,
practical implementation often involves higher-level objectives, hierarchical policies, or
human-on-the-loop verification to facilitate the decision-making process for adaptation.

2.5.1 Architectural Approach for Self-Adaptation

There are some considerations that must be taken into account to effectively implement self-
adaptation. System reconfigurability, mainly achieved through redundancy—analytical or
physical—is essential to facilitate adjustments. Monitoring changes in the system’s context is
crucial to determine when to apply modifications. Moreover, to maintain the expected value,
the system should pursue a set of high-level goals, regardless of the runtime conditions.
However, non-critical objectives could be relaxed to provide some degree of flexibility,
especially when adaptation serves as a fault-tolerant mechanism.

Cheng et al. [31] propose a flexible approach that accommodates some level of incomplete
information about the environment and its behavior during the requirement specification
phase. They suggest to define requirements within some range that can evolve during system
operation, especially those falling under the category of non-functional requirements, such
as performance, flexibility, cost, reliability, security, safety, etc. However, this introduces a
challenge in managing the system’s life cycle, specifically in dealing with the uncertainty
surrounding requirements. While some requirements remain static, others allow for a certain
degree of flexibility.

An effective method to ensure the fulfillment of requirements throughout the entire life cycle
is the utilization of architectural design models. Garlan et al. introduce a straightforward
metamodel for representing the system architecture in the form of a hierarchical graph. This
metamodel offers a reusable structure embedded with semantic properties. To achieve this,
they define a set of types for components, connectors, interfaces, and properties together
with a set of rules that govern how elements of these types can be composed [34].

Figure 2.4 presents Garlan’s architecture, which naturally aligns with the generic feedback
control loop. In this depiction, the core system is enhanced with additional solutions outlined
in the architectural model. An external controller, known as the repair handler, generates
the adapted architecture. Then, this new architecture is translated and executed within the
system to facilitate runtime adaptation.

The approach taken by Garlan et al. is of particular relevance to the research developed in
this work. They extend the use of architecture beyond the design phase, incorporating it as a
fundamental element in supporting runtime adaptation through architectural models. These
models serves to determine (i) which system properties to monitor, (ii) which constraints to
assess, (iii) the course of action to take when constraints are violated, and (iv) how to adapt
the system accordingly.

However, this strategy still exhibits some limitations, primarily in its constraints on adaptation
operators (actions for altering the architecture) and predefined repair strategies. In contrast,
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Figure 2.4: Garlan’s et al. architectural adaptation framework, adapted from [34]. The monitor mech-
anisms on the executing system trigger the architecture manager, which decides whether an adaptation to
the system’s execution structure is required.

our research provides a formal framework that enables the computation of alternative
adaptation solutions during robot operation, offering a more flexible approach to handling
changes in real-time scenarios.

2.5.2 Self-Adaptation and Explicit Control

Self-adaptation can often be hidden by system design, especially in software-intensive
systems [31]. We consider an adaptive system when it combines two key operational aspects:
they make runtime decisions, at least partially, with regard to the system design; and they
reason about the system environment and their own internal state.

To address these challenges, the self-adaptive community use control theory [33], a domain
equipped with well-established mathematical models, tools, and techniques for analyz-
ing various aspects of system behavior, including performance, stability, sensitivity, and
correctness [35].

De Lemos et al. underscore the utility of control theory’s concepts and abstractions, even
for systems too complex for direct implementation [36]. These theoretical aspects provide
some design guidance to identify relevant control characteristics, as well as to determine the
general steps and specific strategies to control the system.
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Dobson et al. [37] introduced the autonomic control loop, which represents an evolution of
the sense-plan-act loop originally conceived for the control of autonomous mobile robots.
The autonomic control loop comprises four key stages:

1. Collection: Gathering relevant information from environmental sensors and the execut-
ing system.

2. Analysis: Processing and analyzing the collected raw data.

3. Decision: Making informed decisions on how to adapt the system to achieve a desirable
state.

4. Act: Implementing the decision through concrete actions.

Nonetheless, when implementing this approach in the development of a self-adaptive system,
various aspects within the engineering process require careful consideration, as outlined by
Brun et al. [33]:

1. In the collection phase, considerations include aspects such as determining the ideal
sampling rate and ensuring the reliability of the raw data.

2. In the analysis phase, the focus shifts to understanding the current state of the system,
determining which information should be stored and for how long it remains valid.

3. In the decision phase, questions emerge regarding how to infer future system states to
select the optimal solution while assessing potential risks and establishing priorities
among multiple adaptation options.

4. In the act phase, decisions must be made concerning which entity performs the action,
the timing of its execution, and how the adaptation is harmonized with other concurrent
activities within the system.

While the autonomic control loop offers a high-level framework outlining the main activities
for a generic feedback loop, it does not describe the essential properties and data flow
specifics. These aspects are often partially addressed in particular implementations on the
feedback loops.

▶ AUTONOMIC ELEMENT AND THE MAPE-K LOOP

IBM [38; 39] introduced the concept of an autonomic element, a fundamental building block
to achieve self-adaptation through an explicit feedback control loop. This architecture is
a well-recognized engineering approach for adaptation. The autonomic element consists
of two main entities: the managed element, which includes the system with its sensors and
effectors, and the autonomic manager, responsible for controlling the processes running on
the system.
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Much of the work in this domain focuses mainly on pure computing systems. IBM’s con-
ceptualization of managed elements comprises hardware resources such as CPUs, printers,
or storage, as well as software resources such as databases, directory services, or large
legacy systems. At the highest level, a managed element can even represent entities such as
e-utilities or application services [39].

The architecture of the autonomic element is illustrated in Figure 2.5. The autonomic
manager can be further decomposed into four components: a monitor, an analyzer, a planner,
and an executor, all of which share a common knowledge base. The information exchange
between these components produces a continuous loop known as the monitor-analyze-plan-
execute loop, or MAPE-K loop. Each component provides a functionality in the manager
sub-system [33]:

Figure 2.5: Autonomic element composed of a managed element entity and an automatic manager
which executes the MAPE-K loop, adapted from [40].

1. Monitor: This component tracks the managed process, its environment, and its internal
states. It filters sensor data and stores relevant information in the shared knowledge
base.

2. Analyzer: The analyzer interprets the data from the monitor by comparing it with
patterns in the knowledge base to diagnose the system. It also stores symptoms for
future reference in the knowledge base.

3. Planner: The planner’s role is to generate a plan based on the interpreted context.

4. Executor: The executor carries out the plan to implement the necessary changes in the
system through its effectors.

One significant advantage of this approach is its composability. An autonomic element itself
can become a managed element, and interfaces such as sensors and effectors are standardized
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across building blocks to facilitate collaboration, data sharing, and control integration among
autonomic elements [33].

As a result, autonomic elements can operate effectively at various levels of granularity [39].
They can manage individual components, such as disk drives, or supervise complete com-
puting systems, such as servers. This scalability is also reflected in the complexity exhibited
by each element, which includes a wide range of internal behaviors and relationships with
other elements, as well as the ability to interact with different sets of elements. This dynamic
results in a hierarchy of interrelated, self-governing components.

The autonomic element constitutes a self-adaptive system because it modifies the behavior of
an underlying subsystem—the managed element—to achieve its overall objectives. However,
conceptually, it operates as a feedback control loop, a concept derived from classic control
theory [33; 41]. Nevertheless, it shares some of the limitations with common fault-tolerance
approaches, as it often relies on ad-hoc solutions for contingencies defined in advance.

2.5.3 Beyond adaptation: Self-X Properties

Kephart and Chess [39] conceived Autonomic Computing as the primary solution to address
the software complexity crisis within the IT industry. Their main motivation was to create
systems capable of managing themselves according to the goals of an administrator. They
intentionally used the term “autonomic” introduced by Horn [38] to draw an analogy with the
autonomic nervous system, which governs fundamental, lower-level functions such as heart
rate and body temperature without requiring conscious brain intervention. IBM’s initiative
extends beyond self-adaptation and can be broadly described as self-X [42]: using system
reflection for any task. In the world of pure software systems, this strategy is commonly
named self-* [43].

At the core of autonomic computing is the concept of self-management which seeks to free
administrators from the details of system operation and maintenance. That is, to make
systems more autonomous in their continuous operation. Several key aspects must be
considered to achieve self-management [39]:

• Self-configuration: This is the capability of a system to autonomously configure itself
based on high-level policies that specify desired outcomes without prescribing the exact
methods. In scenarios where new components are introduced, the system seamlessly
integrates them, making automatic adjustments as needed.

• Self-optimization: A self-optimizing system continuously seeks opportunities to enhance
its operation by identifying ways to become more efficient in terms of performance
or cost. In practice, this often involves the automatic search for updates to improve
system execution.

• Self-healing: Self-healing systems possess the ability to detect, diagnose, and repair
localized problems resulting from bugs or failures in software and hardware. They
leverage knowledge about the system’s configuration and employ problem-diagnosis
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components to recover the system. This aspect is closely aligned with the use of
fault-tolerant capabilities.

• Self-protection: Self-protecting systems are equipped to defend against malicious attacks
or cascading failures that cannot be resolved by self-healing measures. They can also
proactively anticipate potential issues based on early monitoring and take actions to
either avoid, or mitigate them.

To achieve these self-management capabilities, systems should have awareness of both their
context and their internal state. This need is reinforced as the concept of self-awareness has
gained interest as the complexity of systems has increased [44].

▶ SELF-AWARENESS

According to Kounev [45], self-aware agents may refer to three aspects. First, there is
awareness of the world, which relates to the information accessible to the agent to generate or
modify its behavior in response to the environment. Secondly, awareness of the self involves
distinguishing the agent from its external world, which is facilitated by tracking the agent’s
development through past states and actions stored in its memory. Lastly, the third aspect
is attention to determine which information the agent shall consider during self-reflection.
Attention mechanisms enable the agent to decide which process and information segments
are vital for monitoring and adapting to the situation.

In psychology and neuroscience, understanding how a system becomes aware of itself and
its environment is conceptualized through two terms: “awareness” and “consciousness,”
which, according to Francis Crick, refer to the same phenomenon [46]. In the context of
machine intelligence, efforts to develop awareness have been significantly influenced by
these biological perspectives [47; 48; 49].

In this research, the aim is not to follow a bioinspired approach to self-awareness but rather
to establish a system-oriented method that provides functional benefits [50] associated with
self-awareness. From this perspective, while there is no consensus on a precise definition,
most researchers agree on two fundamental aspects. First, self-awareness refers to how a
system distinguishes itself from its surroundings. In other words, having information about
its own internal states and being able to differentiate itself from external world information.
Secondly, it relates to having sufficient knowledge to perceive how the self-aware subsystem
influences other parts of the system. Combining both approaches allows the agent to make
decisions on how to act, which is especially useful for overcoming contingencies during
operation.

Beyond adaptation, self-X can yield various advantages for systems [51]. For instance, during
the design phase, programming can be less constraining, as the system can dynamically
allocate resources based on availability at runtime. In collective robotics, self-awareness
can serve as a mediator for processing information about other subsystems, predicting how
the entire system will behave based on the interactions of individual components. Another
benefit of system awareness is self-explanation. By comparing the current situation with the
intended outcome, failures can be traced back to a specific component or group of candidates.
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In cases requiring human intervention, the system can precisely direct the operation to the
source that demands attention. All these aspects contribute to the main objective for which
self-X is implemented, more autonomous systems.

2.6 Formal Methods in System Development

As technological systems become more complex, it is suggested to embrace a rigorous
approach to ensure the reliability and integrity of these systems throughout their entire
life cycle. Formal methods (FMs) represent an engineering methodology for specifying,
developing and verifying software. This is achieved through a mathematically grounded
notation and language. By using a specification language, we can systematically and, in
many cases, automatically assess the software model for three critical qualities: consistency
(by eliminating ambiguity), completeness, and correctness [19].

The application of FMs can vary in terms of rigor, ranging from occasional mathematical
notations within natural language specifications to fully formal specification languages with
precise semantics. In mathematical terms, formal specification languages are recognized
as formal systems, which we further examine in Chapter 4. Beyond specification, they can
ensure a system’s behavior within specified conditions. This can be achieved through proofs,
establishing the truth of a specific characteristic for all possible inputs, or through model
checks, which determine if a state machine model satisfies given requirements [52].

FMs offer valuable tools to ensure that systems behave as intended. However, their full
potential is often constrained because the available proof tools are still in a relatively primitive
state [53]. As a result, they are frequently used for simplified designs or within the most
critical components of a system [54]. Nevertheless, formal specification, as proposed by
Hall [53], can be applied to enhance any type of system, regardless of its complexity. This
approach involves reasoning about the system before constructing it, reducing not only errors
but also the costs associated with discovering them late in the life cycle.

The essence of formal specification relies on extending the analysis and design phases while
subsequently reducing the implementation, integration, and testing phases. This strategy
aims to identify and rectify various types of error by establishing a common understanding
of the intended behavior of the system. The main method to accomplish this is through
abstraction on three different aspects:

• What over How: It specifies what needs to be done rather than prescribing how it
should be done, providing flexibility in the implementation process.

• Flexibility: It adapts the level of granularity in the description to the stakeholder or the
stage of development, facilitating communication processes and shared understanding
of the system.

• Data Types: It utilizes data types such as sets and relations, rather than computer-
oriented types such as arrays. This approach encourages a representation-oriented
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method, making it accessible even without a strong mathematical or programming
background.

A shared and unambiguous specification provides benefits far beyond the early phases of
system development. It helps clients understand their purchase and offers a foundation to
support other ways of expressing the specification. Furthermore, it enhances maintainability
because it clarifies the role of each part and which functions need to be preserved during
system adaptation. However, there is still a challenge to bridge the gap between real-world
requirements and mathematical formalism, as well as to determine how best to represent
them.

In this research, we focus on formal specification as a means to enhance system dependabil-
ity. Sommerville divides specification styles into two main approaches: model-based and
algebraic [55]. Model-based specification uses mathematics entities such as sets, relations,
and sequences to define abstract machines, whereas the algebraic style relies on abstract
data types and its operations to form axioms.

Additionally, there exist semi-formal notations such as UML and SysML that provide a set
of symbols to represent specific roles in system descriptions, but these notations often lack
precisely defined semantics [52]. Chapter 3 deepens into these semi-formal methodologies,
while Chapter 6 introduces an abstract mathematical domain, Category Theory. Within this
framework, we develop a novel approach to formal system specification that can be exploited
at runtime to drive system adaptation.
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Chapter 3
Systems Engineering

This research is grounded in three fundamental domains: Systems Engineering, Knowledge
Representation and Reasoning, and Category Theory. This chapter focuses on the first domain,
while Chapter 4 and Chapter 6 examine the other two.

In this chapter, we introduce the domain of Systems Engineering and explore relevant
concepts for this research. Additionally, we deepen in Model-Based Systems Engineering,
a semi-formalized methodology that provides the foundational concepts for the models
developed in this research.

3.1 Definitions of Systems Engineering

Systems Engineering (SE) provides a multidisciplinary and integrative approach to address
complex engineering challenges. Its primary objective is to facilitate teams in understanding
and effectively managing systems development complexity to deliver successful systems. SE
constitutes a discipline essential for the realization of systems that not only achieve their
intended objectives but also exhibit resilience in real-world scenarios, while minimizing
unintended actions, side effects, and its consequences [56]. SE is no longer an emerging
discipline, but a well-established approach to achieving success in systems development with
widespread adoption in critical sectors such as defense and aerospace [57].

In Section 2.1, a system is described as an arrangement of parts exhibiting a collective behavior
beyond what individual constituents can accomplish. SE ensures that these elemental parts
function effectively to achieve the objectives of the whole. Although these principles have
been applied to technical artifacts throughout history, SE was not formally established as an
engineering discipline until the mid-20th century. The term “systems engineering” emerged
at Bell Telephone Laboratories in the early 1940s [4]. Its formal recognition as a discipline
came in 2002 with the introduction of the international standard ISO/IEC 15288 [58].

Today, SE is guided by authoritative sources such as ISO/IEC/IEEE 15288 [59], which
describes system life cycle processes, activities, and tasks. The International Council on
Systems Engineering (INCOSE) is a non-profit organization that plays a central role in
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developing and disseminating SE knowledge. The INCOSE handbook [4] defines best
practices and serves as a reference for the application of SE techniques. Furthermore, the
Guide to the Systems Engineering Body of Knowledge (SEBoK) [19] offers a comprehensive
manual to key knowledge sources and references, providing in-depth coverage of the latest
developments in SE and related topics.

The official definition of SE provided by INCOSE [60] and ISO/IEC/IEEE 15288 [59] is as
follows:

Systems Engineering is a transdisciplinary and integrative approach to
enable the successful realization, use, and retirement of engineered sys-
tems, using systems principles and concepts, and scientific, technological,
and management methods.

SEBoK, while aligned with the official definition, adds emphasis on what it means to realize
a successful system. They define SE as an approach and all means that enable the realization
of systems that satisfy the needs of their customers, users, and other stakeholders [19].

Additionally, various authors have presented their own interpretations of SE:

• Chestnut [61] defined SE as a method that recognizes each system as an integrated
whole composed of diverse, specialized structures and sub-functions. This approach
seeks to optimize overall system functions according to weighted objectives of each
sub-system to achieve maximum compatibility between them.

• Ramo [62] defined SE as a discipline that focuses on the design and application of
the whole system, as distinct from individual parts. It involves examining a complete
problem, taking into account all the facets and variables, including both social and
technical aspects. According to Holt [57], Ramo’s perspective is considered founda-
tional to modern SE as he proposes to examine the system along with the influence of
non-technical facets.

• Eisner [63] conceptualizes SE as an iterative process of top-down synthesis, develop-
ment, and operation of real-world systems that satisfy a full range of requirements
in a near-optimal manner. He introduced the concept of achieving requirements as a
process that guides the operation of the engineer.

• The NASA SE Handbook [64] describes SE as a robust approach to design, creation,
and operation of systems. It involves identifying and quantifying system goals, creat-
ing alternative design concepts, performing design trades, selecting the best design,
verifying proper construction and integration, and assessing post-implementation per-
formance. This definition highlights the concepts required in SE further developed in
Section 3.2.1.

In summary, these diverse perspectives contribute to a comprehensive analysis of SE, with
the purpose of establishing a common understanding of a system throughout its life cycle,
from conception and development to production, utilization, and retirement. It provides a
systematic methodology for achieving a shared vision of the current state of the system and its
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future evolution. This approach transforms stakeholder needs, expectations, and constraints
into a viable solution while considering objectives, budget, and schedule constraints.

According to INCOSE definition [60], SE focus on the following aspects:

• Integration of Stakeholder Goals: SE integrates the goals of different stakeholders with
diverse needs, purposes, and success criteria.

• Process Approach: It establishes a process approach to manage complexity, uncertainty,
change, and variety throughout the system’s life cycle.

• Concept and Architecture Generation: SE involves generating and evaluating alternative
concepts and architectures to find the most suitable solution.

• Guidelines for Requirements Modeling: It provides guidelines for modeling requirements
and deriving a solution architecture at each stage of the system life cycle.

• Design Synthesis and Verification: SE includes design synthesis, and system verification
and validation to ensure the system meets its intended objectives.

• Identification of Enabling Systems and Services: It identifies enabling systems and
services and defines the roles of parts and their relationships to achieve a satisfactory
solution.

In conclusion, SE provides a structured methodology for integrating the different disciplines
required to engineer a system that addresses both the business and technical needs of users,
acquirers, and other stakeholders. The goal of SE activities is to manage risks and avoid or
minimize contingencies throughout the system’s life cycle, from development to retirement,
including its real-world operation. This systematic approach improves the likelihood of
successful engineered systems.

3.1.1 SE as a Tool for Handling Complexity

When addressing the domain of system design, especially within the context of autonomous
systems, it becomes necessary to distinguish between two fundamental phases:

• The engineering phase which addresses the development of a system, with the objective
of optimizing its operational effectiveness.

• The operational phase, which implies the execution and practical functioning of the
system, culminating in the achievement of desired outcomes.

SE provides a methodology for the first facet, with the ultimate goal of enhancing the second.
Similarly, this research aims to improve the dependability of system operation by offering a
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set of formal tools to system developers. Therefore, a comprehensive understanding of SE
foundations is essential for the proper realization of this work.

This dual perspective, covering both the engineering and operational aspects, is also relevant
when evaluating systems that face difficulties. These challenges can result in failures when a
system cannot fulfill its intended purpose or when project constraints become unmanageable,
such as cost or time limitations. Alternatively, they can be termed “disasters” if they produce
adverse environmental impacts or harm individuals. Both scenarios require examination
from (i) the engineering process and (ii) the system’s operational perspective. However,
almost all disasters and failures can ultimately be attributed to what Holt [57] identifies as
the three evils of engineering: complexity, lack of understanding, and poor communication.
Addressing these challenges is the main motivation of SE.

▶ COMPLEXITY

Complexity in engineering refers to the number of elements and the degree of interconnect-
edness between the elements that make up a system. It requires understanding not only each
individual element, but also the relationships between them. Moreover, elements themselves
can be composed of other elements and relationships, making the process of understanding
complexity iterative. Furthermore, the relationships between elements may change based
on the states or conditions that the system experiences.

Nowadays, most technological systems have the potential to offer solutions to challenging
problems at the cost of being complex. Some of them may even exhibit holistic characteristics
such as autonomy or self-organization. However, they often involve not well-known and even
counterintuitive dynamics and cause-and-effect relationships that are difficult to manage
and predict [4].

Sheard and Mostashari [65] divide complexity into three dimensions:

• Structural Complexity: This dimension pertains to the composition of a system, involving
its constituent parts and the relationships between them. It includes various ways in
which elements can be combined or configured, ultimately influencing the system’s
potential to adapt to external needs.

• Dynamic Complexity: Dynamic complexity focuses on the behavior of a system as it
performs specific tasks within its environment. It focuses on how systems interact over
time to produce particular behaviors and their subsequent effects.

• Socio-Political Complexity: This dimension considers the influence of human factors
on complexity. In SE, it is related to the multiple perspectives and biases of stakehold-
ers in the system context. The interplay of these individual viewpoints can lead to
unpredictable emergent behaviors during system conceptualization and design.

SE uses specialized techniques to understand complex system behavior and predict the impli-
cations of altering it. Moreover, it addresses the aspect of “perceived” complexity throughout
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the engineering process, illustrated by the brontosaurus analogy [66]. This analogy suggests
that project complexity is low at the beginning, “head of the brontosaurus,” but as require-
ments and constraints gain clarity, the project enters the “belly of the brontosaurus,” where
it is often perceived as exceedingly complicated. Subsequently, as the design progresses
and optimization takes hold, the project advances towards the “tail of the brontosaurus,”
signifying proximity to a solution. This perception of complexity evolves in tandem with the
project’s life cycle, reflecting the growing comprehension of the system under development.

▶ LACK OF UNDERSTANDING

A lack of understanding can occur at any stage of the project. It often occurs during the
initial phases when needs and requirements are being gathered, leading to ambiguity on
system’s functionalities.

Similarly, it may emerge during the development phase, particularly when there is insufficient
domain knowledge. In such cases, it may result in flawed assumptions about critical aspects
such as production constraints, operation parameters, or characteristics of the deployment
environment.

Lastly, during the system’s operational phase, incorrect product usage, such as the disregard
of safety procedures or deploying the system in an unsuitable conditions, can lead to failures
or disasters. Regardless of the stage, a deficiency in system understanding can give rise to
more significant issues later in the system’s life cycle.

▶ POOR COMMUNICATIONS

Communication problems can arise at any stage during the engineering process. These issues
may occur from personal difficulties in understanding due to language barriers, differences in
technical background, or personalities clashes between team members. Furthermore, during
system operation, effective communication is crucial, including both system-to-system and
system-to-human interactions. This extends to communication within the system, human
operators, and other supporting systems.

This aspect forms a cyclical relationship, often referred to as the “three evils triangle,” where
each element aggravates the others. For example, unmanaged complexity can lead to a
lack of understanding and communication problems. Conversely, communication problems
can make it difficult to identify and manage complexity, while a lack of understanding can
further worsen communication problems and increase overall system complexity [66].

It is important to note that while these risks cannot be completely eliminated, SE provides a
framework for addressing them individually and from different perspectives to increase the
opportunities to manage and mitigate them.
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3.2 System Concepts

Most technological systems are Systems-of-Systems (SoS). ISO/IEC/IEEE 15288 [59] defines
this concept as a set of systems or system elements that interact to provide a unique capability
that none of the constituent systems can accomplish on its own. Essentially, a SoS is a
composition of interacting systems —that, in turn, is comprised of system elements. A
System-of-Interest (SoI) is defined a system whose life cycle is under consideration. Up to
this point, we have explored the domain of systems and their inherent complexity. However,
to fully leverage SE we shall establish some foundational concepts.

▶ HIERARCHY

One of the challenges of SE is to determine the level of detail required to represent its related
entities. The concept of hierarchy involves defining the composing elements of a system only
in relation to the whole system—or SoI—but suppress all interaction and interrelations with
other parts. Figure 3.1 shows the hierarchical decomposition of a SOI; each element within
this structure can be considered atomic or, in some cases, as a system itself [4].

Figure 3.1: Hierarchical decomposition of a System-of-Interest composed of several systems and atomic
elements, adapted from [59].

Furthermore, at a specific level, we can depict the interrelationships between system elements
in a horizontal view. This perspective typically includes aspects related to requirements,
integration, verification, validation, external systems, and activities. This structure also
captures how these horizontal elements are derived from or lead to other elements in the
lower and higher levels of the hierarchy, which constitutes the vertical view of the system.
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▶ BOUNDARY

Systems typically require interactions with external elements. These elements constitute
the environment of the system, which may involve users, operators, enabling systems, and
other surrounding elements. A boundary delimitates the “line of demarcation” separating
the system under consideration, SoI, and its environment [4]. This delimitation helps
to distinguish elements belonging to the system from those that are contextual, enabling
engineers to account for them effectively.

▶ EMERGENCE

As systems consist of an integrated combination of elements, their behavior derives not only
from the interactions of individual elements but also from the interrelationships among
system elements. Emergence is the concept that describes the manifestation of properties
attributed to the whole system that individual elements, in isolation, do not possess [4]. This
phenomenon is observed in properties such as those described in Section 2.2.2, including
system safety and resilience.

▶ TRACEABILITY

In complex systems, it becomes essential to manage various horizontal aspects of systems,
such as needs, requirements, architectural elements, and verification artifacts, which influ-
ence different parts of the system. Traceability is the capability to establish these associations
between concepts and elements [4]. It ensures the consistency of information across vari-
ous stages of the system life cycle processes, such as requirements definition, architecture
definition, design, analysis, or verification and validation. Traceability is instrumental in
establishing relationships between these processes, allowing us to monitor, for example,
the influence of stakeholder requirements on the conceptualization of the physical product
and its functionalities; so when a requirement changes, we can assess how it will impact its
associated elements and their configurations.

▶ REQUIREMENT

A requirement is a statement that describes a need with its associated constraints and
conditions [67]. It represents an abstract concept that may exist in various forms, even if
only tacitly on the thoughts of some individuals.

SE offers some guidelines for formalizing requirements, allowing them to be captured in
a structured manner for traceability and reasoning. Requirements capture is seen as an
essential process and many methods have been proposed to this end. For example, Holt et
al. [68] provide some recommendations on how to formalize requirements:

• Requirements must be uniquely identifiable to facilitate traceability.
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• Requirements must be defined clearly and unambiguously. Using verb constructs such
as “shall,” “will,” and “should” can provide a precise meaning for the requirement.

• Each requirement must have an owner, ensuring that stakeholders take responsibility
for meeting it.

• Requirements must specify their origin, making it explicit who or what request them.

• Requirements must be verifiable, which means that they can be demonstrated to
function correctly.

• Requirements must be possible to validate, i.e., it shall be demonstrable that they have
been satisfied.

• Requirements shall be prioritized to establish an order for their fulfillment.

The taxonomy of requirements can vary depending on the project, but it commonly in-
cludes three main types. First, there are business requirements, which focus on economic
and value-oriented considerations. They are shared between several projects within the
organization. Second, functional requirements deal with observable outcomes related to
actions, operations, or constructions. Finally, non-functional requirements encompass various
constraints, including performance, legislative compliance, and other intangible attributes
that specify how the system should perform and behave—such as reliability, maintainability,
safety, and security.

▶ ARCHITECTURE

A system architecture is a framework to establish the fundamental concepts or properties
of a system in its environment. It establishes the governing principles for the realization
and evolution of the system and its related life cycle processes [59]. The purpose of its
conceptualization is to determine suitable solutions that address stakeholder concerns [69]
and system requirements [59]. This process relies on the use of different views and models,
ensuring that the system architecture remains consistent across various perspectives and
abstraction levels.

The definition of a system architecture characterizes fundamental concepts and properties
of the system and its constituent elements. Its primary objective is to outline the high-
level structure of the system and its components while specifying the desired attributes
and characteristics. As a result, this process requires active participation from a diverse set
of stakeholders, including engineers, SE practitioners, and domain-specific specialists. In
general, its definition is an iterative process, subject to refinement throughout the system’s
life cycle and across multiple levels within the system hierarchy to ensure that the system
design continues to satisfy stakeholder needs and requirements during the whole system
progression [70].
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3.2.1 Life Cycle Concepts

A system, from its initial conception to its eventual retirement, evolves through various
stages known as the system life cycle. It can be valuable to have a model that represents this
progression and guides the system’s evolution. This model is referred to as the life cycle model,
which constitutes a framework of processes and activities associated with the whole system
development [59]. The life cycle model serves as a common reference for communication
and understanding throughout the entire system span.

The life cycle model facilitates effective planning and provisioning for the system’s progres-
sion. It is organized into stages which help define and organize milestone achievements.
ISO/IEC/IEEE 15288 [59] defines six common stages for systems: concept, development,
production, utilization, support, and retirement.

The transition from one stage to another depends on the completion of specific tasks and
the demonstration of successful outcomes, as outlined in ISO/IEC/IEEE 15288 [59] or
ISO/IEC/IEEE 12207 [71]. This progression is not strictly linear in terms of time or extension.

Figure 3.2 depicts a possible life cycle progression where the concept stage leads to devel-
opment and production. After utilization, there is an iteration back to the concept stage.
Support activities occur in parallel with both the production and utilization stages. Life cycle
stages can be iterative, concurrent, or overlap.

Figure 3.2: Example of a life cycle progression, adapted from [72].

The duration and processes involved on each phase be tailored to align with the system’s
scope, magnitude, and complexity to benefit from the model outcomes, such as high-level
visibility and control of project and technical processes. The following describes the six
common stages in any system’s life cycle.

▶ CONCEPT

The concept stage serves the purpose of identifying stakeholder needs and proposing one or
more viable solutions. This stage involves defining a problem space and exploring potential
solutions, which entails conducting surveys and performing trade-off analyses.
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This stage produces preliminary concept artifacts, the most important of which is the Op-
erational Concept (OpsCon); a user-oriented document that describes characteristics of
the system to be delivered [19]. Typically, it includes preliminary architectural solutions
and stakeholder requirements. Additionally, it may involve defining essential initial system
requirements—such as capabilities or overall performance—and establishing acquisition and
risk management strategies.

Note that the decisions made during this stage will significantly influence, with increasing
difficulty of changing, the possibilities for all subsequent stages [4].

▶ DEVELOPMENT

The development stage aims to refine system requirements to create an engineering baseline
for developing a feasible system that meets stakeholder needs and requirements. This baseline
addresses architecture, design, and documentation of the system for subsequent stages. The
results from this stage may include prototypes and plans for integration, verification, and
validation.

The description of the solution and its assets is typically incremental, allowing for iteration
throughout the system realization process, which is especially beneficial for complex systems.

▶ PRODUCTION

The production stage involves translating the baselines from the development stage into
an actual system. This includes the production, inspection, and testing of each part of the
system to ensure its qualification for use. Additionally, this stage involves the provision of
the necessary documentation for the utilization, support, and retirement stages.

▶ UTILIZATION

The utilization stage involves operating the system to fulfill the users’ requirements. During
this stage, potential product modifications may be identified and the system can be iterated
based on both operational experience and stakeholder feedback. To support these changes,
it is essential to maintain documentation from previous stages.

▶ SUPPORT

The support stage has the purpose of maintaining the system’s capabilities during its utiliza-
tion. This stage is responsible for addressing deficiencies and failures and taking mitigation
actions to overcome them. It also involves documenting evolutionary modifications for future
implementations. Modifications can be related to operational or support issues, as well as
cost reduction or extending the system’s operational life.

The support stage ends when a decision is made that the system has reached the end of its

48



3.3. Model-Based Systems Engineering

useful life or should no longer be supported [4].

▶ RETIREMENT

The retirement stage includes the storage, archiving, and/or disposal of the system. Activities
in this stage focus mainly on ensuring that the disposal requirements defined in the concept
and development phases are satisfied.

A proper retirement process is essential to avoid unwanted consequences. Nowadays, most
countries have laws and regulations for the proper end-of-life disposal of systems.

3.3 Model-Based Systems Engineering

Model-Based Systems Engineering (MBSE) is a semi-formalized methodology that exploits
system representations to manage system structure and behavior along the whole life cycle.
MBSE provides support for SE activities such as requirement definition, design, analysis,
verification, and validation throughout the entire life cycle of complex systems.

MBSE is often compared to legacy document-based approaches, where systems engineering
captures system design information through multiple independent documents in various
non-standardized formats [19]. This methodology proposes using models as primary artifacts
to express critical system information in a concise and coherent format. Models serve to
integrate all knowledge related to the system, facilitating consistency and traceability along
the whole life cycle, and therefore reducing developmental risk.

The primary objective of MBSE approaches is to create a model that abstracts the system [66].
Such models consist of a set of views that can be visualized using diagrams or text. These
views are generated from a set of viewpoint templates for a specific purpose. Ontologies play
a crucial role in maintaining consistency by offering a domain-specific language to provide
meanings for model languages. Beyond acting as a data dictionary, ontologies establish a
consistent connection between different models’ viewpoints [57].

Several approaches aim to provide a common language for modeling, such as graphical,
mathematical, or textual. Regardless of the approach, Holt [68] suggests the following
requirements for any modeling language:

• It shall be flexible enough to allow different representations of the same information,
meaning that it should accommodate different views of the information produced.

• It shall be able to represent the system at different levels of abstraction while main-
taining consistency and traceability between any level.

• It shall be connected to reality, providing models with meaning and justification in the
real world.
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• It shall allow for the presentation of information about the system from different, yet
consistent viewpoints.

3.3.1 Systems Modeling Language

A robust and standardized modeling language is considered a critical enabler for MBSE [70].
The Systems Modeling Language (SysML) is a general-purpose modeling language to specify,
analyze, design and verify complex systems that may include hardware, software, informa-
tion, personnel, procedures, and facilities. In particular, the language provides graphical
representations with a semantic foundation to model requirements, behavior, structure, and
parameters of a system [73].

SysML has become the de facto standard system architecture modeling language for MBSE.
It is designed to accommodate a wide range of systems engineering methods and practices.
However, thanks to its extensibility specific procedures may introduce additional constraints
on how the language is applied [74].

The language originated from an initiative between the Object Management Group (OMG)
and the International Council on Systems Engineering (INCOSE) in 2003 to adapt the
Unified Modeling Language (UML) for SE applications. The previous version, SysML v1,
was specified as a graphical UML profile. SysML v2, on the other hand, is defined as a
metamodel that extends the Kernel Modeling Language (KerML). The current version of
SysML aims to improve the language’s precision, expressiveness, interoperability, consistency,
and integration. This enhancement includes specific specifications for textual and graphical
syntax and semantics [74].

According to Friedenthal et al. [75], the use of MBSE through formalized SysML syntax and
semantics can contribute to:

• Facilitate communication between several stakeholders across the system life cycle.

• Capture and manage knowledge related to system architectures, analyses, designs, and
processes.

• Provide a scalable framework for effective problem-solving.

• Furnish rich abstractions to manage size and complexity.

• Explore multiple solutions or ideas at the same time with minimal risk.

• Detect errors and omissions early in the system life cycle.

SysML handles the complete definition of a system by explicitly addressing both its structure
and behavior. The structural aspect of a model defines the entities within a system and the
relationships that exist among them. In contrast, the behavioral part addresses how the
system evolves over time, specifying the sequence of events, the conditions under which they
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occur, and the interactions involved. In essence, the structure represents “what” the system
consists of and ’“what” it does, while the behavioral aspect constitutes “how” it operates.

In this research, we rely on models at runtime for a better adaptation to unexpected situations.
For this reason, including MBSE concepts can provide solid ground for other specific models.
In particular, a critical aspect is the system architecture, because it affects and even determines
most of the properties of the system. MBSE modeling of system architectures serves as a
fundamental building block for constructing and deploying reliable systems.

SysML facilitates the definition, communication and maintenance of system models. However,
when systems are deployed in unpredictable environments, it is hard to ensure its behavior at
the development time. We propose to exploit the model ontology at runtime to reason about
which aspects of the system design can be leveraged to adapt its operation as conditions
change. This approach may provide the flexibility needed to address dynamic and unexpected
situations.
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There are different strategies to pursue a better grasp of intelligence: neuroscience tries
to understand how the brain processes information; mathematics seeks computation and
rules to draw valid conclusions using formal logic, or handling uncertainty with probability
and statistics; control theory and cybernetics aim to ensure that the system reaches desired
goals, etc. [23]. One possible way that we explore in this research is to use symbolic explicit
knowledge as a means to enhance system intelligence.

Knowledge Representation and Reasoning (KR&R) is a sub-area of AI that concerns analyzing,
designing, and implementing ways of representing information in computational formats so
that agents can use it to derive implicit facts [76]. Reasoning is the process of extracting
new information from the implications of existing knowledge.

One of the challenges of getting robots to perform tasks in open environments is that
programmers cannot fully predict the state of the world in advance. KR&R provides some
background to reason about the runtime situation and act in consequence. In addition
to adaptability, these approaches can provide an explanation; knowledge can be queried,
so humans or other agents can understand why a robot acts in a certain way. Moreover,
KR&R provides reusability. The robot needs information about its capabilities and about the
environment in which it is involved; and this information can be shared among different
agents, applications, or tasks since a knowledge base (KB) can be stored in broadly applicable
modular chunks.

In this chapter, we explore rational agents and strategies to enhance the reusability of their
programs across various applications. Using declarative approaches, along with symbolic
representation as introduced in Section 4.2, can contribute to the achievement of this goal.
Section 4.3 introduces the most pertinent approaches to logical reasoning, while Section 4.4
outlines the most widely adopted formalisms for encoding knowledge in robotics.
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4.1 Rational Agents

An agent is an entity that acts. According to Ertel [77], an agent is a system that processes
information to produce an output based on the input. There is a slight distinction between
software agents, handling computational inputs and outputs, and hardware agents, utilizing
sensors for inputs and actuators for outputs. Autonomous systems develop their actions in
an environment in response to a percept. Basically, any autonomous agent (i) senses its state
and the state of the environment, (ii) decides on which action it has to conduct to reach a
goal, and (iii) executes the action to change the state accordingly.

Depending on how a system makes decisions, we can distinguish between rational and reflex
agents.Reflex agents select actions depending on the current percept, for example, a vehicle
that turns left if it encounters an obstacle. When we want to perform complex tasks, this
reactive strategy is not adequate. In the previous example, we cannot ensure that the robot
completes the patrol of a crowded room with this approach. An effective way is to use models
to maintain a representation of the previous precepts. Models can be seen as a map from
the modeled subject to the understanding the agent has about that subject. We can have a
model on how the world evolves during time, e.g. the relationship among the time of the
day and the outside temperature. We can also model how an action changes the world, e.g.
the displacement of an object based on the applied force. Sensor modeling can also help to
understand how the device will respond, for example, how rain affects the sharpness of a
camera image. Models are also used at design time. Engineers use mathematical models
to select components or to tune controllers. Knowledge-enabled agents can possess such
models and use them at runtime to redesign themselves or at least adopt a more prosperous
behavior, according to the current situation.

Rational agents are those who select their actions to achieve the best expected result [23].
This approach requires maximizing a measure of performance. To be autonomous, rational
agents also need information about their goals and constraints. For example, we may
want our robot to patrol a crowded room while maintaining a certain safety level, so there
are requirements on maximum velocity and minimum distance from people and obstacles.
Autonomous rational agents must derive sequences of actions to achieve a goal. If the user
provides a task, such as rescuing a trapped worker, the robot first needs to find the worker,
which requires it to follow a path to cover the area until it locates the person. Then, it must
clear the affected zone by moving several objects, and lastly, inform about the state of the
person. In addition to knowing the sequence of actions, it needs to know various parameters,
such as key identifiers of a person, maximum weight the robot can carry, or maximum safe
velocity for each sub-task.

Usually, knowledge about agents, their actions, and the environment is tailored for a specific
application. Moreover, it is hard-coded into the program, limiting transferability to other
tasks or agents with different capabilities. This approach is known as procedural, where the
intended behavior is explicitly encoded in the agent program. On the contrary, knowledge-
based agents use declarative approaches to abstract the control flow. In this approach, a KB
stores information that enables the robot to deduce how and when to execute actions in the
environment.
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Unlike static procedural coding, declarative knowledge can be updated with new facts.
Autonomous systems or external users can use queries to derive relevant information for the
mission. Successful agents often combine declarative knowledge with procedural program-
ming to create more efficient code [23]. This declarative knowledge is frequently encoded
in logic systems to formally capture conceptualizations.

4.2 Symbolic Representation

Knowledge representation languages serve as a means of expressing assertions that are true
in a particular world. In essence, they function as a set of symbolic encodings—syntax—to
depict relevant aspects of that system. The meaning is defined as a mapping from the symbol
to the world entity. This aspect is known as semantics. For example, consider the symbol

, from it we automatically derive the obligation to halt.

A KB consists of sentences expressed with a particular syntax and semantics. In this context, a
model represents a possible world in which sentences can be true or false. Models, as defined
in previous chapters, correspond to abstract representations with reduced detail. The model
of a sentence α, M(α) corresponds to all possible sets of assignments to variables that satisfy
sentence α, i.e., all possible worlds where α is true. Note that this definition of “model” is
the one used in logic. It is not necessarily translatable to other uses of “model”.

This structure provides the foundation for logical reasoning. Reasoning is the process of
manipulating symbols to deduce new sentences from existing ones that hold in a given
world. Entailment can be applied to derive conclusions, i.e., to carry out logical inference by
checking if a sentence is true deriving it from previous ones.

Entailment captures the relationships between sentences, while inference is the mechanism
responsible for generating new sentences by identifying and tracing these relationships.
Therefore, inference is a form of reasoning.

An inference algorithm that derives only entailed sentences is sound or truth-preserving.
This ensures that if the initial sentences hold in the real world, then all generated expressions
will also be true. Completeness, on the other hand, denotes the property that an inference
mechanism can derive any sentence that is entailed, i.e., it generates all expressions that
hold in the KB.

α ⊨ β if and only if M(α) ⊆ M(β) (4.1)

The entailment process is conventionally expressed as in Equation 4.1, where α represents
previous sentences and β the derived ones. This equation also anchors entailment to the
model, i.e., to the world these sentences represent. Logical reasoning must guarantee that the
new assertions on the logical sentences mirror aspects of the world that logically follow from
the configurations of the world. Figure 4.1 illustrates this relationship between representation
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and world dimensions. The concept of grounding serves as the bridge connecting logical
reasoning with the real environment in which the agent exists.

Figure 4.1: Relationship between the representation and world dimensions. Sentences represent some
aspects of the world which can be derived to extract new facts through entailment. This entailment should
actually follow from the aspects in the real world.

Figure 4.2 depicts a possible application of symbolic representation within a robot environ-
ment. The initial KB may contain information tailored to a specific robot task—such as the
initial pose, safe distances from walls, and the next waypoint for the robot. Leveraging this
information, the reasoning system can use predefined rules to deduce a recommended speed.
In the robot world, a controller can use this knowledge to move the robot base.

Figure 4.2: Example of a symbolic representation for a robotic task. The provided information includes
the robot initial pose, the considered safe distance from a wall, and the designated next waypoint for the
robot. These details are derived using predefined rules to compute the recommended speed. In the robot
world, a controller can leverage this knowledge to move the robot base.
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▶ SYMBOLIC VS. SUBSYMBOLIC REPRESENTATION

Symbolic representation involves the use of symbols to depict concepts or objects. This
approach is explicit as it directly signifies objects with a clear and interpretable meaning.
Additionally, it maintains transparency, wherein symbols are easily understandable and their
manipulation adheres to predefined rules or algorithms.

Example: An equation is a statement in mathematics that asserts the equality of two
expressions. As an illustration, the expression for position involves the double integration
of acceleration, which is accomplished by substituting Equation 4.2 into Equation 4.3.
This formulation breaks down the velocity v(t) into the integral of acceleration a(t)
with respect to time, while the position x(t) is defined as the integral of velocity v(t)
with respect to time. The constants v0 and x0 hold the values of the initial velocity and
position, respectively.

v(t) =

∫

a(t) d t + v0 (4.2)

x(t) =

∫

v(t) d t + x0 (4.3)

However, subsymbolic representation involves encoding information without explicit symbols
or language-like structures. This approach often employs distributed or connectionist models,
such as neural networks, where structures map input data to output data without explicitly
using symbolic representations for variables.

Example: A neural network equivalent to the equations mentioned earlier would asso-
ciate acceleration values with positions. The dynamics of the system would be hidden
in the weights and activation values within the network.

Subsymbolic representation is often more suitable for learning from data, especially when
dealing with complex patterns that are not easily expressible through predefined rules.
However, its internal representation remains inaccessible, and the resulting connections are
often tailored for a specific set of inputs and outputs, making them less flexible.

4.3 Standard Forms of Logic

Logic is the discipline of formal reasoning, whereas logics define the different realization
forms of logic. This includes standard logics, where every sentence is either true or false in
each possible world, as well as “alternative” logics such as probabilistic logic or fuzzy logic,
where sentences are assigned probabilities or degrees of truth, respectively. This section
introduces two standard logics, propositional logic and first-order logic, establishing the
groundwork for the formalisms used in this work.
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4.3.1 Propositional Logic

Propositional logic (PL) is perhaps the most simple formalism [23]. It defines atomic
sentences—propositions—and combines it with logical connectives. These operators include
not (¬), and (∧), or(∨), implies (⇒), and if and only if (⇔).

Semantics in propositional logic establishes rules to determine the truth or falsehood of a
formula. In this logic, a model assigns a truth value—either true or false—to every proposition
symbol [23].

Example: Consider the proposition symbol:

robot_A_in_corridor

This represents an atomic sentence conveying the presence of robot A in the corridor,
with its truth value being either true or false.

Sentences can become more complex. For example, if the robot is supposed to be in
the kitchen instead of the corridor, two propositions and logical connectives come into
play:

robot_A_in_kitchen∧¬robot_A_in_corridor

An additional connective can be introduced to determine whether the robot has accom-
plished its goal:

robot_A_in_kitchen∧¬robot_A_in_corridor⇒ robot_A_goal_accomplished

The semantics of the implication symbol dictate that if the antecedent is true, in this
example, both robot_A_in_kitchen and ¬robot_A_in_corridor, then the conclu-
sion, robot_A_goal_accomplished, will also be true. Consequently, the notion of goal
accomplishment becomes a newly derived expression within the KB.

To compute the truth of sentences (P, Q) there are five fundamental rules in any model
m [23]:

• ¬P is true if and only if P is false in m.

• P ∧Q is true if and only if both P and Q are true in m.

• P ∨Q is true if and only if either P or Q is true in m.

• P ⇒Q is true unless P is true and Q is false in m.

• P⇔Q is true if and only if P and Q are both true or both false in m.

These rules can also be expressed in truth tables, an example of which is shown in Table 4.1.
Truth tables serve as a basic inference procedure, allowing computation of formulas that are
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satisfiable (true for some model), valid (true for all interpretations), or unsatisfiable (not
true for any interpretation). However, this method is computationally expensive, with a time
complexity of O(2n). Alternatively, syntactic manipulation of formulas using rules such as
the modus ponens or the resolution rule is possible, but these methods are still costly.

P Q ¬P P ∧Q P ∨Q P ⇒Q P⇔Q

false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

Table 4.1: Truth tables for the five logical connectives.

Formal reasoning and proof systems usually use Horn clauses. These clauses are a subset
of predicate logic with properties that permit faster derivation techniques. In particular,
formulas with at most one positive literal and definite clauses are Horn clauses that contain
exactly one positive literal. By adhering to these constraints, the “Selection rule driven Linear
resolution for Definite clauses (SLD)” for derivation can be employed, allowing backward
chaining and deriving only the necessary formulas.

Although PL is simple and intuitive, it has limitations in expressiveness and generality. The
formalism discussed below takes a further step to overcome these issues by incorporating
more powerful relationships among objects.

4.3.2 First-Order Logic

First-order logic (FOL) serves as an extension of PL to enhance expressiveness. While PL
provides a factored representation, FOL introduces more structure by incorporating elements
from natural language. Fundamental syntactical elements include symbols for [23]:

• Object: Represents nouns in natural language and constitutes constant symbols to
represent entities in the world.

• Relation: Represents properties or connections between objects. These often corre-
spond to verbs, adverbs, and adjectives in natural languages. A relation is a set of
tuples that relate objects.

• Function: Certain types of relationship are related to exactly one object. Functions are
relations in which there is only one value for a given input.

With these elements, more complex assertions can be expressed. For example, the sentence
3+ 4= 7 has as objects the numbers 3, 4 and 5, a relation represented by the equal symbol
=, and a function denoted by the plus symbol +. Applying the + function to the objects
3 and 4 produces a new object, 3+ 4, which is equivalent to 7. Another example is the
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sentence “John eats with a fork,” where “John” and “fork” represent objects, and “eats with”
is a relation.

FOL constructs formulas through terms, where a term is a logical expression that refers to an
object, variable, or constant. Terms can also be defined by functions, as in the example above.
The expressiveness of FOL arises from predicates that represent relationships between terms.
These predicates can be used with logical connectors, such as those used in PL, as well as
quantifiers such as universal quantifier (∀), existential quantifier (∃), and equality (=). FOL
quantifiers are used to formulate axioms, which provide factual information from which
valuable conclusions can be derived.

Example: The statement “all horses are fast” can be represented with the universal
quantifier as:

∀x horse(x)⇒ f ast(x)

This can be read as “for all elements X, if X is a horse, then it is fast.”

On the other hand, using the existential quantifier, the statement would be “there exists
at least one horse that is fast,” represented as:

∃x horse(x)⇒ f ast(x)

This sentence can be read as “there exists some element X such that if X is a horse,
then it is fast.”

Beyond expressiveness, an important distinction between PL and FOL lies in their ontological
commitments—the assumptions about reality in each logic. PL assumes that predicates are
facts that either hold or not in that world, while in FOL, it is the relationships between objects
that hold or do not hold.

Moving on to reasoning, the use of quantifiers and variables in FOL makes the rules of PL not
applicable in general. FOL reasoning involves variable substitution which consists of defining
the reasoning process as a search in the space of possible substitutions of variables, corre-
sponding to the Herbrand universe1. Unification is a specific case of substitution, occurring
when there is a substitution for all variables that makes the literals equal. Propositonalisation
is another possibility of reasoning, involving the elimination of variables by substitution to
generate an expression in PL. However, the most efficient and automated calculus in FOL
is resolution [78], where the knowledge base KB is combined with the negated query ¬Q
in an attempt to reach a contradiction. In other words, the resolution aims to prove that
KB ∧¬Q ⊢∅, where ⊢ represents the derivation, and ∅ denotes the empty clause. For more
details on FOL reasoning, refer to Sections 3.4 and 3.5 in Ertel’s book [77].

Lastly, PL is decidable, meaning that all true entailments can be found and all false entailments
can be refuted using truth tables. However, FOL is semi-decidable, implying that there exists

1Herbrand’s theorem has played a vital role in the development of automated reasoning [23]. This theorem
defines that if a set of clauses, S, is unsatisfiable, then there exists a particular set of ground instances of the
clauses of S such that this set is also unsatisfiable. The Herbrand universe of S, is the set of all ground terms
constructible from (i) the function symbols in S, if any, (ii) the constant symbols in S, if any; if none, then a
default constant symbol, S.
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an algorithm to find true entailments, but it might not halt while searching for a refutation
for a false entailment. For this reason, formalisms are often defined using decidable fragments
of FOL such as most Description Logics.

4.3.3 Description Logics

Description Logics (DL) constitute a family of formal knowledge representation languages,
positioned as a solution between PL and FOL. While PL is decidable, it lacks the expressive-
ness to handle unbounded environments. On the other hand, FOL is more descriptive but
semi-decidable according to Gödel’s completeness theorem—which demonstrates that there
are true arithmetic sentences that cannot be proved [23]. DL strikes a balance between
expressivity and scalability by employing decidable fragments of FOL, allowing for reasoning
with more expressiveness than PL. Note that DL specifically addresses challenges related to
the search space problem, decidability, and incompleteness, distinct from logics dealing with
uncertainty (e.g., fuzzy logic, probabilistic logic) or different necessities and possibilities
(e.g., modal logic).

All DLs are based on three kinds of entities [79]:

• Individuals: Similar to FOL constant objects, these are interpreted as specific elements
in the real world. For example, a robot A in an experiment with a sensor camera001.

• Concepts: According to the unary predicates of FOL, these encapsulate generalized
entities such as the concept of a Robot or RobotPart.

• Role Names: Corresponding to binary predicates in FOL, these include roles such
as hasComponent, which indicates the parts that constitute the robot—connecting
instances of Robot and instances of RobotPart.

This knowledge is typically organized into three sets within each KB. The RBox stores the
interdependencies between roles, the TBox refers to the terminological knowledge from
concepts and the ABox denotes all the assertional knowledge about individuals or entities.

The simplest form of DL is denoted as ALC, representing Attributive (Concept) Language
with Complements. However, our implementation specifically focuses on SROIQ, as con-
ceptualized by Horrocks et al.[80]. According to Rudolph [79], the SROIQ acronym can be
decomposed as follows:

• SR: Denotes an extension of ALC with all types of RBox axioms and self-concept.

• O: Specifies the support for nominal concepts.

• I: Stands for the inverse of the allowed role.

• Q: Indicates the support for arbitrary qualified number restrictions.
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SROIQ serves as the logical foundation for OWL 2 DL, one of the most widely used languages
for the Semantic Web, further detailed in Section 4.4.3. This language is used for making
machine-readable the models conceptualized in Chapter 7.

4.4 Representational Paradigms in Robotics

Robots require machine-understandable formalisms to effectively handle KBs. Systems
should be capable of extracting, reasoning about, and updating their knowledge. In the
context of intelligent robots, the following section introduces the most prevalent paradigms
for organizing and representing knowledge.

4.4.1 Prolog

Prolog, an abbreviation for “Programming in Logic,” stands as one of the most widely used
declarative programming languages. Many knowledge-based systems have been developed
in various domains, such as legal, medical, and financial, using this language [23]. Its origins
can be traced to the 1970s when pioneers such as Kowalski and Colmerauer conceptualized
its procedural interpretation which culminated in the Prolog language [81]. This paradigm
defines problems and solutions as logical axioms.

Prolog programs consist of sets of definite clauses based on decidable fragments of FOL,
although with some changes in notation conventions. Notably, Prolog reverses the convention
of FOL, using uppercase letters for variables and lowercase letters for constants; clauses are
writting in backwards. For example, the FOL expression A∧ B⇒ C is represented in Prolog
as C :- A, B.

Its implementations incorporate specific features to make them suitable for computational
systems. In defining sentences, it adheres to the closed-world assumption, meaning that
predicates explicitly defined as true are considered true. Moreover, Prolog operates on the
unique name assumption, considering that distinct names always refer to different entities in
the world. The execution of Prolog programs uses depth-first backward chaining, implying
that clauses are attempted in the order they appear in the KB.

Several tools enhance Prolog implementations, such as GNU Prolog2, a compiler and classical
interactive interpreter; or SWI Prolog3, which offers a comprehensive application environ-
ment and scalable multithreading support for embedded implementations. Moreover, the
Robot Operating System (ROS) has a dedicated package named rosprolog4, which provides
a biderectional interface between SWI Prolog and ROS. This integration facilitates the
deployment of Prolog in robotic infrastructures.

2http://www.gprolog.org/
3https://www.swi-prolog.org/
4https://github.com/KnowRob/rosprolog
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Overall, Prolog continues to be a popular tool within the domain of AI due to its ability to allow
transparent and concise program development with a compromise between declarativeness
and efficiency. However, it is important to consider that Prolog lacks procedural constructs
typically found in other languages. For instance, there are no checks for infinite recursion,
potentially causing certain programs that seem logically valid to fail in implementation.

4.4.2 Planning Domain Definition Language

Planning Domain Definition Language (PDDL) constitutes a family of languages designed to
support the declarative representation of planning [82]. Planning is essential for autonomous
agents to determine a sequence of actions that lead to achievement of the goal. Although
classical approaches often rely on ad-hoc heuristics and explicit codifications, PDDL offers a
structured framework to effectively represent problems and complex action schemas.

Although PDDL may not be considered a traditional KR&R language in the strict sense,
it does collect and structure explicit knowledge about entities, actions, and relationships
in the universe of discourse. This information is organized in two description files: the
domain description, which stores object types, feasible actions with their preconditions and
effects, and any domain-specific predicates; and the problem description, which stores specific
instances of a planning problem, detailing the initial state, goal state, and a set of objects in
the world. The result is a plan—a sequence of actions driving the transition from the initial
state to the goal.

To address specific limitations, various extensions of PDDL have emerged over time, enhancing
the language’s syntax and expanding its capabilities. These extensions accommodate features
such as time, resources, percepts, contingent plans, and hierarchical plans [23]. Notable
extensions include:

• Fully Observable Non-Deterministic Planning (FOND): This extension offers a more
flexible representation of action effects, generating decision trees rather than sequences
of actions to handle multiple potential outcomes [83].

• Probabilistic PDDL (PPDDL): This introduces actions that can lead to several states
with associated probabilities, addressing uncertain outcomes through probabilistic
effects [84].

• Planning with Partial Observability and Sensing (PPOS): Designed to handle uncertain-
ties in both initial states and action outcomes, PPOS enables planners to consider all
potential states an agent might encounter [85].

• Multi-Agent Planning: This extension merges the traditional single agent PDDL ap-
proach with the dynamics of multi-agent systems, providing a unified planning solu-
tion [86].
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In general, planning initiatives such as the European project AIPlan4EU5 play a crucial role in
operationalizing the use of explicit knowledge in robot applications to find optimal solutions.
PDDL, along with its extensions, is seamlessly integrated into various robotic software
tools for ROS, including PlanSys2 [87], ROSplan [88], Merlin2 [89], and SkiROS2 [90].
However, it remains a declarative language with a few procedural constructs and limitations
in expressivity, as described above.

4.4.3 Ontologies and the Ontology Web Language

The construction of KBs can benefit from the examination of the categories of objects
present in a domain. The explicit specification of a conceptualization is referred to as an
ontology [91]. A conceptualization is an abstract, simplified perspective of a specific area of
interest, describing a shared vocabulary at both textual and conceptual—formal—level.

Ontologies play a crucial role in technical domains as they facilitate the sharing of common
concepts among heterogeneous agents, including various types of robots and human users.
This shared understanding helps enhance communication without ambiguity, contributing to
explainability in the decision-making processes of artificial agents, or enabling the sharing of
a particular perspective on a domain.

Entities in ontologies revolve around the categorization of objects into classes, which can be
seen as categories within the domain of discourse. While interaction with the world involves
specific objects, referred to as individuals or instances, much reasoning occurs at the class
level.

Classes can possess properties that characterize the collection of objects they represent or be
related to other classes. Additionally, they are organized through inheritance, expressed by
the subclass relation.

Ontologies have gained importance with the Semantic Web. According to the original
vision, the availability of machine-readable metadata would enable automated agents to
retrieve meanings from available information on the web [92]. However, their potential
goes beyond this. For technological systems, ontologies separate the domain knowledge
from the procedural and problem-solving knowledge, allowing all this knowledge to be
reused in other programs. Moreover, it enables the solution of concrete problems through
generic techniques and algorithms that can be shared among different setups. To achieve this,
ontologies propose a syntax and semantics that are intuitive to human users and compatible
with existing (Web) standards while providing enough expressive power to define relevant
concepts in sufficient detail but without being overly expressive to make reasoning infeasible.
This is where the Ontology Web Language comes into play.

5https://www.aiplan4eu-project.eu/
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Example:
Consider the assertion of the class Food with the property edible. According to this
assertion, every instance of Food, such as the specific pie pie_01, is considered edible.

In this hierarchy, Fruit is a subclass of Food, and Apple is also a subclass of Food.
Given this hierarchy, we can deduce that every instance of Fruit and Apple inherits the
properties of their superclass Food.

Since Apple is a subclass of Food, every individual apple, such as red_apple_01,
inherits the edible property. Therefore, we can conclude that red_apple_01 is also
considered edible based on its classification within the ontology hierarchy. Figure 4.3
represents this ontology.

Figure 4.3: Example of the Apple ontology.

▶ ONTOLOGY WEB LANGUAGE

The Ontology Web Language (OWL) is not a programming language like Prolog but rather
a family of languages based on Description Logics (DL). It is designed for applications that
need to process information rather than simply present information to humans. Therefore,
OWL facilitates greater machine interpretability and supports various coding formats such as
XML, RDF, and RDF Schema (RDF-S). The World Wide Web Consortium [93] has specified it
as the cornerstone of the semantic web.

OWL not only provides a language to describe concepts and structure them in a hierarchy; it
also allows the use of logical reasoners to check consistency and classify them to build new
assertions. This reasoning derives implied relations and hierarchies, testing non-contradictory
concepts to ensure ontology consistency. In contrast to Prolog, OWL adopts the open-world
assumption, meaning that a statement can be considered true whether it is known or not—only
explicitly false predicates are considered false.

This ontology language seamlessly integrates with the Semantic Web Rule Language (SWRL),
based on OWL DL and OWL Lite sublanguages of OWL. SWRL implements Horn-like rules to
express complex relationships and conditions based on the information in the KB. These rules
enable more advanced reasoning and inferencing capabilities for ontological applications.
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Regarding accessibility, OWL can be encoded by hand using text editors or using graphical
editors such as Protégé [94] for a user-friendly environment. OWL can be integrated into
robotic software through Application Programming Interfaces (APIs) such as Jena Ontology
API6 or OWLAPI7 implemented in Java or OWLREADY [95] implemented in Python. Ad-
ditionally, there are reasoners such as FaCT++8, Pellet9, or HermiT10 that can be invoked
directly from code or ontology editors.

4.4.4 Graph-Based Representation

The concept of a knowledge graph applied to computation can be traced back to Richard H.
Richens in 1956, where it was initially conceived as an "interlingua" for machine translation
of natural languages [96]. However, it has gained popularity since 2012 [97], especially
with its implementation in major industries such as Google Knowledge Graph [98] and other
platforms such as Microsoft [99], Facebook [100], and IBM [101], among others [102].

Although there is no universally agreed upon definition, Hogan et al. [103] provides the
following:

Knowledge graph can be defined as a graph of data intended to accumulate and
convey knowledge of the real world, whose nodes represent entities of interest and
whose edges represent potentially different relations between these entities.

A knowledge graph essentially represents data as a graph, using a set of nodes connected by
edges to capture relations. Because information is not restricted to a rigid schema, the data
can evolve with more flexibility [104]. There are five basic types of graphs used to represent
the data according to Hogan et al. [103]:

• Directed Edge-labeled Graphs: This is the fundamental type of knowledge graph,
defined as a set of nodes with directed labeled edges between them. This approach
offers flexibility, particularly when integrating new sources of data, since incomplete
information can be represented by simply omitting unknown edges. An example of
this type is the Resource Description Framework (RDF) [105]. Note that RDF is a core
model of the Semantic Web, which is often used with additional restrictions imposed
by OWL to represent ontologies.

• Heterogeneous Graphs: In these graphs, each node and edge have an assigned type
rather than specifying types as a special node-edge relation.

• Property Graphs: These graphs allow the association of property-value pairs with nodes
and edges. This leads to a more concise and intuitive representation. However, this

6https://jena.apache.org/documentation/ontology
7https://github.com/owlcs/owlapi/wiki
8http://owl.cs.manchester.ac.uk/tools/fact
9https://github.com/stardog-union/pellet

10http://www.hermit-reasoner.com/
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model requires more complex query languages and formal representation. Property
graphs are popular in graph databases, such as Neo4j11.

• Graph Dataset: This consists of a set of pairs of IDs and graphs. It is especially useful
for managing and querying data from multiple sources.

• Other Graph Data Models: This approach provides greater flexibility, as nodes may
contain individual edges or even nested graphs—hypernodes—and edges may connect
sets of nodes rather than pairs.

Queries in knowledge graphs often involve traversing relationships and patterns within the
interconnected data, especially on a vast and heterogeneous dataset. There are various
languages for querying graphs, such as the SPARQL query language for RDF graphs [106];
Cypher [107], Gremlin [108], and G-CORE [109], which are used for querying property
graphs. This approach contrasts with querying ontologies, where the focus is on class
hierarchies, property restrictions using logical rules, and constraints.

Although knowledge graphs offer an effective means of capturing knowledge, particularly in
data-intensive contexts, they may lack the structure and formal traits found in the methods
described in the previous sections. Formal implementations aim to be precise and provide
traceable reasoning. On the other hand, knowledge graphs foster a more dynamic repre-
sentation of information. They excel in representing relationships and connections within
diverse datasets, providing a flexible and interconnected framework.

However, ontological representations such as those based on OWL can be seen as knowledge
graphs with well-defined meaning [110]. Moreover, ontologies and rules can be used to
provide semantics to the terms in the graph. In this research, we focus on formalizing
engineering concepts and using them as a means to increase dependability of autonomous
systems. For this reason, we select OWL ontologies as the logical framework under which
we develop our solution.

11http://neo4j.org
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Chapter 5
Ontologies for Robotics

This chapter presents an analysis of both popular and recent works that use ontologies to
support robot autonomy, with a focus on identifying the most extended capabilities expressed
in these ontologies and understanding how they are used at runtime. Section 5.1 introduces
foundational ontologies, along with the most widely used domain ontologies in the field
of robotics. Section 5.2 provides a systematic review of application ontologies in robotics,
comparing how the functional competencies of autonomous robots are represented and how
this information is used for action selection.

5.1 Fundamental and Domain Ontologies

Ontological systems can be classified according to several criteria. We distinguish three levels
of abstraction based on Guarino’s hierarchy [111]: upper level, domain, and application.
Upper-level or foundational ontologies conceptualize general terms such as object, property,
event, state, and relations such as parthood, constitution, participation, etc. Domain ontolo-
gies provide a formal representation of a specific field that defines contractual agreements on
the meaning of terms within a discipline [112]; these ontologies specify the highly reusable
vocabulary of an area; the concepts, objects, activities, and theories that govern it. Application
ontologies contain the definitions required to model knowledge for a particular application;
information about a robot, in a specific environment, describing a particular task. Note
that the environment or task knowledge could be a subdomain ontology, depending on the
reusability it allows. In fact, the progress from upper-level to application ontologies is a
continuous spectrum of concepts’ sub-classing [113], with somewhat arbitrary divisions into
levels of abstraction reified as ontologies.

Perhaps the most extended upper-level ontology is the Suggested Upper Merged Ontology
(SUMO) [114], [115])1. SUMO is the largest open-source ontology that has expressive
formal definitions of its concepts. There are domain ontologies that are part of SUMO for
Medicine, Economics, Engineering, and many other topics. This formalism uses Standard
Upper Ontology Knowledge Interchange Format (SUO-KIF), a logical language to express

1https://www.ontologyportal.org, https://github.com/ontologyportal
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concepts with higher-order logic (a logic beyond the expressiveness of first-order logic)
[116].

Another relevant foundational ontologies for this research is the Descriptive Ontology for
Linguistic and Cognitive Engineering (DOLCE), described as a “ontology of universals” [117];
which means that it has classes but not relations. It aims to capture the ontological categories
that underlie natural language and human common sense [118]. The taxonomy of the most
basic categories of particulars assumed in DOLCE includes, for example, abstract quality,
abstract region, agentive physical object, amount of matter, temporal quality, etc. Although
the original version of the few dozen terms in DOLCE was defined in FOL, it has since been
implemented in OWL; most extensions of DOLCE are also in OWL.

The DOLCE+DnS Ultralite ontology2 (DUL) simplifies some parts of the DOLCE library, such
as the names of classes and relations with simpler constructs. The most relevant aspect of
DUL is perhaps the design of the ontology architecture based on patterns.

Other important foundational ontologies are the Basic Formal Ontology (BFO) [119], the
Bunge-Wand-Weber Ontology (BWW) [120; 121] and the Cyc Ontology [122]. BFO focuses
on continuant entities involved in a three-dimensional reality and occurring entities, which
also include the time dimension. BWW is an ontology based on Bunge’s philosophical system
that is widely used for conceptual modeling [123]. Cyc is a long-term project in artificial
intelligence that aims to use an ontology to understand how the world works by trying to
represent implicit knowledge and perform human-like reasoning.

5.1.1 Robotic Domain Ontologies

Ontologies have gained popularity in robotics with the growing complexity of actions that
systems are expected to perform. A well-defined standard for knowledge representation is
recognized as a tool to facilitate human-robot collaboration in challenging tasks [124]. The
IEEE Standard Association of Robotics and Automation Society (RAS) created the Ontologies
for Robotics and Automation (IEEE ORA) working group to address this need.

They first published the Core Ontology for Robotics and Automation (CORA) [125]. This
standard specifies the most general concepts, relations, and axioms for the robotics and
automation domain. CORA is based on SUMO and defines what a robot is and how it relates
to other concepts. For this, it defines four main entities: robot part, robot, complex robot,
and robotic system. CORA is an upper-level ontology currently extended in the IEEE standard
1872-2015 [126] with other sub-ontologies as CORAX, RPART, and POS.

CORAX is a sub-ontology created to bridge the gap between SUMO and CORA. It included
high-level concepts the authors claimed to not be explicitly defined in SUMO and particu-
larized in CORA; in particular those associated with design, interaction, and enviroment.
RPARTS provides notions related to specific kinds of robot parts and the roles it can perform,
such as grippers, sensors, or actuators. POS presents general concepts associated with spatial

2http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite
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knowledge such as position and orientation—represented as points, regions, and coordinate
systems.

However, CORA and its extensions are intended to cover a broad community, so their
definitions of ambiguous terms are based purely on necessary conditions without specifying
sufficient conditions [124]. For this reason, concepts in CORA require to be specialized
according to the needs of specific subdomains or robotics applications.

CORA, like most of the other application ontologies considered here, is defined in a language
of very limited expressiveness, mostly expressible in OWL-Lite, and therefore limited to
simple classification queries. Although it is based upon upper-level terms from SUMO, it
recreated many terms that could have been used directly from SUMO. Moreover, given its
choice of representation language, it did not use the first- and higher-order logic formulas
from SUMO, limiting its reuse to just the taxonomy.

The IEEE ORA group spawned the Robot Task Representation sub-group to produce a
middle-level ontology with a comprehensive decomposition of tasks, from goal to sub-goals
that enables humans or robot to accomplish its expected outcome at a specific instance in
time [127]. It includes a definition of tasks and its properties, and terms related with which
performance capabilities are required to accomplish them. Moreover, it covers a catalog of
tasks demanded by the community, especially in industrial processes [128].

This working group also created three additional subgroups for more specific domain knowl-
edge. In concrete, for Autonomous Robots Ontology, Industrial Ontology, and Medical Robot
Ontology; of which only the first one is active. The Autonomous Robot sub-group (AuR) spe-
cializes CORA and its associated ontologies in the domain of autonomous robots, including,
but not limited to, aerial, ground, surface, underwater, and space robots.

They provided the IEEE Standard for Autonomous Robotics Ontology [129] with an unam-
biguous identification of the basic hardware and software components necessary to provide
a robot or a group of robots with autonomy. It was conceived to serve for different purposes,
such as to describe the design patterns of AuR systems; to represent AuR system architectures
in a unified way; or as a guideline to build autonomous systems consisting of robots operating
in various environments.

In addition to the developments of the IEEE ORA working group, there are other rele-
vant domain ontologies such as OASys and SOMA. The Ontology for Autonomous Systems
(OASys) [130] captures and exploits concepts to support the description of any autonomous
system with an emphasis on the associated engineering processes. It provides two levels of
abstraction systems in general and autonomous systems in particular. This ontology con-
nects concepts such as architecture, components, goals, and functions with the engineering
processes required to achieve them.

On the other hand, the Socio-physical Model of Activities (SOMA) for Autonomous Robotic
Agents represents the physical and social context of everyday activities to facilitate accomplish
tasks that are trivial for humans [131]. It is based on DUL, extending their concept to different
event types such as action, process, and state; the objects that participated in the activities,
and the execution concept. It is worth to mention that SOMA was intended to be used in
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runtime along with the concept of narratively-enabled episodic memories (NEEMs), which
are comprehensive logs of raw sensor data, actuator control histories, and perception events,
all semantically annotated with information about what the robot is doing and why using
the terminology provided by SOMA.

The relation between upper-level ontologies and domain ontologies is a relation of progressive
domain focalization [113]. The frameworks described below are mostly specializations of
these general robotic ontologies and other foundations.

5.2 A Survey on Applications Using Ontologies for
Robot Autonomy

In this section, we provide an analysis and comparison of projects that exploit ontologies
to enhance robot autonomy. Specifically, we examine the representation of processes in-
troduced in Section 2.3 that are involved in autonomous operation, including perception,
categorization, decision-making, prediction and monitoring, communication, etc. We focus
on works that use this knowledge for action selection. As represented in Figure 5.1, we
analyze how knowledge representation is included in an autonomous agent when interacting
with the environment. The knowledge captured by the ontology may be related to any entity,
but is intended to support the decision-making process within the agent. This section first
introduces the review process and related surveys to subsequenty provide comparison criteria
between the works. The review is divided in four domains: manipulation, navigation, social
and industrial. Lastly, we include a discussion on relevant findings.

Figure 5.1: Conceptualization of an autonomous agent interacting with the environment and upon
itself.
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5.2.1 Review Process

In this chapter, one of our main objectives is to conduct a systematic analysis of relevant
and recent projects that use ontologies for autonomous robots. The first step in our review
process is to search for relevant keywords in scientific databases. Specifically, we have used
the most extended literature browsers, Scopus3 and Web of Science4. These databases provide
a vast array of peer-reviewed literature, including scientific journals, books, and conference
proceedings. It also has a user-friendly interface for storing, analyzing, and displaying
articles. The search was done in terms of title, abstract, or keywords containing the terms
robot, ontology, and plan, behavior, adapt, autonomy, or fault. In practice, we have used the
following search string.

TITLE-ABS-KEY (robot AND ontology AND (plan*
OR adapt* OR behavio* OR autonom* OR fault*))

The required terms are “ontology” and “robot” as they are the foundations of our research.
Using this restriction may seem somewhat limiting, because there could be knowledge-based
approaches to cognitive robots that were not based on ontologies. However, in this review,
we are specifically interested in the use of ontologies for this purpose, hence the strong
requirement regarding the “ontology”. We also target at least one keyword related to (i)
selection and arrangement of actions—autonomous, planning, behavior—or (ii) overcoming
contingencies—fault, adapt. Note that we use asterisks to be as flexible as possible with the
notation.

This search returned 695 articles after removing duplicates; but as we point to the most
relevant and/or recent articles, we apply inclusion criteria based on the publication date
and the number of citations. We only include articles widely cited, with 20 or more citations,
before 2010; articles between 2010 and 2015 with 5 or more citations; and articles between
2015 and 2018 with 2 or more citations. All articles from 2018 onward were included.
With these criteria, we have reduced the list to 351 articles. By applying these criteria, the
selection process aims to identify articles that are not only recent, but have also demonstrated
impact and influence within their respective publication periods.

Then we analyze the content of the articles. We include works in which the main point of
the article is the ontology. In particular, (i) proposes or extends the ontology, and (ii) uses
the ontology to select, adapt, or plan actions. We recall a number of articles on how to
use ontologies to encode simulations, on-line generators of ontologies, or ontologies only
used for conversation, perception, or collaboration without impact in robot action. The
application of these criteria produces 26 relevant articles.

Finally, we complement our search with articles from related surveys described in Section
5.2.2. This ensures that we include all relevant and historical articles in the field with a
snowball process. In this step, we obtain 22 more articles; some of them were already
included in the previous list, and others did not meet our inclusion criteria. This results in

3https://www.scopus.com
4https://www.webofscience.com/wos/alldb/basic-search
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the inclusion of 6 more papers; resulting in a total of 32 articles in deep review. The whole
process is depicted in Figure 5.2 with a Preferred Reporting Items for Systematic reviews
and Meta-Analyses (PRISMA) flow diagram.

Figure 5.2: PRISMA flow diagram, adapted from [132].

5.2.2 Related Surveys

This section evaluates a variety of comparative studies and surveys on the application of
KR&R to several robotic domains. These works address robot architecture, as well as specific
topics such as path planning, task decomposition, and context comprehension. Nevertheless,
our approach transcends these specific domains, aiming to offer a more comprehensive view
of the role of ontologies in enhancing robot understanding and autonomy.

Gayathri et al. [133] compares languages and planners for robotic path planning from the
KR&R perspective. They discuss ontologies for spatial, semantic, and temporal representa-
tions and their corresponding reasoning. In [134], the same authors expand their review by
focusing on DL for robot task planning.

Closer to our perspective are articles that compare and analyze different approaches for
ontology-based robotic systems; specifically, those articles that focus on what to model in
an ontology. Cornejo-Lupa et al. [135] compares and classifies ontologies for Simultaneous
Localization and Mapping (SLAM) in autonomous robots. The authors compare domain
and application ontologies in terms of (i) robot information such as kinematic, sensor, pose,
and trajectory information; (ii) environment mapping such as geographical, landmark,
and uncertainty information; (iii) time-related information and mobile objects; and (iv)
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workspace information such as domain and map dimensions. They focus on one important
but specific part of robot operation, autonomous navigation; and, in a particular type of
robot, mobile robots.

Manzoor et al. [136] compares projects based on application, ideas, tools, architecture,
concepts, and limitations. However, this article does not go deeply into how architecture in
the compared frameworks supports autonomy. Their review focuses on objects, environment
map, and task representation from an ontology perspective. It does not compare the different
approaches regarding the robot’s self-model. It also does not tackle the mechanisms and
consequences of such knowledge to enhance the robot’s reliability.

Perhaps the most relevant review from our perspective is the one by Olivares-Alarcos et
al. [137]. They analyze five of the main projects that use KBs to support robot autonomy.
They ground its analysis in (i) ontological terms, (ii) the capabilities that support robot
autonomy, and (iii) its application domain. Moreover, the provide a discussion of robot and
environment modeling. This work is closely related to the development of the recent IEEE
Standard 1872.2 [129].

Our approach differentiates itself from previous reviews because we focus on modeling not
only robot actions and its environment but also engineering design knowledge. This type
of knowledge is not often considered but provides a deeper understanding of the robot’s
components and its interaction, design requirements, and possible alternatives to reach a
mission. We also base our comparison on explicit knowledge of the mission and how we can
ensure that it satisfies the user-expected performance. For this reason, we focus on works
that select, adapt, or plan actions. Our approach is more flexible on inclusion criteria to
analyze a variety of articles, even if they are partial or its ontologies are not publicly available.
We have adopted this wide perspective to draw a general picture of different approaches
that build the most important capabilities for dependable autonomous robots.

5.2.3 Comparison Criteria

This section introduces the classification criteria used to review application ontologies to
improve robot autonomy. We compare how the functional competencies of autonomous
robots are represented in ontologies to later use them for action selection. These capabilities
are listed below, with detailed descriptions available in Section 2.3. Note that we have
analyzed some categories together, as the boundaries between them partially overlap.

• Perception and Categorization

• Decision-making and Planning

• Prediction and Monitoring

• Reasoning

• Execution
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• Communication and Coordination

• Interaction and Design

• Learning

The classification of these competencies serves to reveal their incorporation into KBs, identify
potential underrepresented elements, and explore the contributions of knowledge structures
to the decision-making process. The following sections review and compare specific projects
to find individual contributions to robot ontologies application field.

We have organized the analysis of the projects under review based on the main areas
addressed—manipulation, navigation, social, and industrial—in which they have been
deployed. However, it is important to note that many of these works have broader implications
and can be applied across different domains. For instance, manipulation and navigation
skills are often required in both social and industrial robot applications. This overlap reflects
the multifaceted nature of robotic competencies.

While each reviewed work is categorized by its primary domain of interest, most of them
possess a broader scope and applicability. The analysis of each project includes a description
and a discussion of the above criteria. Additionally, a comparative table is provided for each
domain, highlighting the most relevant aspects of each capability.

5.2.4 Manipulation Domain

In the domain of robotics, manipulation refers to the control and coordination of robotic arms,
grippers, and other mechanical systems to interact with objects in the physical world. This
includes a wide range of applications, from industrial automation to tasks in unstructured
environments, such as household chores or healthcare assistance. In this section, most of
the works under analysis focus on domestic applications for manipulation.

▶ KNOWROB AND KNOWROB-BASED APPROACHES

KnowRob5 is a framework that provides a KB and a processing system to perform complex
manipulation tasks [138], [139]. KnowRob26 [140] , represents the second generation of
the framework and serves as a bridge between vague instructions and the specific motion
commands required for task execution.

KnowRob2’s primary objective is to determine the appropriate action parameterization based
on the required motion and identify the physical effects that need to be achieved or avoided.
For example, if the robot receives a query on how to pick up a cup to pour out its contents,
the KB retrieves the necessary action of pouring, which includes a sub-task to grasp the

5http://KnowRob.org
6https://github.com/KnowRob/KnowRob
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source container. Subsequently, the framework queries for pre-grasp and grasp poses, along
with grasp force, to establish the required motion parameters.

KnowRob ontology includes a spectrum of concepts related to robots, including information
about their body parts, connections, sensing and action capabilities, tasks, actions, and
behavior. Objects are represented with their parts, functionalities, and configuration, while
context and environment are also taken into account. Additionally, the ontology incorporates
temporal predicates based on event logic and time-dependent relations.

KnowRob’s initial ontology was originally rooted in Cyc, an initiative aimed at understanding
how the world works by representing implicit knowledge and performing human-like reason-
ing [122]. However, with the closure of the public initiative OpenCyc, KnowRob underwent a
transition to adopt the DUL ontology. DUL was chosen for its compatibility with concepts for
autonomous robots. KnowRob uses Prolog as a query and assert interface, but all perception,
navigation, and manipulation actions are encoded in plans rather than Prolog queries or
rules.

One of the main expansions of KnowRob is RoboEarth, a worldwide open-source platform
that allows any robot with a network connection to generate, share, and reuse data [141]. It
uses the principle of linked data connections through web and cloud services to speed up
robot learning and adaptation in complex tasks.

RoboEarth uses an ontology to encode concepts and relations in maps and objects, and an
SLAM map that provides the geometry of the scene and the locations of objects with respect
to the robot [142]. Each robot has a self-model that describes its kinematic structure and a
semantic model to provide meaning to robot parts, such as a set of certain joints that form a
gripper. This model also includes actions, their parameters, and software components, such
as object recognition systems [143].

Another example of a KnowRob-based application is [144]. In this case, the focus is on
using semantic concepts to annotate an SLAM map with additional conceptualizations. This
application diverges somewhat from KnowRob’s initial emphasis on robot manipulators. The
work models the environment by utilizing semantic concepts but specifically captures the
relations between rooms, objects, object interactions, and the utility of objects.

The detailed analysis of comparison criteria is as follows:

• Perception and categorization: KnowRob and RoboEarth incorporate inference mech-
anisms to abstract sensing information, particularly in the context of object recog-
nition [140], [144]. As highlighted in [139], inference processes the information
perceived from the external environment, abstracting it to the most appropriate level
while retaining the connection to the original percepts. These ontologies serve as
shared conceptualizations that accommodate various data types and support various
forms of reasoning; effectively handling uncertainties arising from sensor noise, limited
observability, hallucinated object detection, incomplete knowledge, and unreliable or
inaccurate actions [138].

• Decision-making and planning: KnowRob places a strong emphasis on determining
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action parameterizations for successful manipulation, using hybrid reasoning with the
goal of reasoning with eyes and hands [140].

This approach equips KnowRob with the ability to reason about specific physical effects
that can be achieved or avoided through its motion capabilities. Although the KnowRob
KB might exhibit redundancy or inconsistency, the reasoning engine computes multiple
hypotheses, subjecting them to plausibility and consistency checks, ultimately selecting
the most promising parameterization. In the case of KnowRob2, its planning component
is tailored for motion planning and solving inverse kinematics problems. Tasks are
dynamically assembled based on the robot’s situation.

• Prediction and monitoring: KnowRob leverages its ontology to represent the evolution
of the state, facilitating the retrieval of semantic information and reasoning [140].
Through these heterogeneous processes, the framework can predict the most appro-
priate parameters for a given situation. However, the monitoring capabilities within
this framework are limited to objects in the environment. Unsuccessful experiences
are labeled and stored in the robot’s memory, contributing to the selection of action
parameters in subsequent scenarios. The framework introduces narrative-enabled
episodic memories (NEEMs)), allowing queries about the robot’s actions, their timing,
execution details, success outcomes, the robot’s observations and beliefs during each
action. This knowledge is used primarily during the learning process.

• Reasoning: KnowRob2 incorporates a hybrid reasoning kernel comprising four KBs
with their corresponding reasoning engines [140]:

– Inner World KB: Contains CAD and mesh models of objects positioned with
accurate 6D poses, enhanced with a physics simulation.

– Virtual KB: Computed on demand from the data structures of the control system.

– Logic KB: Comprises abstracted symbolic sensor and action data, enriched with
logical axioms and inference mechanisms. This type of reasoning is the focus of
our discussion in this article.

– Episodic Memories KB: Stores experiences of the robotic agent.

• Execution: KnowRob execution is driven by answering queries about the competence
of the robot for a particular task to bridge the gap between undetermined instructions
and action. The framework incorporates the cognitive robot abstract machine (CRAM),
where one of its key functionalities is the execution of the plan. They provide a plan
language for articulating flexible, reliable, and sensor-guided robot behavior. The
executor then updates the KB with information about perception and action results,
facilitating the inference of new data to make real-time control decisions [145].

RoboEarth and earlier versions of KnowRob rely on action recipes for execution. Before
executing an action recipe, the system verifies the availability of the skills necessary
for the task; and orders each action to satisfy the constraints. In cases where the robot
encounters difficulties in executing a recipe, it downloads additional information to
enhance its capabilities [143]. Once the plan is established, the system links robot
perceptions to the abstract task description given by the action recipe. RoboEarth
ensures the execution of reliable actions by actively monitoring the link between robot
perceptions and actions [141].
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• Communication and coordination: RoboEarth [143] uses a communication module
to facilitate the exchange of information with the Web. This involves making web
requests to upload and download data, allowing the construction and updating of the
KB.

• Learning: KnowRob includes learning as part of its framework. It focuses on acquiring
generalized models that capture how the physical effects of actions vary depending
on motion parameterization [140]. The learning process involves abstracting action
models from data, either by identifying a class structure among a set of entities or
by grouping the observed manipulation instances based on a specific property [138].
KnowRob2 extends its capabilities with the Open-EASE knowledge service [146], offer-
ing a platform to upload, access, and analyze NEEMs of robots involved in manipulation
tasks. NEEMs use descriptions of events, objects, time, and low-level control data
to establish correlations between various executions, facilitating the learning-from-
experience process.

▶ PERCEPTION AND MANIPULATION KNOWLEDGE

The Perception and Manipulation Knowledge (PMK)7 framework is designed for autonomous
robots, with a specific focus on complex manipulation tasks that provide semantic information
about objects, types, geometrical constraints, and functionalities. In concrete, this framework
uses knowledge to support Task and Motion Planning (TAMP) capabilities in the manipulation
domain [147].

PMK ontology is grounded in the IEEE standard 1872.2 [129] for knowledge representation
in the robotic domain, extending it to the manipulation domain by incorporating sensor-
related knowledge. This extension facilitates the link between low-level perception data and
high-level knowledge for comprehensive situation analysis in planning tasks. The ontological
structure of PMK comprises a meta-ontology for representing generic information, an ontology
schema for domain-specific knowledge, and an ontology instance to store information about
objects. These layers are organized in seven classes: feature, workspace, object, actor, sensor,
context reasoning, and actions. This structure is inspired by OUR-K [148] further described
in Section 5.2.6).

The detailed analysis of comparison criteria is as follows:

• Perception and categorization: The PMK ontology incorporates RFID sensors and 2D
cameras to facilitate object localization, explicitly grouping sensors to define equivalent
sensing strategies. This design enables the system to dynamically select the most
appropriate sensor based on the current situation. PMK establishes relationships
between classes such as feature, sensor, and action. For example, it stores poses, colors,
and IDs of objects obtained from images.

• Decision-making and planning: PMK augments TAMP parameters with data from its
KB. The KB contains information on action feasibility considering factors such as

7https://github.com/MohammedDiab1/PMK
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object features, robot capabilities, and object states. The TAMP module utilizes this
information, combining a fast-forward task planner with physics-based motion planning
to determine a feasible sequence of actions. It helps in deciding where the robot should
place an object and the associated constraints.

• Reasoning: PMK reasoning targets potential manipulation actions employing descrip-
tion logic’s inference for real-time information, such as object positions through spatial
reasoning and relationships between entities in different classes. Inference mechanisms
assess robot capabilities, action constraints, feasibility, and manipulation behaviors,
facilitating the integration of TAMP with the perception module. This process yields
information about constraints such as, including interaction parameters (e.g., friction,
slip, maximum force), spatial relations (e.g., inside, right, left), feasibility of actions
(e.g., arm reachability, collisions) and action constraints related to object interactions
(e.g., graspable from the handle, pushable from the body).

• Interaction and design: PMK represents interaction as manipulation constraints, speci-
fying, for example, which part of an object is interactable, such as a handle. It also
considers interaction parameters such as friction coefficient, slip, or maximum force.

▶ FAILURE INTERPRETATION AND RECOVERY IN PLANNING AND EXECUTION

Failure Interpretation and Recovery in Planning and Execution(FailRecOnt)8 is an ontology-
based framework featuring contingency-based task and motion planning. This system
empowers robots to handle uncertainty, recover from failures, and engage in effective
human-robot interactions. Grounded in the DUL ontology, it addresses failures and recovery
strategies, but it also takes some concepts from CORA and SUMO for robotics and ontological
foundations, respectively.

The framework identifies failures through the non-realized situation concept and proposes
corresponding recovery strategies for actions. To improve the understanding of failure, the
ontology models terms such as causal mechanism, location, time, and functional considerations,
which facilitates reasoning-based repair plan [149], [150].

The failure ontology requires a knowledge model of the system in terms of tasks, roles,
and object concepts. Lastly, FailRecOnt hold some similarities with KnowRob, both target
manipulation tasks, are at least partially based on DUL and share some of the authors.
Moreover, they propose using PMK as a model of the system [149].

The detailed analysis of comparison criteria is as follows:

• Perception and categorization: Perception in FailRecOnt is limited to action detection
to detect abnormal events. For geometric information and environment categoriza-
tion, the framework leverages PMK to abstract perceptual information related to the
environment.

8https://github.com/ease-crc/failrecont
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• Decision-making and planning: FailRecOnt is structured into three layers: planning and
execution, knowledge, and an assistant low-level layer. The planning and execution
layer provides task planning and a task manager module. The assistant layer manages
perception and action execution for the specific robot, determining how to sense an
action, and checking if a configuration is collision-free. The framework has been
evaluated in a task that involves storing an object in a given tray according to its color,
handling situations such as facing a closed or flipped box to continue the plan [149].

• Prediction and monitoring: Monitoring is a crucial aspect of the FailRecOnt framework.
It continuously monitors executed actions and signals a failure to the recovery module if
an error occurs. The reasoning component interprets potential failures and, if possible,
triggers a recovery action to repair the plan.

• Reasoning: FailRecOnt ontology describes how the perception of actions should be
formalized. Reasoning selects an appropriate recovery strategy depending on the kind
of failure, why it happened, if other activities are affected, etc.

• Execution: FailRecOnt relies on planning for execution. The task planner generates
a sequence of symbolic-level actions without geometric considerations. Geometric
reasoning comes into play to establish a feasible path. During action execution, the
framework monitors each manipulation action for possible failures by sensing. Rea-
soning is then applied to interpret potential failures, identify causes, and determine
recovery strategies.

• Communication and coordination: FailRecOnt incorporates reasoning for communica-
tion failure in [150] to address failures in scenarios where multiple agents exchange
information.

▶ PROBABILISTIC LOGIC MODULE

Probabilistic Logic Module (PLM) offers a framework that integrates semantic and geometric
reasoning for robotic grasping [151]. Specific details about the KB such as the source files
are not publicly available, so the information provided here is derived from their articles.

The primary focus of this work is on an ontology that generalizes similar object parts to
semantically reason about the most probable part of an object to grasp, considering object
properties and task constraints. This information is used to reduce the search space for
possible final gripper poses. This acquired knowledge can also be transferred to objects
within the same category.

The object ontology comprises specific objects such as cup or hammer, along with super-
categories based on functionality, such as kitchen container or tool. The task ontology encodes
grasping tasks with objects, such as pick and place right or pouring in. Additionally, a third
ontology conceptualizes object-task affordances, considering the manipulation capabilities
of a two-finger gripper and the associated probability of success.

In the use of the ontology, high-level knowledge is combined with low-level learning based on
visual shape features to enhance object categorization. Subsequently, high-level knowledge
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utilizes probabilistic logic to translate low-level visual perception into a more promising
grasp planning strategy.

The detailed analysis of comparison criteria is as follows:

• Perception and categorization: This approach is based on visual perception, employing
vision to identify the most suitable part of an object for grasping. The framework
utilizes a low-level perception module to label visual data with semantic object parts,
such as detecting the top, middle, and bottom areas of a cup and its handle. The
probabilistic logic module combines this information with the affordances model.

• Decision-making and planning: PLM leverages ontologies to support grasp planning. It
integrates ontological knowledge with probabilistic logic to translate low-level visual
perception into an effective grasp planning strategy. Once an object is categorized
and its affordances are inferred, the task ontology determines the most likely object
part to be grasped, thereby reducing the search space for possible final gripper poses.
Subsequently, a low-level, shape-based planner generates a trajectory for the end
effector.

• Prediction and monitoring: While this framework does not specifically predict or monitor
robot actions, it uses task prediction to select among alternative tasks based on their
probability of success, although it does not actively monitor them.

• Reasoning: PLM uses semantic reasoning to grasp. It selects the best grasping task
based on object affordances, addressing the uncertainty of visual perception through a
probabilistic approach.

• Learning: Learning techniques are used to identify the visual characteristics of the
shape, which are then categorized. The acquired knowledge is utilized by the robot
for grasp planning.

Table 5.1 provides a concise comparison among the four frameworks analyzed. The primary
focus of these frameworks is on complex manipulation tasks, such as grasping, picking and
placing objects, and executing manipulation actions effectively. However, their specific scope
and emphasis differ. For instance, KnowRob focuses on task parameterization and action
execution, PMK centers around task and motion planning, while FailRecOnt emphasizes
failure interpretation and recovery.

Each framework integrates perception and action components to enable robots to inter-
act with and manipulate their environment effectively, albeit using different approaches
to perception and categorization. These range from semantic reasoning to probabilistic
logic, incorporating various sensor modalities. Prediction and monitoring are addressed
by KnowRob for objects, FailRecOnt for failure detection, and PLM for tasks. Regarding
execution and communication, KnowRob enables the web exchange of information, whereas
FailRecOnt handles communication failures between multiple agents through ontology.

On the topic of interaction, only PMK addresses interactions between objects and their
constraints. Lastly, only KnowRob and PLM utilize learning to store object descriptions.
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KnowRob stands out as the most complete framework in terms of ontological representation
leveraging information from previous executions such as descriptions of events, objects, time,
and low-level control data for subsequent use.

5.2.5 Navigation Domain

The navigation domain describes the challenges and techniques involved in enabling robots
to autonomously move around their environment. This involves the processes of Guidance,
Navigation, and Control (GNC), incorporating elements such as computer vision and sensor
fusion for perception and localization; as well as control systems and artificial intelligence
for mapping, path planning, or obstacle avoidance.

▶ TELEOLOGICAL AND ONTOLOGICAL MODEL FOR AUTONOMOUS SYSTEMS

Teleological and Ontological Model for Autonomous Systems (TOMASys)9 is a metamodel
designed to consider the functional knowledge of autonomous systems, incorporating both
teleological and ontological dimensions. The teleological aspect involves the inclusion of
engineering knowledge, representing the intentions and purposes of the system designers.
On the other hand, the ontological dimension categorizes the structure and behavior of the
system. This framework constitutes the predecessor to our model as further detailed in
Section 7.1.

TOMASys serves as a metamodel to ensure robust operation, by focusing on mission-level
resilience [26]. This metamodel relies on a functional ontology derived from the Ontology
for Autonomous Systems (OASys) [130] establishing connections between the robot’s ar-
chitecture and its mission. In TOMASys, the core concepts include functions, objectives,
components and configurations. However, it operates as a metamodel and intentionally
avoids representing specific features of the operational environment, such as objects, maps,
etc.

At the core of the TOMASys framework is the metacontroller. While a conventional controller
closes a loop to maintain a system component’s output close to a set point, the metacontroller
closes a control loop on top of a system’s functionality. This metacontroller triggers reconfig-
uration when the system deviates from the functional reference, allowing the robot to adapt
and maintain desired behavior in the presence of failures. Explicit knowledge of mission
requirements is leveraged for reconfiguration, by using the system’s functional specifications
captured in the ontology.

In practice, TOMASys has been applied to various robots and environments, particularly
for navigation tasks. Examples include its application to an underwater mine explorer
robot [152] and a mobile robot patrolling a university campus [153].

The detailed analysis of comparison criteria is as follows:

9https://github.com/meta-control/mc_mdl_tomasys
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KnowRob [138],
[140], [139],

[141], [143], [144],
[142]

PMK [147]
FailRecOnt [149],

[150]
PLM [151]

P/C
Integrate

data-types, object
recognition.

Dynamically select
the most

appropriate sensor.

Action sensing to
detect abnormal

events.

Identify the most
suitable part of an
object for grasping.

DM/P

Action
parameterization

for successful
manipulation.

Task and motion
planning feasibility.

How to sense an
action and checking
if a configuration is

collision-free.

Translate low-level
visual perception
into an effective
grasp planning.

P/M

Predict the most
appropriate
parameters.

Monitoring objects
in the environment.

-

Failure detection
and identification of

failed recovery
attempts.

Task prediction to
select among
alternatives.

R
Hybrid, symbolic

reasoning for sensor
and action data.

Integration of task
and motion

planning with the
perception module.

How the perception
of actions should be

formalized.

Select the best
grasping task based

on object
affordances.

E

Match
undetermined

instructions and
action.

-

Symbolic-level
actions without

geometric
considerations.

-

C/C
Web exchange of

information.
-

Communication
failures between
multiple agents.

-

I/D -

Information about
which part of an

object is
interactable,
constraints.

- -

L

Use previous
descriptions of
events, objects,

time, and low-level
control data.

- -
Categorize visual
shape features.

Table 5.1: Use of ontologies in the manipulation domain for perception and categorization (P/C),
decision-making and planning (DM/P), prediction and monitoring (P/M), reasoning (R), execution (E),
communication and coordination (C/C), interaction and design (I/D) and learning (L).
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• Decision-making and planning: In TOMASys, the metacontrol system manages decision-
making by adjusting parameters and configurations to address contingencies and
mission deviations. It assumes the presence of a nominal controller responsible for
standard decisions. In case of failure detection or unmet mission requirements, the
metacontroller selects an appropriate configuration. The planning process is integrated
into the metacontrol subsystem, where reconfiguration decisions can impact the overall
system plan, potentially altering parameters, components, functionalities, or even
relaxing mission objectives to ensure task accomplishment.

• Prediction and monitoring: Monitoring is a critical aspect of TOMASys, providing failure
models to detect contingencies or faulty components. Reconfiguration is triggered
not only in the event of failure but also when mission objectives are not satisfactorily
achieved. Observer modules are used to monitor reconfigurable components of the
system.

• Reasoning: TOMASys uses a DL reasoner for runtime system diagnosis. It propagates
component failures to the system level, identifying affected functionalities and available
alternatives. This reasoning process helps to select the most promising alternative to
fulfill mission objectives.

• Execution: The execution in TOMASys follows the MAPE-K loop [40]. It evaluates the
mission and system state through monitoring observers, uses ontological reasoners
for assessing mission objectives and propagating component failures, decides recon-
figurations based on engineering and runtime knowledge, and executes the selected
adaptations.

• Communication and coordination: TOMASys employs its hierarchical structure to
coordinate components working towards a common goal. Components utilize roles
that specify parameters for specific functions, and bindings facilitate communication by
connecting component roles with function specifications during execution. Bindings are
crucial for detecting component failures or errors. In cases where the metacontroller
cannot handle errors, a function design log informs the user.

• Interaction and design: TOMASys provides a metamodel that leverages engineering
models from design time to runtime. This approach aims to bridge the gap between
design and operation, relying on functional and component modeling to map mission
requirements to the engineering structure. The explicit dependencies between com-
ponents, roles, and functions, along with specifications of required component types
based on functionality, support the system’s adaptability at runtime.

▶ ONTOLOGY-BASED MULTI-LAYERED ROBOT KNOWLEDGE FRAMEWORK

Ontology-based Multi-layered Robot Knowledge Framework (OMRKF) aims to integrate
high-level knowledge with perception data to enhance a robot’s intelligence in its environ-
ment [154]. Specific details about the KB such as the source files, are not publicly available,
so the information provided here is derived from their articles.

The framework is organized into knowledge boards, each representing four knowledge
classes: perception, activity, model, and context. These classes are divided into three
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knowledge levels (high, middle, and low). Perception knowledge involves visual concepts,
visual features, and numerical descriptions. Similarly, activity knowledge is classified into
service, task, and behavior, while model knowledge includes space, object, and its features.
The context class is organized into high-level context, temporal context, and spatial context.

At each knowledge level, OMRKF employs three ontology layers: (a) a metaontology for
generic knowledge, (b) an ontology schema for domain-specific knowledge, and (c) an
ontology instance to ground concepts with application-specific data. The framework uses
rules to define relationships among ontology layers, knowledge levels, and knowledge classes.

OMRKF facilitates the execution of sequenced behaviors by allowing the specification of high-
level services and guiding the robot on recognizing objects even with incomplete knowledge.
This capability enables robust object recognition, successful navigation, and inference of
localization-related knowledge. Additionally, the framework provides a querying-asking
interface through Prolog, enhancing the robot’s interaction capabilities.

The detailed analysis of comparison criteria is as follows:

• Perception and categorization: OMRKF includes perception as one of its knowledge
classes, specifically addressing the numerical descriptor class in the lower-level layer. Ex-
amples of these numerical descriptors are generated by robot sensors and image process-
ing algorithms such as Gabor Filter or scale-invariant feature transform (SIFT) [154].

• Decision-making and planning: OMRKF uses an event calculus planner to define the
sequence for executing a requested service. The framework relies on query-based
reasoning to determine how to achieve a goal. In cases where there is insufficient
knowledge, the goal is recursively subdivided into sub-goals, breaking down the task
into atomic functions such as go to, turn, and extract feature. Once the calculus planner
generates an output, the robot follows a sequence to complete a task, such as the steps
involved in a delivery mission.

• Reasoning: OMRKF employs axioms, such as the inverse relation of left and right or on
and under, to infer useful facts using the ontology. The framework uses Horn rules to
express concepts and relations, enhancing its automated reasoning capabilities.

▶ SMART AND NETWORKED UNDERWATER ROBOTS IN COOPERATION MESHES ONTOLOGY

The Smart and Networked Underwater Robots in Cooperation Meshes (SWARMs) ontology
addresses information heterogeneity and facilitates a shared understanding among robots in
the context of maritime or underwater missions [155]. Specific details about the KB such as
the source files are not publicly available, so the information provided here is derived from
their articles.

SWARMs leverages the probabilistic ontology PR-OWL10 to annotate the uncertainty of the
context based on the Multi-Entity Bayesian Network (MEBN) theory [156]. This allows

10https://www.pr-owl.org
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SWARMs to perform hybrid reasoning on (i) the information exchanged between robots and
(ii) environmental uncertainty.

SWARMs establishes a core ontology to interrelate several domain-specific ontologies. The
core ontology manages entities, objects, and infrastructures. These ontologies include:

– Mission and Planning Ontology: Provides a general representation of the entire mission
and the associated planning procedures.

– Robotic Vehicle Ontology: Captures information on underwater or surface vehicles and
robots.

– Environment Ontology: Characterizes the environment through recognition and sensing.

– Communication and Networking Ontology: Describes the communication links avail-
able in SWARMs to interconnect different agents involved in the mission, enabling
communication between the underwater segment and the surface.

– Application Ontology: Provides information on scenarios and their requirements. PR-
OWL is included in this layer to handle uncertainty.

Li et al. [155] presents an example using SWARMa for monitoring chemical pollution based
on a probability distribution. SWARMs incorporates this model into the ontology and uses
MEBN to deduce the emergency level of a polluted sea region.

The detailed analysis of comparison criteria is as follows:

• Perception and categorization: SWARMs ontology provides a shared framework to
represent the underwater environment. For this reason, it contains classes on sensors
and the main concepts of the environment to understand it through its properties, such
as water salinity, conductivity, temperature, and currents. Uncertainty reasoning is
critical for the categorization of sensor information, especially in the harsh maritime
and underwater environment.

• Decision-making and planning: SWARMs uses two levels of abstraction. High-level
planning allows the user to describe different tasks related to operations without
specifying the exact actions that each robotic vehicle must perform. Low-level planning
is performed on each robot to generate waypoints, actions, and other similar low-level
tasks.

• Reasoning: SWARMs uses a hybrid context reasoner, as it combines ontological rule-
based reasoning with MEBN for probabilistic annotations.

• Communication and coordination: A main concern in SWARMs is cooperation; robots
share tasks, operations, and actions. The ontology provides transparent information
sharing to support the heterogeneity of the data. It also provides an abstraction for
communication and networking, describing the communication links available from
command control stations to vehicles and backward.
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▶ ROBOT TASK PLANNING ONTOLOGY

The Robot Task Planning Ontology (RTPO) [157] serves as an effective knowledge representa-
tion framework for robot task planning. Specific details about the KB such as the source files,
are not publicly available, so the information provided here is derived from their articles.

Designed to accommodate temporal, spatial and continuous and discrete information, RTPO
prioritizes scalability and responsiveness to ensure practicality in task planning. The ontology
comprises three main components: robot, environment, and task.

– Robot Ontology: Comprise hardware and software details, location information, dy-
namic data, and more. Sensors are explicitly modeled as a subclass of hardware,
specifying the measurable aspects of the environment. In an experimental context, the
robot’s perception is limited to obstacles.

– Environment Ontology: Focuses on location and recognition of humans and objects,
the environment map, and information gathered from other robots.

– Task Ontology: Aims to understand how to decompose high-level tasks into atomic
actions and adapt plans when the environment undergoes changes.

This multi-ontology approach allows RTPO to capture the details of robot task planning by
representing both the robot’s internal state and its interactions with the environment.

The detailed analysis of comparison criteria is as follows:

• Perception and categorization: The robot ontology in RTPO considers sensors as a sub-
class of hardware, providing a specification of measurable aspects of the environment.
In the experiment discussed, the robot’s perception is limited to detecting obstacles.

• Decision-making and planning: Task planning is realized using a domain and a problem
file, as in PDDL. The algorithm described in [157] generates and utilizes these files.
The planner recursively searches sub-tasks that meet the preconditions of the initial
state. When encountering an atomic task, it adds it to the execution and employs
post-conditions to select the subsequent action.

• Reasoning: The reasoning process in RTPO involves the updating and storage of
knowledge within the ontology. The scalability of robot knowledge aims to enhance
the efficiency of reasoning. Experimental scenarios involving the addition of elements
to the indoor environment and corresponding KB instances demonstrate changes in
consumed time, particularly affecting knowledge query speed. The authors show
real-time performance in an application that involves 52,000 instances, although the
impact on the planning process is not explicitly detailed.

• Communication and coordination: This process is not explicitly explained in [157].
However, a scenario with three robots and two humans is described. Communication
among the three robots is highlighted, emphasizing knowledge sharing. The rela-
tionships between these entities can be defined by users or developers based on their
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requirements. In situations with various robots mapping different rooms and using
various sensors, the ontology facilitates linking and adding knowledge to constraints
to maintain coherence.

• Learning: RTPO incorporates learning by updating and adding the plans generated
by the task planning algorithm back into the ontology. This iterative process aims
to enhance the efficiency of future task planning, especially when the same task is
encountered again.

▶ GUIDANCE, NAVIGATION, AND CONTROL FOR PLANETARY ROVERS

Burroughes and Gao [158] present an architectural solution to address limitations in au-
tonomous software and GNC structures designed for extraterrestrial planetary exploration
rovers. Specific details about the KB such as the source files are not publicly available, so the
information provided here is derived from their articles.

This framework uses an ontology to facilitate autonomous reconfiguration of mission goals,
software architecture, software components, and the control of hardware components
during runtime. To manage complexity, the self-reconfiguration ontology is organized into
modules. The base ontology serves as an upper ontology, including modules that delineate
logic, numeric aspects, temporality, fuzziness, confidences, processes, and block diagrams.
Additional modules describe the functions of software, hardware, and the environment.

The primary focus of this framework is reconfiguration. Once the ontology manager detects
an undesired state change through the monitoring process, it activates a safety mode. In this
safety mode, the system can execute either a reactive plan or create a new plan based on
inferences drawn from the new situation.

Following the re-planning process, new mission goals are established, allowing the robot
to exit safety mode and resume normal operation. The framework specifically aims to
minimize odometry error and ensure safety during travels. To achieve this objective, the
connective architecture and processes such as navigation, localization, control, mappings, as
well as sensors and the locomotion system, can be fine-tuned and optimized according to the
environment and faulty hardware conditions. For example, certain methods may prioritize
tolerance to sensor noise over absolute accuracy in localization.

The detailed analysis of comparison criteria is as follows:

• Decision-making and planning: Burroughes and Gao [158] integrates a reactive ap-
proach with a deliberative layer for quick responses. Pre-calculated responses are
prepared for likely changes, but in the absence of options, the rational agent resorts to
deliberative techniques. Ontologies and PDDL are used for knowledge representation
and planning, respectively. Actions correspond to specific configurations of services,
with plans defined using the initial state of the world, the goal state, the resources
of the system, the safety criteria, and the rules. The approach employs a pruning
algorithm to reduce possible actions and planning space.
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• Prediction and monitoring: The focus is on re-planning, requiring monitoring to trigger
the process. Inspectors, such as generic ones for network, resource, and state checks,
and specific ones for tasks like checking camera performance, monitor, and update
the ontology on the current state of the world. The system can decide the depth of
monitoring for each subsystem, balancing computational resources and self-protection.

• Reasoning: Reasoning is used to configure the software elements of the rover, updating
the state of the world, and deciding whether the system should re-plan to adapt to
changes or use pre-established reactive responses. The ontology checks for knowledge
incoherence when adding new information.

• Execution: The MAPE-K loop is used for self-reconfiguration. When the monitor detects
a change, the ontology provides knowledge to select how the system should evolve.
The configuration of the components is established through planning or reactivity.
Navigation and operation components are organized into modular services with self-
contained functionality to allow reconfiguration.

• Communication and coordination: Communication requirements, such as publication
rate, conditions, and effects, are used to establish appropriate communication links
between modules, treating it as a reconfigurable service within the framework.

• Interaction and design: While not explicitly detailing the design or requirements, the
system reasons in terms of service capacities, considering measures such as accuracy
or suitability for sensor noise in sensor processing algorithms. It also incorporates
safety criteria to select system changes, providing design and engineering knowledge
to select alternative designs based on runtime situations.

▶ COLLABORATIVE CONTEXT AWARENESS IN SEARCH AND RESCUE MISSIONS

Chandra and Rocha [159] present a framework for collaborative context awareness using an
ontology that comprises high-level aspects of Urban Search and Rescue (USAR) missions.
Specific details about the KB such as the source files, are not publicly available, so the
information provided here is derived from their articles.

The framework serves as an efficient knowledge-sharing platform to represent and correlating
various mission concepts, including those related to agents and their capabilities, scenarios,
and teams. The ontology facilitates the sharing of homogeneous knowledge among all robots,
and supports human-robot collaboration by reasoning based on rules provided by humans.

The detailed analysis of comparison criteria is as follows:

• Perception and categorization: The system employs perceived and pre-processed infor-
mation gathered from its own sensors, as well as from other agents such as humans and
robots, to continually update its KB. Specifically, it focuses on entities within context
classes and their relationships, including information about smoke levels, visibility,
location, and temperature.
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• Decision-making and planning: The framework offers an efficient strategy to share
knowledge that improves decision-making processes. For example, it facilitates the
management of a global map with shared events and the real-time tracking of agent
locations.

• Reasoning: In this framework, reasoning plays a crucial role in storing and disseminat-
ing information between agents. The KB retains essential details such as localization,
temperature, visibility, battery status, tasks, and detection of victims or fires. Further-
more, reasoning contributes to resilience against communication failures by storing
information for future sharing. This process supports coordination, including the incor-
poration of new team members or the temporary removal and subsequent reintegration
of teammates.

• Communication and coordination: Building on a foundation of multi-robot cooper-
ation, [159] structures its framework to represent the team and mission within an
ontology. This enables the creation of a global map and the selection of suitable
candidates for various tasks. Examples of coordination include telepresence and com-
pensating for a teammate’s immobility. In addition, the framework ensures resilience
in the face of communication failures. For example, all events detected by a robot are
logged into the local KB and shared across the team to synchronize knowledge. In
situations of communication loss or isolation from teammates, a list of unattended
events is maintained and shared after communication is restored.

▶ AUTONOMOUS VEHICLE SITUATION ASSESSMENT AND DECISION-MAKING

Huang et al. [160] presents the use of ontologies for situation assessment and decision-
making in the context of autonomous vehicles navigating urban environments. Specific
details about the KB such as the source files are not publicly available, so the information
provided here is derived from their articles.

The KB is used to integrate vehicle information, storing details of the permissible directions
it can take. Furthermore, it includes representations of both static and dynamic obstacles,
as well as relevant information about the characteristics of roads, distinguishing between
highways and urban roads. The ontology incorporates specific scenarios that the autonomous
vehicle can encounter on the road, such as proximity to an intersection, traversing a bridge, or
executing a U-turn. The autonomous driving system leverages this KB to assess the current
driving scenario, facilitating well-informed decisions on whether to maintain its current
trajectory or initiate a lane change.

The detailed analysis of comparison criteria is as follows:

• Decision-making and planning: The decision-making process is tied to situation assess-
ment, employing a methodology that evaluates the safety of the surroundings of the
vehicle. This involves characterizing the regions around the car and assigning a binary
safety value based on the presence of obstacles.

If a region is considered safe, the vehicle continues in its current lane; otherwise, a lane
change is initiated. This decision-making step incorporates statistical indicators that
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account for velocity. Moreover, the model considers legitimacy by adhering to traffic
rules during lane changes and reasonableness by querying the global planning path to
identify the next road segment or lane, particularly when approaching intersections.
This strategic approach prevents the system from optimizing locally at the expense of
compromising the overarching global plan.

• Reasoning: The reasoner is used to generate behavioral decisions. It employs rules
derived from traffic regulations and driving experiences, taking into account various
factors influencing the road, such as speed limits, traffic lights, and the presence of
surrounding obstacles.

• Interaction and design: While the framework does not explicitly include concepts as
design decisions, it addresses requirements such as legality by incorporating traffic
rules and reasonableness. This ensures that the behavior of the lane change aligns
with the main goal of global planning, avoiding changes to local optimization that may
compromise the broader strategic plan.

▶ SEARCH AND RESCUE SCENARIO

Sun et al. [161] introduces an ontology tailored for Search and Rescue (SAR), enhancing
the decision-making capabilities of robots in complex and unpredictable scenarios. Specific
details about the KB such as the source files, are not publicly available, so the information
provided here is derived from their articles. The SAR ontology comprises three interlinked
sub-ontologies: the entity ontology, environment ontology, and task ontology.

– The entity ontology includes various types of robots, including ground, underwater
and air robots. It delineates their constituent parts and specifications on hardware and
software aspects.

– The environment ontology extends the scope to store most of the elements present in
SAR scenarios; which includes environment map and objects that shall be recognized.
Updated knowledge from the environment can be shared among other robots, although
the specific mechanisms are not detailed in the presented use case.

– The task ontology encapsulates task-related knowledge vital for informed decision-
making. This involves task decomposition and allocation facilitated by a hierarchical
structure. The ontology defines four typical tasks: charge, search, rescue, and rec-
ognize. Additionally, atomic actions are articulated by their effects on the state of
the environment. The framework proposes a task planning algorithm that aligns the
pre-conditions of execution with the effects on the environment, utilizing the SAR
ontology as a foundational framework.

The detailed analysis of comparison criteria is as follows:

• Perception and categorization: The SAR framework focuses on SLAM and autonomous
navigation. They use a semantic map, which facilitates the recognition and localization
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of objects. The acquired information dynamically updates the environment ontology,
establishing connections between the SLAM map and the semantic details. Bayesian
Reasoning enhances the precision of victim positioning, while QR code scanning
streamlines the acquisition of semantic information, such as vital signs (e.g., heart rate
and blood pressure), in scenarios involving disaster rescue.

• Decision-making and planning: Decision-making in this framework is based on struc-
tured queries. It initiates by defining tasks and identifying requisite actions, followed
by a comprehensive examination of action properties, including time constraints, pre-
conditions, and post-conditions, to achieve the desired state. The planner then specifies
a sequenced set of atomic actions. The program has the flexibility to adopt specific
search algorithms for planning or reuse previously established plans.

• Reasoning: Before planning, the robot conducts a preliminary assessment to deter-
mine the suitability of the task for the current state. If considered appropriate, the
planning phase starts, identifying the tasks the robot should execute under the given
circumstances.

• Execution: The robot systematically executes the sequence of atomic actions. When
faced with a previously planned task, the robot can query the task definition, retrieving
the corresponding atomic action sequence.

Tables 5.2 and 5.3 summarize the studies in the navigation domain; which vary in their focus
and specific application, such as underwater exploration, search and rescue missions, or
urban navigation.

In terms of perception and categorization, frameworks exhibit different degrees of sophisti-
cation. OMRKF, SWARMs, RTPO and the SAR Scenario integrate perception knowledge into
their ontologies to represent environmental properties and sensor data. However, the USAR
Scenario primarily relies on pre-processed sensor information for perception tasks.

Regarding decision-making and planning, TOMASys, the Planetary Rover Scenario, and the
SAR Scenario address adaptive decision-making and reconfiguration, crucial for mission
resilience in dynamic environments. OMRKF, SWARMs, and RTPO employ planners or
algorithms to generate task sequences or plans, while the USAR Scenario and the Autonomous
Vehicle Scenario prioritize safe and efficient route planning in urban and search and rescue
contexts.

Prediction and monitoring are only addressed by two of them: TOMASys, which employs
failure models to detect contingencies and monitor mission objectives, and the Planetary
Rover Scenario utilizes monitoring to trigger re-planning in response to changes in system
state or environment.

Reasoning capabilities are present across all frameworks, TOMASys, OMRKF, and SWARMs
use advanced reasoning techniques such as rule-based reasoning, probabilistic annotations,
and ontology-based reasoning. The USAR Scenario and the Autonomous Vehicle Scenario
employ reasoning to evaluate the safety of surroundings and apply traffic regulations ef-
fectively, while the Planetary Rover Scenario and the SAR Scenario leverage reasoning to
ensure the suitability of tasks in their respective domains.
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Execution strategies vary among the frameworks, with TOMASys employing the MAPE-K
loop for reconfiguration, while others like the Planetary Rover Scenario focus on configuring
software elements and updating world states. RTPO emphasizes real-time performance in
reasoning, which is crucial for efficient task execution.

Communication and coordination are critical aspects addressed by TOMASys, SWARMs, and
RTPO, facilitating transparent information sharing and multi-robot cooperation. The USAR
Scenario and the Autonomous Vehicle Scenario emphasize communication requirements and
coordination strategies to ensure effective collaboration among agents.

Interaction and design considerations are explicit in TOMASys, the Planetary Rover Scenario,
and the Autonomous Vehicle Scenario, where frameworks bridge the gap between design
and operation through meta-models or by incorporating engineering knowledge. RTPO also
focuses on design elements, ensuring scalability and responsiveness in task planning.

Learning aspects are only addressed by RTPO, which incorporates learning by updating the
plans generated during task planning back into the ontology for future use.

5.2.6 Social Domain

Social robots usually refer to the interaction between robots and humans in a variety of
contexts, such as homes, healthcare, education, entertainment, and public spaces. The goal
is to create robots that are not only technically capable but also socially aware and able to
interact with humans in a manner that is natural, intuitive, and socially acceptable.

▶ ONTOLOGY-BASED UNIFIED ROBOT KNOWLEDGE

The Ontology-based Unified Robot Knowledge (OUR-K) framework for service robots [148]
consists of five knowledge classes: features, objects, spaces, contexts, and actions. It takes
from its predecessor, OMRKF, the concept of layer division. Although OMRKF was originally
evaluated in navigation domains, OUR-K extends its application to social robots operating
within domestic environments. Specific details about the KB such as the source files are not
publicly available, so the information provided here is derived from their articles.

A notable feature of OUR-K is its ability to perform tasks even when provided with incomplete
information. The framework incorporates a knowledge description of both the robot and
its environment, employing algorithms for knowledge association. This involves logic,
Bayesian inference, and heuristics; however, logical inference in OUR-K is specifically limited
to performing associations between classes and ontological levels, with no indication of
alternative inference mechanisms in the literature.

OUR-K includes mechanisms for object recognition, context modeling, task planning, space
representation, and navigation. Regarding action representation, its descriptions are simpler
and do not contemplate processes as its predecessor, OMRKF.
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Failure models to
detect faulty

components and
goals not achieved.

- - -

R

Propagate failures
to system level,
identify affected

functionalities and
available

alternatives.

Geometrical
relationships

between objects.

Hybrid context
reasoner:

rule-based
reasoning and
probabilistic
annotations.

Evaluation of
real-time

performance in
reasoning with

52,000 elements of
indoor

environments.

E
MAPE-K loop to
evaluate mission

status.
- - -

C/C
Component

coordination.
-

Robots share tasks,
operations, and

actions.

Knowledge sharing
between three
robots and two

humans.

I/D

Use of metamodels
to bridge the gap

between design and
operation.

- - -

L - - -

Update and add
plans generated by
the task planning

algorithm back into
the ontology.

Table 5.2: Part 1: Use of ontologies in the navigation domain for perception and categorization (P/C),
decision-making and planning (DM/P), prediction and monitoring (P/M), reasoning (R), execution (E),
communication and coordination (C/C), interaction and design (I/D) and learning (L).
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Planetary Rover
Scenario [158]

USAR Scenario
[159]

Autonomous
Vehicle Scenario

[160]

SAR Scenario
[161]

P/C -

Pre-processed
information from
sensors, and other
intelligent agents.

-
Semantic map for

recognize and
localize objects.

DM/P

Pre-calculated
solutions for likely
changes, combined
with deliberative

techniques.

Management of a
global map with

shared events and
the real-time

tracking of agent
locations.

Evaluates the safety
of the vehicle’s

surroundings with
statistical
indicators.

Definition of tasks
and identification of

requisite actions
and its properties.

P/M
Monitor resources
and state checks to
trigger re-planning.

- - -

R

Configure SW
elements, update
world state, and

decide re-planning.

Store and distribute
information among

agents.

Apply rules derived
from traffic

regulations and
driving experiences.

Evaluate suitability
of task for the
current state.

E
MAPE-K loop for
reconfiguration.

- -

Query task
definition to
retrieve the

corresponding
atomic action

sequence.

C/C
Communication

requirements
between modules.

Multi-robot
cooperation, global
map, and selection

of suitable
candidates for each

task.

- -

I/D
Explicit service

capacities.
-

Addresses
requirements such

as legality by
incorporating traffic

rules and
reasonableness.

-

L - - - -

Table 5.3: Part 2: Use of ontologies in the navigation domain for perception and categorization (P/C),
decision-making and planning (DM/P), prediction and monitoring (P/M), reasoning (R), execution (E),
communication and coordination (C/C), interaction and design (I/D) and learning (L).
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Diab et al. [162] extend OUR-K with a physics-based manipulation ontology to address the
challenges that a motion planner might encounter. An actor class is introduced within the
knowledge classes to describe the working constraints of the robot, enhancing the planner’s
capability to handle interaction dynamics. In addition, the authors propose a prediction
mechanism for the entire OUR-K framework. Instead of relying on inferences, a semantic
map is generated for categorizing and assigning manipulation constraints, using reasoning
based on logical axioms. This approach is evaluated in the context of a specific manipulation
task, where a robot serves a cup of liquid contained in a can.

The detailed analysis of comparison criteria is as follows:

• Perception and categorization: OUR-K follows the same approach as OMRKF. Perception
is abstracted and stored in the feature, space, and object classes. The feature class
defines the same knowledge level as the OMRKF. The space class defines a topological
map in the middle level and a semantic map in the higher one. The object class middle
level includes the object name and function, whereas the top layer defines generic
information and relationships among objects; for example, a cup is a type of container.

• Decision-making and planning: OMRKF successor, OUR-K [148] uses the same structure
based on the abductive event calculus planner to reach a hierarchical abstraction of
space elements and behaviors. High-level tasks, such as delivery, are decomposed into
mid-level sub-tasks such as go to goal space, find object, or generate context. These
sub-tasks are further planned as sequences of primitive behaviors such as go to or
recognize object. The approach in [162] based on OUR-K also integrates the three levels
of the action class for planning. The planner consults the topological map to determine
which object (or robot) occupies which space, and then the semantic map is used to
extract object and robot constraints concerning the action. This results in a sequence
of actions that may consider contextual information, particularly at the temporal level.

• Prediction and monitoring: OUR-K includes rules for navigation monitoring and missing
object recognition tasks. However, monitoring is not treated as a distinct process in
this framework; instead, it is represented as rules that use several knowledge classes.

• Reasoning: Similar to OMRKF, OUR-K relies on logical inference to associate classes
and ontological levels. The bidirectional links between low-level data and high-level
knowledge enable both frameworks to fill-in missing information, contributing to
mission accomplishment.

• Execution: OUR-K execution is plan-based, where the robot follows the plan, executing
a sequence of actions. However, action knowledge is coupled with all other concepts
to represent world environments using features such as sensory-motor coordination,
object action complex, and affordances. This approach allows robots to perform actions
without explicit planning, potentially enabling reactive behavior when necessary [148].

• Interaction and design: The OUR-K extension presented in [162] introduces dynamic
interaction, focusing on how robotic controllers should adapt to runtime situations.
This extension provides information on how a motion planner should handle dynamic
forces when manipulating objects, enhancing the framework’s capability in dealing
with real-time interactions.
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▶ OPENROBOTS COMMON SENSE ONTOLOGY

The OpenRobots Common Sense Ontology (ORO) [163], establishes a knowledge processing
framework and a common sense ontology tailored for facilitating semantic-rich human-robot
interaction environments11. This approach focuses on conceptualization, but offers flexibility
for implementing other cognitive functions simultaneously, such as object recognition, task
planning, or reasoning. Cooperation is a crucial aspect in ORO, as it targets human-robot
interactions.

ORO ontology is based on OpenCyc. The authors specify in the project Wiki12 that it shares
most of its concepts with the first version of the KnowRob ontology. It includes categories such
as spatial thing, action, and more concrete concepts such as event or book. They evaluated
their approach by showing robot objects and asking humans about its properties.

The detailed analysis of comparison criteria is as follows:

• Perception and categorization: They use several algorithms, such as common ancestors
or the calculation of the best discriminant to categorize perceptions. Discrimination
is an important element in human-robot collaboration. For example, if a user asks to
bring the bottle and there are two available, the robot can use its differences to select
the best option.

• Reasoning: ORO provides ontological reasoning, as well as external modules that
trigger when an event occurs. External modules are used to provide reactive responses.
For example, when a human asks the robot to bring an object, the robot creates an
instance of this desire. Statements are stored in different memory profiles, such as
long-term and short-term memory. Each profile is characterized by a lifetime that is
assigned to the stored facts; when a lifetime ends, the ontology removes the fact.

• Execution: The framework integrates CRAM [145] to automatically update the ORO
server when an object enters or exits the field of view. Execution is query-based,
involving combinations of patterns like is the bottle on the table? or filters such as
weight < 150.

• Communication and coordination: ORO is designed as an intelligent blackboard, allow-
ing various modules to push or pull knowledge to and from a central repository. This
facilitates knowledge sharing among agents. Examples of heterogeneity with shared
information include event registration, categorization capabilities, and the existence
of different memory profiles.

Each agent has an alternative cognitive model for other agents with whom it has
interacted. When ORO identifies a new agent, it automatically creates a new separate
model that can be shared with others. This feature enables the storage and reasoning
of different, and potentially globally inconsistent, models of the world.

11http://kb.openrobots.org/
12https://www.openrobots.org/wiki/oro-ontology
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▶ ONTOLOGY FOR COLLABORATIVE ROBOTICS AND ADAPTATION

Ontology for Collaborative Robotics and Adaptation (OCRA)13, as described in [164], is a
specialized ontology designed to represent relevant knowledge in collaborative scenarios,
facilitating plan adaptation. Based on KnowRob [138], [140], and its upper ontology, DUL,
OCRA shares the support of its predecessor for the temporal history of the KB through
episodic memories.

This work primarily employs FOL definitions to establish a foundation for reliable collabora-
tive robots, with the aim of enhancing interoperability and reusability of terminology within
this domain. The ontology serves as a tool for the robot to address questions about the
competence of the robot, such as identifying ongoing collaborations, understanding current
plans and their goals, determining the agents involved, and assessing plans before and after
adaptation.

This ontology has been qualitatively validated for human-robot cooperation, sharing the task
of filling the compartments of a tray. The main asset of OCRA, from our perspective, is its
explicit representation of collaboration requirements, including safety considerations and a
measure of risks, with the objective of effective plan adaptation.

The detailed analysis of comparison criteria is as follows:

• Decision-making and planning: OCRA uses ontological knowledge for dynamic plan
adaptation during runtime. For example, if the robot had the plan to fill a certain
compartment and it is not empty, it adapts to fill another empty compartment. The
ontology also stores what triggers the adaptation.

• Reasoning: As stated above, this work focuses on answering queries related to agents
involved in collaboration, their plans, goals, and the adaptation of plans when required.

• Communication and coordination: OCRA focuses on collaboration with humans, provid-
ing a mechanism to explain its plan adaptation through the ontology. This collaboration
is enabled through coordination in terms of the plan to solve the task. Specifically, the
robot changes its plan according to variations in the environment, such as an already
filled compartment.

• Learning: While not explicitly implemented in the current work, OCRA mentions future
plans to incorporate episodic memories for learning tasks. For example, modeling the
preferences of different users or learning the structure of tasks to generalize to new
ones.

▶ INTELLIGENT SERVICE ROBOT ONTOLOGY

Intelligent service robot ontology (ISRO) [165] introduces an ontology-based model tailored
for human-robot interaction. The practical application of this approach is demonstrated
through the implementation of a social robot that functions as a medical receptionist in

13https://github.com/albertoOA/know_cra
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a hospital setting. Specific details about the KB, such as the source files, are not publicly
available, so the information provided here is derived from their articles.

ISRO serves as an abstract knowledge management system designed to comprehend infor-
mation about agents, encompassing both users and robots, as well as their environment.
The ontology establishes connections between user knowledge and the robot’s actions and
behaviors, incorporating considerations for the spatial and temporal environment. This
integration is facilitated through the Artificial Robot Brain Intelligence (ARBI) framework,
which includes a task planner, a context reasoner, and a knowledge manager.

ISRO is not limited to a specific domain because it provides a high-level scheme for dynamic
generation and management of information. The ontology is divided into four sub-models:

– User ontology to store profile information.

– Robot ontology defining the robot type, its components and capabilities.

– Perception and environment to define objects and its attributes, maps, places, temporal
events, and relations such as before, after, etc.

– Action ontology to define required actions to perform a task and the expected events
in such situations.

The detailed analysis of comparison criteria is as follows:

• Perception and categorization: The framework uses sensor information to recognize the
user involved, its face, gender, and age; and recognize its state, i.e., the user’s expression
in its application. It also senses the robot pose to guide the user to the medical
department. Additionally, the framework is also prepared to handle information
related to spaces and objects, but is not defined in the experiment.

• Decision-making and planning: ARBI framework uses path planning to move the robot,
specifically, to guide patients to their corresponding medical department. It is based
on JAM architecture [166] which defines goals and plans using the belief, desire, and
intention (BDI) agent [165]. The path is produced using semantic spatial knowledge,
defining the spaces the robot shall traverse and relationships between spaces such
as connected to. The semantic path is translated into topological waypoints using
knowledge about objects and a map. This path is stored in the KB and shared between
robots.

• Reasoning: The knowledge manager infers spatial and temporal information, such as
the relations of currently recognized objects and the time intervals between events. It
also characterizes users. It uses Prolog to recognize dynamically generated information.
However, only information considered important or critical is stored in the KB as static
information.
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▶ SERVICE ROBOT SCENARIO

Ji et al. [167] provide a flexible framework for service robots using the automatic planner
Stanford Research Institute Problem Solver (STRIPS). Specific details about the KB such as
the source files are not publicly available, so the information provided here is derived from
their articles.

The ontology represents two main types of information, environmental description, and
robot primitive actions to handle spatial uncertainties of particular objects and the primitive
actions that the robot can execute. Actions shall include four main attributes to comply with
STRIPS: pre-condition, post-condition, input, and result. The planning process is optimized
using a recursive back-trace searching method and knowledge information to limit the search
space. The framework is applied to the Care-O-Bot agent in a scenario in which it shall get a
milk box.

The detailed analysis of comparison criteria is as follows:

• Perception and categorization: Symbol grounding is crucial for [167], as it bridges the
gap between abstract planning and actual robot sensing and actuation. For example, a
task of moving a table involves moving the robot near the table. The symbol grounding
specifies exactly where is near the table.

• Decision-making and planning: This framework uses recursive backtracing search for
action planning in dynamic environments. The use of semantic maps can improve the
search for an object by limiting the search space using semantic inference.

• Reasoning: Reasoning in [167] is used to retrieve information about spatial objects,
such as the location of the table where milk is stored. Specific actions, such as workspace
of, are defined to support reasoning, which enables the retrieval of spatial information
about an object. For example, a milk box could provide a result of above the table or in
the refrigerator, as it is a perishable product. This framework also provides a likelihood
estimation of possible locations of objects.

• Execution: Execution uses a central controller to propagate the action to the task
planner, the user interface, and the low-level robot modules. Each action is represented
as a state machine that is executed in real time. After the action is finished, it updates
the models based on the result and the action post-condition.

Table 5.4 shows the main aspects for each capability in the social applications reviewed. In
terms of perception and categorization, OUR-K and ORO differ in their methodologies. OUR-
K follows a similar approach to OMRKF, abstracting perception into features, objects, and
spaces. On the other hand, ORO employs algorithms like common ancestors or discriminants
for categorization, enhancing discrimination in human-robot collaboration scenarios.

Decision-making and planning strategies vary across frameworks. OUR-K utilizes an abduc-
tive event calculus planner, extending the hierarchical abstraction approach from OMRKF.
ORO emphasizes dynamic plan adaptation during runtime, adapting to changing circum-
stances. Similarly, OCRA focuses on plan adaptation and collaboration queries, while the
Service Robot Scenario employs recursive back-trace searching for abstract planning.
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Prediction and monitoring capabilities are evident in OUR-K through navigation monitoring
and missing object recognition tasks. In terms of reasoning, OUR-K and ORO leverage
ontological reasoning combined with external modules triggered by events. OCRA focuses
on answering queries related to collaboration and plan adaptation, while ISRO emphasizes
inferential reasoning for user characterization and spatial understanding.

Execution strategies differ, with each framework employing unique approaches. OUR-K
utilizes plan-based execution, ORO relies on query-based execution, and the Service Robot
Scenario employs a central controller for action propagation and execution.

For communication and coordination, ORO stands out with its intelligent blackboard archi-
tecture, facilitating knowledge sharing among agents. OCRA emphasizes collaboration with
humans and explainability.

In terms of interaction and design just ORO explicitly uses the ontology. It focuses on
dynamic interaction through its blackboard architecture. Learning is not addressed by none
of the frameworks even though it envisioned as future work for the Service Robot Scenario,
suggesting the incorporation of learning mechanisms for task adaptation and generalization.

5.2.7 Industrial Domain

Robots in industrial domains aim to increase efficiency and precision in a variety of tasks.
These are often related to manufacturing, production, and other industrial processes. On-
tologies in this domain aims to increase flexibility, reduce maintenance, or enhance control
and inspection processes.

▶ ROBOT CONTROL FOR SKILLED EXECUTION OF TASKS

Robot control for Skilled Execution of Tasks (ROSETTA) provides an ontology for robots
performing manufacturing tasks14. Its origins can be traced back to the European projects
SIARAS, RoSta, and ROSETTA [168]. The core of the ontology is mostly focused on robot
devices and its skills. It relies on a component called the Knowledge Integration Framework
(KIF) to provide services for robotic ontologies and data repositories [168]. Note that this
should not be confused with the Knowledge Interchange Format, which is a syntax for FOL.
KIF acts as an interface to users. They can specify the task partially ordering the sub-goals in
an assembly tree; the framework then establishes the action planning and its schedule when
limited resources. KIF also provides an execution structure that generates state machines
from skill descriptions and its constraints.

Hoebert et al. [169] use ROSETTA ontology to control the assembly process of a variety
of electronic devices. This work focuses on a world model that represents robotic devices
and skills of ROSETTA. It also relies on the boundary representation (BREP) ontology [170]
to semantically encode geometric entities. This work uses the ontology to conceptualize

14https://github.com/jacekmalec/Rosetta_ontology

102



5.2. A Survey on Applications Using Ontologies for Robot Autonomy

OUR-K [148],
[162]

ORO [163] OCRA [164] ISRO [165]
Service Robot
Scenario [167]

P/C
Same approach

as OMRKF.

Use common
ancestors or the

best
discriminant to

categorize.

-

Sensor
information to
recognize the
user involved.

Abstract
planning

information.

DM/P

Abductive event
calculus planner
for hierarchical

abstraction.

-
Dynamic plan

adaptation
during runtime.

Path planning,
semantic maps.

Recursive
back-trace
searching.

P/M

Navigation
monitoring and
missing object

recognition
tasks.

- - - -

R

Bidirectional
links between

low- and
high-level to fill

in missing
information.

Ontological
reasoning

combined with
external
modules

triggered when
an event occurs.

Answering
queries for

collaboration,
plans, goals,

and its
adaptation.

Infer spatial and
temporal

information,
user characteri-

zation.

Information
about spatial

objects.

E

Action
knowledge is

coupled with all
other concepts

of the
knowledge of
models and

features.

Integrated
CRAM to

automatically
update ontology,

query based.

- -

Central
controller to

propagate the
action to

planner, user
interface, and
lower-levels.

C/C -

Intelligent
blackboard for

knowledge
sharing among

agents.

Collaboration
with humans,
explainability.

- -

I/D

Dynamic
interaction,

runtime
controllers
adaptation.

- - - -

L - -
Envisioned as
future work.

- -

Table 5.4: Use of ontologies in the social domain for perception and categorization (P/C), decision-
making and planning (DM/P), prediction and monitoring (P/M), reasoning (R), execution (E), commu-
nication and coordination (C/C), interaction and design (I/D) and learning (L).
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objects in the environment and its properties. It defines a product as a hierarchy of sub-
assemblies and parts. Requirements are also included to determine the correct automated
manufacturing.

Merdan et al. [171] also employ the ROSETTA ontology to control an industrial assembly
process, in particular a pallet transport system and the control of an industrial robot. In
this case, it uses ROSETTA and BREP ontologies to conceptualize the robotic system (e.g.,
skills, properties, constraints, etc.), the product model (e.g. parts, geometries, assembly
orientation, etc.), and the manufacturing infrastructure (e.g., product, storage, sensors, etc.).
Rosetta has been defined in OWL.

The detailed analysis of comparison criteria is as follows:

• Perception and categorization: ROSETTA application [169] provides an object recogni-
tion module which links perception data with geometric features represented in the
KB.

• Decision-making and planning: The KIF executor of the ROSETTA ontology serves
as the planning mechanism. It transforms an assembly graph into a sequence of
operations with preconditions and postconditions, subsequently translated into a task
state machine. Both [171] and [169] approach decision-making as a plan generator,
utilizing PDDL. Hoebert [169] provides a generator that extracts information from the
ontology to produce the required PDDL files for planning. Merdan et al. [171] also
translate the semantic model, i.e., states and actions, into domain and problem files
through templates.

• Reasoning: ROSETTA reasoning is enabled by the KIF server [168]. It allows the user
to download and upload libraries with object descriptions, task specifications, and
skills. The KIF reasoner assists robot programming by retrieving information about
tools, sensors, objects, object properties, etc. Hoebert el al. [169] takes advantage of
the ROSETTA ontology to select the individual actions and the equipment required to
manufacture a product part.

• Execution: KIF uses state machines to execute the skills defined in ROSETTA ontol-
ogy [168]. However, [169] and [171] use the execution of atomic actions through
PDDL commands.

• Communication and coordination: ROSETTA-based framework [171] aims to commu-
nicate between robots and external production environment entities. Additionally,
being a component-based approach, it provides infrastructure for intercomponent
communication.

• Interaction and design: ROSETTA provides an engineering specification of workspace
objects, skills, and tasks from libraries [168]. It acts as a data base for all the information
present in the object and in the environment. Hoebert et al. [169] use these design
models to establish and verify the manufacturing process, tailoring requirements to
parameters such as assembly operation type, manufacturing constraints, material used,
and piece dimensions.
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▶ INDUSTRIAL ROBOTIC SCENARIO

Bernardo et al. [172] define an ontology-based approach is introduced for an industrial
robotic application focused on inserting up to 56 small pins (sealants) into a harness box
terminal, specifically tailored for the automotive industry. Specific details about the KB, such
as the source files, are not publicly available, so the information provided here is derived
from their articles.

The KB is built upon CORA [125], providing specifications for the robot, machine vision
system, and the required tasks for seamless operation. Task sequences are used to execute the
plan, but the machine vision system also uses them to inspect if the sealants were correctly
inserted into the connecting boxes. If not, the system places a priority on applying the sealant
in the faulty position(s) in the connecting box.

The detailed analysis of comparison criteria is as follows:

• Perception and categorization: It uses vision to inspect robot operations, specifically
to verify the correct insertion of sealants in connecting boxes. Image processing is
applied for this inspection, although the information is not categorized in the ontology.
The framework also utilizes proximity, position, and fiber optic sensors to facilitate
robot operation.

• Decision-making and planning: The framework incorporates visual inspection to validate
the precision of the insertion of sealants into the connecting boxes. Additionally, it
features a re-planning process that modifies production orders when an error calculus
task detects errors. Ontological knowledge is used to establish a sequence of tasks,
and in the event of an error, a priority task is immediately added to determine the
position of the sealant that requires attention. Once this high-priority task is completed
successfully, the robotic system resumes the original production order. The authors
define adding this priority task as a re-plan, but we think it corresponds to a plan repair
as it returns to the original plan after.

• Reasoning: This framework uses DL reasoning to acquire valuable data for production
and maintenance at the factory level. This reasoning includes information about
sensors, actuators, and their purpose in various tasks. The knowledge obtained is then
utilized to plan and respond to queries, improving the overall decision-making process.

▶ ADAPTIVE AGENTS FOR MANUFACTURING DOMAINS

Borgo et al. [173] extend the DOLCE ontology from a broad perspective. They validate
their approach using a real pilot plant, a reconfigurable manufacturing system designed for
recycling printed circuit boards (PCBs). Specific details about the KB, such as the source files,
are not publicly available, so the information provided here is derived from their articles.
The ontological framework aims to store knowledge about fundamental assumptions and
identify the current scenario, including details such as the presence and location of objects,
executed actions, responsible agents, changes occurring, etc.
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The KB created by this approach seeks to integrate various perspectives within the enterprise,
covering intelligent agents, engineering activities, and management activities. The framework
is structured in a deliberative layer to synthesize the actions needed to achieve a goal, an
executive and monitoring layer to verify the actions, and the mechatronic system that
determines the capabilities of the agent.

• Decision-making and planning: The updated KB uses an abstraction of the device to
be controlled, the environment parameters, and the execution constraints to generate
a timeline-based planning model. This model provides the atomic operations that a
transportation module can perform, depending on its components and the available
collaborators. The timeline incorporates temporal flexibility, allowing for relaxed start
and end times. The resulting plan represents the potential evolution of the relevant
feature. The framework also supports re-planning in case of plan execution failure,
generating a new plan based on the current state of the mechatronic system.

• Prediction and monitoring Execution is monitored by comparing action outcomes with
respect to the expected state of the system and the environment. The monitor process
receives signals about the (either positive or negative) outcome of the execution, for
example, from the transportation module and checks whether the actual status of the
mechatronic system complies with the plan or not.

• Reasoning: Two types of reasoning are used in this approach. Low-level reasoning infers
information about the internal and local contexts of transport modules, identifying
system components and available collaborating agents. High-level reasoning utilizes
low-level inferences to extract knowledge about the transportation machine’s functional
capabilities, deducing specific internal and local contexts. This knowledge is then used
to generate the plan and its control model.

• Execution: The execution is based on a Knowledge-Based Control Loop (KBCL) [173].
This loop facilitates monitoring by dynamically representing the robot’s capabilities,
internal status, and environmental situation to infer the available functionalities. A
reconfiguration phase is activated in case of failure or when new capabilities are added,
updating the KB, and initiating a new iteration of the overall loop. The executor
receives sensor signals and feedback from the transportation module, issuing action
commands based on the plan.

• Communication and coordination: The framework includes the exchange of information
through ontologies, employing commands for sending and receiving interactions with
other entities. The concept of collaborators represents relationships between the agent
(transport module) and any connected entities, such as other transport modules or
machines.

• Interaction and design: The ontology also models engineering and management activi-
ties. They use engineering approaches to identify high-level functions to be executed
to reach a given goal. For this, one explores the difference between the actual state
and the desired state and isolates the changes to be made. They include information
on operand integrity, operand qualities, quality relationships, etc. These concepts
make explicit engineering facts that are usually not included in robotic approaches
that complement knowledge about robot capacities and its context.
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Table 5.5 provides a summary of the three frameworks as applied to industrial scenarios. For
perception and categorization, ROSETTA employs object recognition to link perception data
with geometric features, facilitating accurate perception. The Industrial Robotic Scenario
utilizes vision systems and sensors for object inspection and categorization.

For decision making and planning, ROSETTA transforms assembly graphs into task state
machines, enabling efficient task planning and execution. The Industrial Robotic Scenario
incorporates a re-planning process based on error detection to modify production orders dy-
namically; whereas Adaptive Agents for Manufacturing Domains scenario generates timeline-
based planning models with atomic operations, facilitating flexible and adaptive planning.

Only the Industrial Robotic Scenario employs prediction and monitoring by comparing
action outcomes with respect to the expected status of the system and the environment.
However, the three frameworks reason with the ontology. ROSETTA uses reasoning to retrieve
information about tools, sensors, objects, and their properties, helping in decision-making
processes. The Industrial Robotic Scenario uses it to acquire valuable data for production
and maintenance, and the Adaptive Agents for Manufacturing Domains scenario employs
low- and high-level reasoning for local context and functional capabilities, improving overall
reasoning abilities.

Execution is used through state machines in ROSETTA and just for reconfiguration for dy-
namic updates and adjustments in the Adaptive Agents for Manufacturing Domains scenario.
On communication and coordination, ROSETTA facilitates communication between robots
and external entities, enhancing coordination in industrial environments, and the Adaptive
Agents for Manufacturing Domains scenario utilizes commands for interaction with other
entities, improving communication and coordination capabilities.

Lastly, for interaction and design, ROSETTA provides design models to establish and ver-
ify manufacturing processes, ensuring efficient and tailored requirements. Similarly, the
Adaptive Agents for Manufacturing Domains scenario models engineering and management
activities, enhancing interaction and design capabilities. None of the mentioned frameworks
explicitly addresses learning mechanisms in the industrial robotics domain.

5.2.8 Discussion

In this part, we summarize the most relevant results on the reviewed efforts as a whole,
independently of the discipline in which they were evaluated, as most of them aim to be
generally applicable to any domain. We also discuss other relevant information on the work
reviewed, such as the use of temporal information or the encoding language.

As far as perception and categorization is concerned, most of the projects focus on situation
assessment, providing information about the environment to handle the situation and make
decisions accordingly. This part is directly related to reasoning, since frameworks such as
KnowRob [138], [140], SWARMs [155], or PLM [151] use probability reasoning to generate
knowledge about the environment and its affordances.
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ROSETTA [168], [169],
[171]

Industrial Robotic
Scenario [172]

Adaptive Agent for
Manufacturing
Domains [173]

P/C
Object recognition

linking perception data
with geometric features.

Vision to inspect robot
operations and proximity,
position, and fiber optic

sensors.

-

DM/P

Transform an assembly
graph into a sequence of

operations with
preconditions and

postconditions to create
a task state machine.

Re-planning process that
modifies production
orders when an error
calculus task detects

them.

Generate a
timeline-based planning

model with atomic
operations.

P/M - -

Compare action
outcomes with respect to

the expected status of
the system and the

environment.

R

Retrieve information
about tools, sensors,

objects, object properties,
etc.

Reasoning to acquire
valuable data for
production and

maintenance at the
factory level.

Low-level reasoning for
local context and

high-level reasoning for
the transportation

machine’s functional
capabilities.

E
State machines to

execute skills.
-

Reconfiguration phase is
activated in case of
failure or when new

capabilities are added.

C/C

Communication between
robot and external

production environment
entities; and

infrastructure for
intercomponent
communication.

-

Commands for sending
and receiving

interactions with other
entities.

I/D

Design models to
establish and verify the
manufacturing process,

tailoring requirements to
parameters.

-
Model engineering and
management activities

L - - -

Table 5.5: Use of ontologies in the industrial domain for perception and categorization (P/C), decision-
making and planning (DM/P), prediction and monitoring (P/M), reasoning (R), execution (E), commu-
nication and coordination (C/C), interaction and design (I/D) and learning (L).
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All works except ORO [163] and OCRA [164] use explicit knowledge for decision-making
and planning. These two focus on answering queries related to actions or plan for this
in future developments. Geometric and grasp planning are widely used along with task
planners to establish a sequence of atomic actions. PDDL is the language most widely used
for task planning. Re-planning is also important for some of these works, TOMASys [26],
RTPO [157], FailRecOnt [149], industrial application [172], adaptive manufacturing appli-
cation [173] or the planetary rover case [158]. In these projects, the objective is to maintain
the operation in the presence of faults. Lastly, some of them also use ontologies to plan in
combination with reactive behaviors, such as OUR-K [148], ORO [163], or the planetary
rover application [158].

Prediction and monitoring are less present in the articles reviewed. This activity requires
a fully operational KB used during runtime and a deeper understanding of the situation
and the autonomous robot. Most of the works monitor only the environment, such as
KnowRob [138], [140], OUR-K [148]. Others only assess the robot state, such as FailRe-
cOnt [149], the manipulation application [173] and the planetary rover application [158].
Lastly, TOMASys [26] assesses the robot state and mission status.

Reasoning is addressed in all the works, as all use ontologies to, at least, answer queries and
verify ontological consistency. This was, indeed, the inclusion requirement for the review.
Ontological information is used at runtime to recover from failure in some frameworks such
as FailRecOnt [149], TOMASys [26] or the planetary rover application [158]. Reasoners can
download additional required information, such as RoboEarth [143] using Web and cloud
services or ROSETTA [168] using the KIF server to download and upload libraries.

SWARMs [155] uses a hybrid context reasoner, combining ontological rule-based reasoning
with MEBN theory [156] for probabilistic annotations. PLM [151] uses a probabilistic
logic module for grasping, which combines semantic reasoning with object affordances.
KnowRob2 [140] takes a further step and provides a hybrid reasoning kernel providing
physics-based reasoning, flexible data structure reasoning, and a detailed robotic agent
experience. However, this use comes with a higher cost, as its computation may yield
inconsistencies or inefficient reasoning. For this reason, RTPO [157] targets knowledge
scalability and efficient reasoning by conducting a study on the performance of real-time
reasoning with 52.000 individuals. However, the authors do not describe how this approach
affects the planning process.

Not all frameworks use explicit knowledge during execution, some of them only carry out the
action sequence defined in the plan. Others drive its execution to answer queries about the
competence of the robot for a particular task, such as OCRA [164] or KnowRob [138], [140].
KnowRob additionally uses the CRAM [145] executor to update the KB with information
about perception and action results, inferring new data to make control decisions at runtime.
ORO [163] also uses CRAM to update the server when new objects are detected.

Other approaches use state machines, such as ROSETTA [168]; or the MAPE-K loop [40],
such as TOMASys [26] or the planetary rover application [158]. Similarly, the manufacturing
application from [173] presents a knowledge-based control loop to combine execution with
monitoring.

109



Chapter 5. Ontologies for Robotics

Other important processes for autonomous systems are communication and coordination. All
ontological systems can be used easily to answer queries from a human operator. However,
this is not sufficient for reliable autonomy; the ontology shall provide transparent information
for knowledge completion. SWARMs [155] enable an abstraction for communication and
networking and information sharing of heterogeneous data. For this, ORO [163] uses an
intelligent blackboard that allows other modules to push or pull knowledge to a central
repository. RoboEarth [142] and ROSETTA [168] obtain knowledge from other sources.
RoboEarth defines a communication module for uploading and downloading information
from the Web, and ROSETTA uses the KIF server to download and upload libraries.

Coordination between agents and components of the agent is critical for autonomous opera-
tion. ROSETTA provides an infrastructure for inter-component communication. Component
coordination is explicitly addressed in TOMASys [26], the planetary rover from [158] and the
adaptive manufacturing from [173]. The USAR application from [159] targets multi-robot
cooperation not only for information sharing, but also for task coordination with other
agents. OCRA [164] also handles task coordination and plan adaptation, but only concerns
human-robot collaboration.

Interaction and design are often not explicitly handled during robot operation. However,
awareness of interaction allows the robot to step back from action execution and understand
the sources of failure. TOMASys [26] provides a metamodel to benefit from engineering
models used at design time. ROSETTA also uses the engineering specification of workspace
objects, skills, and tasks as part of the KB. The planetary rover [158], does not explicitly
include any information on design or requirements; however, it reasons in terms of the
capacity of the services onboard, using some sort of operational requirement to select among
alternatives. Similarly, the autonomous vehicle framework [160] handles requirements such
as legality using traffic rules or reasonableness to support decision-making. Moreover, the
adaptive manufacturing application from [173] takes a further step in modeling engineering
and management activities. Lastly, with regard to dynamical interactions, the OUR-K exten-
sion from [162] includes this knowledge to support the adaptation of robotic controllers.
While PMK [147] represents the interaction as manipulation constraints.

Given the availability of general learning methods, all the processes described above can
improve their effectiveness through learning. However, this process is less present in the
works analyzed in the review. Most systems use a form of case-based learning when storing
previous successful plans or using episodic memories to recall past situations, such as
CORA [164]. Other frameworks such as PMK [147] or PLM [151] use learning as part of
situational assessment to categorize perceptual information.

KnowRob provides the most complete learning mechanics. It learns class structures of
entities and identifies manipulation places; in addition, it produces generalized models of
the physical effects of actions. KnowRob2 [140] makes available the learned information
through the Open-EASE knowledge service [146]. This service enables any user to upload,
access, and analyze episodic memories of robots performing manipulation tasks.
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▶ OTHER ASPECTS

Table 5.6 depicts other aspects of the frameworks studied, such as languages used, use of
temporal conceptualizations and foundational ontologies.

Almost all works use OWL or a combination of OWL and Prolog as the language for the KB. As
discussed for each work, most encoding languages were used to facilitate planners. Most of
them used geometric planners, such as PLM [151], along with task planners. In some works,
task planners are custom made, such as the service robot from [167]. However, in general,
task planners are based on ontological queries, such as the SAR scenario [161], the industrial
application [172], or the adaptive manufacturing of [173]. The Planetary Rover [158] and
ROSETTA [168] uses PDDL directly, whereas RTPO [157] and SWARMs [155] use a custom
approach similar to PDDL.

To address planning dynamics, only some work uses temporal conceptualizations. Most of
them rely on an ordered sequence of actions. However, KnowRob [138], [140], OCRA [164]
and the adaptive manufacturing approach use time intervals to recall a time frame in which
the action is executed. OMRKF [154] and OUR-K [148] include time as part of the context
ontology, as well as the planetary rover [158] and ISRO [165] that conceptualize time in
their KBs.
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Framework Encoding Lang. Temporal Upper-level Ont.

KnowRob [138], [140],
[139], [141], [143],
[144], [142]

OWL, Prolog Intervals DUL

PMK [147] OWL, Prolog - IEEE-1872.2 Std.

FailRecOnt [149], [150] OWL - DUL

PLM [151] OWL - -

TOMASys [26], [153],
[152]

OWL - OASys

OMRKF [154] Prolog Context -

SWARMs [155] OWL - PR-OWL

RTPO [157] OWL, Prolog - -

Planetary Rovers
Scenario [158]

PDDL, OWL Time Concept -

USAR Scenario [159] OWL - -

Autonomous Vehicles
Scenario [160]

Prolog - -

SAR Scenario [161] OWL - -

OUR-K [148], [162] OWL Context OMRKF

ORO [163] OWL - -

OCRA [164] OWL Intervals DUL, KnowRob

ISRO [165] OWL, Prolog Time Concept OpenCyc

Service Robot Scenario
[167]

OWL, STRIPS - -

ROSETTA [168], [169],
[171]

PDDL, OWL - -

Industrial Robotic
Scenario [172]

OWL - CORA

Adaptive Agents [173] OWL Intervals DOLCE

Table 5.6: Summary of other aspects of the framework: concrete encoding languages used, incorporation
of temporal conceptualizations, and whether the framework is built upon other works or utilizes an
upper-level ontology.
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5.3 Research Directions and Conclusions

Considering the projects surveyed, we believe that ontologies are a valuable asset to support
robot autonomy. The frameworks discussed provide an advance towards mission-level
dependability, increasing robot reliability and availability. However, there are both unsolved
issues and valuable possibilities for further research in this domain.

An unsolved issue is the limited dissemination and convergence of the different ontological
approaches. There is still not enough reuse of existing ontologies, nor interchangeability or in-
teroperability of the different realization frameworks. In this direction, KnowRob [138], [140]
is the most documented and impactful project, as it proves its influence on other projects
such as ORO [163], FailRecOnt [149], or OCRA [164]. Ontology convergence is always
a challenge that is exacerbated by the variety ontologies, both in vertical—the levels of
abstraction—and horizontal—the domains of application. However, efforts must be made to
ensure this harmonization, given the fact that robots are not isolated entities, but are always
part of systems-of-systems that share specific forms of knowledge [174].

We believe that future engineering-grade knowledge-driven autonomous robot software
platforms should also be capable of providing three characteristics: explainability, reusability,
and scalability. In the articles under review:

• Explainability is enabled in most cases—at least in a shallow form—as most frameworks
include query/answer interfaces to provide information on robot operation. However,
this explainability is tightly bound to the capability of the human user that shall
commonly be a robot operator to fully grasp the explanation. More broad-spectrum,
human-aligned ontologies are needed to support a wider spectrum of users.

• Reusability is intrinsically present, given the explicitness of declarative knowledge and
the sharing of common backgrounds, as some of them are built on previous works or
upper-layer ontologies. Effort shall be put in the harmonization and integration of
conceptualizations to effectively reuse ontologies—esp. in heterogeneous systems.

• Scalability and information handling are also partially addressed in some of the re-
alizations, such as reasoning in RTPO [157] and KnowRob [138], [140]. However,
the problems of scalability remain. For example, when dealing with complex systems-
of-systems, when addressing geographical or temporal extensive missions, or when
knowledge-based collaboration is required as is the case of cognitive multirobot systems
or human-robot teams.

Therefore, we propose a shared concern in future works in this field to improve the capabil-
ities of robots and contribute to the community in these three aspects. There are already
some initiatives such as CRAM from KnowRob authors, a software toolbox for the design,
implementation and deployment of manipulation activities [145]. This toolbox supports
planning, beliefs, and KnowRob reasoners and has been used in other frameworks such as
ORO [163]. Furthermore, the same authors provide the package rosprolog, a bidirectional
interface between SWI-Prolog and ROS to make this logic language accessible to the main
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robotics middleware. However, these tools are tailored for KnowRob-based environments
and sometimes are not well documented or maintained.

The conclusions we extract from this survey are that most of the work is focused on catego-
rization, decision-making, and planning. However, monitoring and coordination are critical
processes regarding robot control, especially for robust and reliable operation. These kinds
of processes are difficult to assess using reusable implementations because of the enormous
variability between applications, context, and intervening agents. We propose the use of
explicit engineering models to facilitate these processes. They are already partially included
in TOMASys [26], ROSETTA [168], the Planetary Rover Scenario [158], and the adaptive
manufacturing application from [173]. We believe that the combination of runtime informa-
tion with design knowledge can be used during decision-making and to drive adaptation
to bridge the differences between the expected results of robotic users and the actual robot
performance.

This research aims to bridge the gap between engineering and runtime adaptation using
systems engineering. The adaptation based on predefined and analyzed systems patterns has
been widely demonstrated [26] but the need for on-the-fly design processes has yet to be
fully addressed. Automating system design has always been a challenge, but the combination
of knowledge-intensive approaches based on ontology and exploratory methods may pro-
vide new possibilities for reliable robots that fully understand and adapt themselves [175].
Moreover, we explore the use of Category Theory to formalize relationships between terms,
offering a mathematical ground to enhance reusability and interoperability.
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Category Theory (CT) is a general theory of mathematical structures. It was developed in
the 1940s to unify and synthesize different areas of mathematics [176]. CT serves as a tool
for describing structures and maintaining control over which aspects are preserved when
performing abstractions. Its mathematical foundation enables powerful communication
between apparently unrelated fields.

One of the remarkable features of CT is its application in the reshaping and reformulation
of problems within pure mathematics, including topology, homotopy theory, and algebraic
geometry [177]. CT offers techniques, tools, and ideas to identify recurring patterns in
various disciplines and formalize them. For this reason, we use it as a framework to support
system modeling and behavioral analysis for complex SoS. The next section details the
motivation for using CT in combination with MBSE. The subsequent sections provide an
introduction to the discipline and related work in applied CT.

6.1 Category Theory, a Natural Fit for Model-Based
Systems Engineering

We propose to use CT tools to represent MBSE aspects, including requirements, system
behaviors, and system architectures, with formal traceability provided by CT. The application
of composition provides precise abstraction and refinement. SysML and other languages
supporting MBSE require increasing modeling effort to capture different views of the system
and maintain them concurrently, as they evolve asynchronously. The tools provided by CT
can help to address this challenge.

Unlike domain-specific languages, CT constructs have precise meanings derived from how
its concepts are described mathematically [178]. Therefore, it is a natural framework for
modeling and analyzing systems regulated by its underlying rigor. SE studies how to build
systems to fulfill a purpose based on structures and functional behaviors that emerge from the
combination elements. Compositionality represents the idea that the meaning of a complex
expression is determined by (i) the meanings of its constituent parts and (ii) the rules for
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how those parts are combined. This notion was shown in Chapter 3 which describes how
MBSE can be used to decompose large and complex systems into manageable parts.

CT provides a solid background for abstracting the system model into multiple layers,
emphasizing only essential aspects within each layer. This approach enables us to discuss
the interrelations between components rather than focusing on their individual attributes.
In essence, categorical semantics is focused on perceiving a system through its compositional
structure rather than the characteristics of its constituent elements [179].

This discipline is centered around roles and relationships through the combination and
transformation of structures. Across multiple levels of abstraction, it allows the analysis
of concepts from different perspectives. This entails detailing the connections between
components, their coupling, and their structural and behavioral aspects both individually
and in conjunction. In addition, it explores the emergence of phenomena within specific
contextual combinations. Another advantage of this approach is the consistency between
model perspectives, which may pose a challenge when applying classic MBSE techniques [64].

The following sections describe the main aspects of CT for systems engineering and how
formal composition can be applied in various applications to provide expressive representation
and structural consistency; in other words, how we can reason about situations where we
are composing elements together. The ultimate goal of this perspective is to use abstractions
to build the best possible system based on the runtime situation.

6.2 Category Theory Concepts for Engineering

This section introduces the main CT elements used to capture engineering views of the
system. CT allows us to be completely precise about otherwise informal concepts [180]. We
start with some basic elements to represent structures and evolve them into more complex
formalisms such as operads. Lastly, we introduce the concepts of pushout and pullback, which
provides a method to condense and combine data from pre-existing structures.

Note that this introduction is just a basic description for engineering applications; for further
reading, refer to [181], [182], [183] from a mathematical perspective, [184] from a computer
science perspective and [176], [185] for a scientific application with a strong mathematical
flavor.

6.2.1 Category, Functor, and Natural Transformation

A category C, is a collection of elements with relations between them. It constitutes an
aggregation of objects with an imposed structure [178]. To specify a category, we need three
constituents:

• A collection of objects, Ob(C).
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• A collection of morphisms f : X → Y , which represents arrows between pair of objects
X , Y ∈ Ob(C). Morphisms are transformations that preserve the relevant properties of
objects in a given category.

• A composition operation g ◦ f : X → Z composing morphisms f : X → Y and g : Y → Z
provided that the target of the first matched the source of the second.

Example: Consider the category C that describes information about passengers and
seats in an airline company as shown in Figure 6.1.

Figure 6.1: Passengers and seats category.

The composing elements of this category are:

– Objects: Specific values representing the passenger, its allowed baggage, class
and seat number, i.e., {Passenger Name, Carry-on Baggage, Checked
Baggage, Economy, First Class, Seat Number}.

– Morphisms: Arrows connecting the information, i.e., {Baggage Allowance,
Price, Position}

– Composition: Paths connecting pieces of information, for example, get
passenger class provided passenger and its allowed baggage.

Additionally, categories must satisfy the following conditions:

• Identity: for every object X ∈ Ob(C), there exists an identity morphism idX : X → X in
which the relationship terminates at the source object.

• Associativity: for any three morphisms, f : X → Y , g : Y → Z , h : Z →W , the following
expressions are equal: (h ◦ g) ◦ f = h ◦ (g ◦ f ) = h ◦ g ◦ f .
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• Unitality: for any morphism f : X → Y , the composition with the identity morphisms
at each object does not affect the result, idX ◦ f = f and f ◦ idY = f .

A functor F , is a map between two categories C, D. It assigns objects to objects and morphisms
to morphisms, preserving identities and composition properties. Functors maintain structures
when projecting one category inside another.

Diagram 6.1 represents the functor F : C→D, mapping between a category C composed of
C0, C1 ∈ Ob(C)with morphism f : C0→ C1, and a categoryD composed of D0, D1, D2 ∈ Ob(D)
with morphisms g1 : D0→ D1 and g2 : D1→ D2. The functor map corresponds to the dashed
gray arrows assigning F(C0) = D0, F(C1) = D2, and F( f ) = g2 ◦ g1.

D0

C0 D1

C1 D2

g1

g2◦g1

f g2

(6.1)

Functors can map between the same types of category, such as Set → Set, or between
different categories, such as Set→ Vect, between the category of sets and the category of
vector spaces.

Example: Following the above example, there is a category D with roughly the same
information as C . A Functor assigns objects from C to objects in D, note that the
baggage allowance morphism in the source category corresponds to an identity morphism
in the destination category as shown in Figure 6.2.

Figure 6.2: Functors for the passengers and seats category.
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A natural transformation, α, is a structure-preserving mapping between functors. Functors
project images of a category inside another; whereas natural transformations shift the
projection defined by a functor F into the projection defined by a functor G. Diagram
6.2 relates these three concepts. There are two categories C,D and two different functors
F, G : C→D. The two functors are linked by the natural transformation α : F ⇒ G.

C D

F

G

α (6.2)

To specify a natural transformation, we define the morphism αc : F(c)→ G(c) for each object
c ∈ C, such that for every morphism f : c→ d in C the composition rule αd ◦F( f ) = G( f )◦αc

holds. This condition is often expressed as the commutative diagram shown in Diagram 6.3,
where the natural transformation morphisms are represented as dashed arrows. This means
that the projection of C in D through F can be transformed into projections through G. The
commutative condition implies that the order in which we apply the transformation does
not matter.

F(c) G(c)

F(d) G(d)

F( f )

αc

G( f )

αd

(6.3)
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Example: Now consider a category O that assigns passengers to seats and the airline
category C discussed before. There is a functor F assigning passengers to the type of
baggage that is authorized for that passenger (ie., carry-on or checked-in baggage).
This is depicted in Figure 6.3 as a purple dashed arrow. There is also a functor G
assigning classes to seat numbers, represented as the green dashed arrow.

Figure 6.3: Functors and natural transformation for the passengers and seats category.

Both functors depict how the information about a plane ticked is enhanced in the
category O with two perspectives F with assigns the type of baggage permitted and G
establishing the seats depending on the class.
There is a natural transformation α that combines both perspectives. This structure is
depicted as the blue dashed morphism representing the price in category C that relates
baggage and class.

6.2.2 Representing Resources: Wiring Diagrams

Fong and Spivak [185] define wiring diagrams as a solution to the question “Can I transform
what I have into what I want?” These diagrams offer a categorical formalization of engineer-
ing block diagrams. In this framework, boxes symbolize transformations (i.e., morphisms in
a category), wires represent resources (i.e., objects in a category), and the composition of
morphisms is depicted by placing two boxes in series.

In a broader sense, wiring diagrams represent monoidal categories (C,⊗, {1}), , where C

is a category equipped with a tensor product ⊗ and a monoidal unit {1}, allowing the
combination of objects in the category. This structure provides a basis for placing boxes in
parallel in the diagram. Furthermore, the symmetric monoidal categories (SMC) and their
corresponding coherence conditions allow the inclusion of feedback wires and swapping in
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these diagrams. Consequently, SMC allows the representation of most engineering diagrams.

Figure 6.4 illustrates an example of a wiring diagram that represents a robot in a navigation
task. It processes the distance to the objects to determine the velocity to move the robot. The
objective is to transform sensor information and available battery into a velocity command
to reach a desired point. In particular, this diagram resembles a block definition diagram in
SysML.

Figure 6.4: Example of a wiring diagram representing a robot in a navigation task. It has distance to
objects and available battery as resources and velocity command as product.

In general, wiring diagrams share similarities with input-output models. However, their
syntax is more versatile, as the content within the boxes need not be strictly a mathematical
function. It can encompass various processes, ranging from concrete descriptions such as
automata to more abstract processes or even requirements of a mathematical unknown
formula. Similarly, the arrows do not necessarily contain information; they serve to establish
relationships between objects [186]. For a formal definition of wiring diagrams, refer to [182]
and [187]. This structure is an essential resource in CT, and some of its applications are
discussed in more detail in Section 6.3. However, for this research, we prefer alternative
representations.

6.2.3 Representing Networks: Operads and Algebras

Categories, functors, and natural transformations are the building blocks of CT. They allow
us to express objects, relationships among them, and abstractions while preserving their
structure. This approach imposes some directionality since morphisms, functors, and natural
transformations are maps with a domain and a co-domain. From an engineering perspective,
we could see domains and co-domains as input and output ports, respectively. However,
we sometimes prefer to express systems in terms of networks in which ports exit without a
direction. CT provides a generalization over categories; operads which models assemblies of
structures.

An operad is a mathematical object that describes operations with multiple inputs and one
output [188]; classically, it only describes one object. We use here what are commonly known
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as colored operads, which can hold many objects (i.e., colors). Leinster [189] provides a
precise definition of operads; a rough conceptualization is as follows. An operad consists of:

• A set of objects Ob(O) = X1, . . . , Xn each of which can be seen as cells.

• A set of morphisms ϕ,ψ, . . . with domain and co-domain Ob(O) that constitute the
operations. These morphisms act as an assembly of cell interfaces creating an external
interface.

• A composition formula, ◦, or substitution that enables the assembly of morphisms, i.e.,
the composition of interfaces.

Figure 6.5 depicts an operad with four cells f , g, h, k with, respectively, 5, 4, 4, 1 ports. They
form an external cell with 4 ports. The objects are circles with a finite set of ports, the
morphisms are the wires that connect the interior cells to the exterior ones, and this external
cell can be composed into others [54].

Figure 6.5: Example of an operad composed of a f cell with 5 ports, a g cell with 4 ports, a h cell with
4 ports, a k cell with 1 ports. They form an external cell with 4 ports.

Operads allow us to define abstract operations, but we need to “fill” those cells to ground
them. An algebra is an operad functor from the operad to the Set category, F : O→ Set that
produces a concrete realization. It is subject to the operations and composition relations
specified by the operad. In practice, an algebra determines:

• For any object x ∈ O, a set F(x).

• For any morphism in the operad, f : (x1, . . . , xn)→ y and for any element fi ∈ F(x), a
new object f ′ = F( f )( f1, . . . , fn) ∈ F(y).

Different algebras allow us to “fill” the operad structure from different perspectives and then
combine them using a morphism between algebras δ : A→ B. For example, a system model
may constitute an operad which can be defined from different perspectives such as, structure,
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capability or behavior. Each viewpoint constitutes an algebra, a way to provide meaning to
the abstract structure that can be related to other viewpoints.

Operads constitute higher-order categories, recommended for complex and multi-dimensional
perspectives. Some works discussed in Section 6.3 employ this approach. However, they
are out of the scope of this research, as the structure provided by categories, functors, and
natural transformations is powerful enough for the metamodel defined in Chapter 7.

6.2.4 Combination and Isolation: Pushouts and Pullbacks

So far, we have introduced the machinery to focus on roles and structure via categories and
operads. In this work, our aim is to use abstractions to build the best possible system for each
situation. Pushouts and pullbacks serve as a valuable tool in this process, as they provide the
best approximation of an object in a category that satisfies certain conditions.

Pushouts can be seen as a way to combine two objects in a category with a common object
so that all information is preserved. They are usually expressed as Diagram 6.4 in which
f ′, g ′ are the pushout morphisms that respectively link Y, X with the pushout object X+AY .

If this diagram commutes, i.e., g ′ ◦ f = f ′ ◦ g, there exists a unique morphism u : X+AY → T
such that Diagram 6.5 also commutes. The dashed arrow represents the unique morphism,
and the element T represents the unique pushout object. The arrows lx , l y constitute the
validity limits of T [190].

A Y

X X+AY

g

f f ′

g ′

(6.4)

A Y

X X+AY

T

g

f f ′

l y

g ′

lx

u

(6.5)
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Example:
In a category C with three sets as objects X , Y, A ∈ Ob(C). The set A represents
three robots, A = {robot_1, robot_2, robot_3}, set X represents robot grippers,
X = { f inger_gripper, vacuum_gripper}, and the set Y stores the maximum speed
(m/s) in wheeled robots, Y = {1.5, 3}.

There are two morphisms in this category, f : A → X assigning robot_2 to the
f inger_gripper and robot_3 to the vacuum_gripper; and morphism g : A→ Y
assigning robot_1 a maximum speed of 1.5 m/s and robot_2 a maximum speed of
3 m/s.

The pushout X+AY can be seen as the summary of objects and its relationships. In a
Set category this correspond to the non-disjoint union. In this case, the pushout is a
set X+AY = {robot_1_speed_1.5, robot_2_speed_3_and_ f inger_gripper,
robot_3_vacuum_gripper} and its corresponding morphisms to sets X , Y .

Figure 6.6: Pushout in a Robot category.

The pushout elements of the resulting set are depicted in Figure 6.6 in the same color,
as objects connected by morphisms are seen as the same. This notion represents the
intuition that the same system is made up of subsystems X , Y, A.

A pullback is a construction that allows us to compare two objects in a category by creating a
third object that “fits” between them in a particular form. It grants the satisfiability of certain
equations or constraints. In a Set category, the pullback can be seen as the Cartesian product
between common elements, selecting pairs of elements.

Example:
In the previous example, the pullback selects complete information from a robot,
i.e., gripper types and maximum wheel speed. In this case, it is the set X×AY =
{robot_2_speed_3_and_ f inger_gripper} as it is the only one with information
from the three groups. This corresponds to the object in purple in the example above.
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Pullbacks are also usually expressed as square diagrams, such as in Diagram 6.6. The pullback
is an object X×AY and its morphisms f ′, g ′ that project it over Y, X . If this diagram commutes,
that is, g ′ ◦ f = f ′ ◦ g, there exists a unique morphism u : T → X×AY such that the diagram
in Diagram 6.7 also commutes. The dashed arrow represents the unique morphism, and the
element T represents the unique pullback object. The arrows lx , l y constitute the validity
limits of T .

X×AY Y

X A

g ′

f ′

g

f

(6.6)

T

X×AY Y

X A

l y

lx

u

g ′

f ′

g

f

(6.7)

In general, pushouts are used to define categorical quotients, as they combine the common
information of a structure X ← A→ Y ; whereas pullbacks are often used to define categorical
products, as they find commonalities between a structure X → A← Y .

6.2.5 Equivalence: The Yoneda lemma

There are several concepts in CT that provide different perspectives on representing simi-
larities or relationships between objects in categories. When we say that two entities are
the “same,” it means that they are equivalent with respect to some definition or assumptions
while ignoring other aspects [191].

The first notion of sameness can be found in morphisms. They are the basic building blocks
that represent relationships between objects in a category. They constitute transformations
between objects that preserve the relevant properties between them. Isomorphisms are
arrows that are invertible; i.e., for the morphism f : A→ B there exists another morphism
g : B→ A. For example, if there is a category composed of two elements X , Y representing
the sets X : {a, b, c} and Y : {1, 2, 3}; isomorphisms relating the two sets hold the intuition
that both sets are the same (in an abstract sense).

Functors map between categories, preserving structures and relationships between objects.
They are arrows between two categories. This notion of sameness is weaker than above, but
represents some equivalence between the two structures.
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Lastly, natural transformations describe relationships between functors, associating different
mappings between categories and how they relate to each other. This sameness is even
weaker but provides the possibility of handling several perspectives—objects and morphisms
and the structures between them—at the same time.

The most powerful result in comparing two objects in a category is Yoneda lemma. According
to it, two objects A, B in a category can be considered equivalent if and only if all the
relationships that A holds with others in the category are the same as those of B [191]. For
example, if two system components are deemed the same based on certain perspectives, such
as compatibility in terms of capabilities and interfaces, they can be interchanged when one of
them fails, allowing the system to continue its operation seamlessly. Note that this definition
of the Yoneda lemma is informal, as it is intended to be used for conceptual application. For
a mathematical definition and the proof of the lemma, refer to [183].

6.3 Related Work in Applied Category Theory

The application of CT as a tool for abstract reasoning about mathematical structures has
proven to be effective. However, despite its success, CT is not as widely adopted in applied
scenarios as other mathematical disciplines such as linear algebra or calculus. This limited
adoption may be attributed to its specialized and abstract nature, which comes with a steep
learning curve. However, despite these challenges, CT finds applications in abstraction-
based domains, like computer science and software engineering, particularly to recognize
commonalities and patterns across diverse domains. A notable example is its use in the
design and implementation of the C++ Standard Template Library [192].

In recent years, there has been a noticeable increase in the number of fields that implement CT-
based approaches. In knowledge representation, Spivak et al. [193] propose the ontology log,
olog, a CT formalism similar to relational database schemas, providing a friendly definition
language and supporting safe data migration [194]. Patterson [195] introduces a relational
ontology aligned with this approach, with the aim of bringing ologs closer to Description
Logics (DL). These works rely on categories, functors, and natural transformations, utilizing
pushouts to combine information and generate new concepts from existing ones.

In the robotics domain, Aguinaldo et al. [196] propose the use of set categories and pushouts
to handle the required knowledge for classical planning, capturing implicit preconditions
and effects in complex planning scenarios. They leverage an ontology to encapsulate the
planning problem, utilizing CT as a formal semantics to model world states and updates
within the plan.

Among early adopters of CT in the engineering domain is Censi [197], who introduced
the theory of co-design to optimize multi-objective systems. This approach establishes a
mathematical foundation for hierarchical design processes [185]. Zardini et al. [198] apply
interconnected co-design problems to a self-driving car, utilizing wiring diagrams to optimize
resource allocation in the design phase.
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Perhaps Lloyd’s vision aligns more closely with our work. Lloyd [178] advocates for the use
of CT language and theory to study systems and gives reflections on its implications. His
domain of application is biological sciences. In [190], he presents a CT-centered approach to
model and simulate the emergent properties of intercellular interactions.

In the SE domain, Bakirtzis et al. [179] investigate the unification of requirements, behaviors,
and architectures for complex systems. They proposed the use of wiring diagrams as an
alternative to engineering modeling languages such as SysML and illustrate their approach
with a case study involving an unmanned aerial vehicle. Their model relies on “contracted
behaviors,” which compose behaviors and requirements through an operad algebra. However,
a notable limitation of this approach is the directionality imposed by wiring diagrams.

The generalization provided by operads seems to offer a more suitable structure for modeling
complex systems. Schweiker et al. [54] propose the application of the wiring diagrams
operad to model safety-critical systems. Specifically, they establish viewpoints with a solid
mathematical framework that allows the assessment of behaviors and error propagation
from different perspectives. This model is applied to evaluate the failure effects of air traffic
management communication channels on aircraft control.

An alternative approach to using operads for system modeling is presented by Breiner et
al. [199]. They leverage the inherent separation of concerns in operads to analyze a length
calibration device, specifically the length-scale interferometer (LSI), used at the US National
Institute of Standards and Technology (NIST). In their modeling approach, system interfaces
are represented as a port graph operad. In addition, they employ a functor that links the
system and the probability of failure to facilitate the failure diagnosis process. Another
example of modeling systems using operads can be found in Foley et al. [200]. They take a
top-down modeling approach using wiring diagrams operad to analyze the LSI case from
Breiner et al. [199], and a down-top perspective using network operad to design a search
and rescue architecture and its design mission task plan.

These works highlight that CT is perceived as a tool to enhance the dependability and
explainability of systems, addressing major concerns in technology-centered domains. The
increasing number of publications underscores the potential practical utility of CT. However,
challenges persist in bridging the abstraction provided by CT with its concrete implementation
in real-world scenarios.

In this work, our aim is to advance in that direction by defining a model that is applicable both
during the design phase and during robot operation. Our approach aligns with knowledge
representation applications of CT, using categories, functors, and natural transformations.
In addition, we use pushouts to analyze the information as a whole and derive new facts.
Furthermore, the application of the Yoneda lemma enables us to identify similarities within
our model. These fundamental elements provide ample power to define a metamodel and
reason about its implications, as further discussed in Chapter 7.
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Chapter 7
A Formal Metamodel for Autonomous
Robots

Autonomous robot engineering constitutes a major challenge in system development because
of its complexity in both hardware/software and operational environments involved. Suc-
cessfully developing such systems requires meticulous and knowledge-intensive engineering
processes that often involve iterative development life cycles.

Our approach requires translating the knowledge of systems engineers into machine-readable
models that provide the robot with information about the mission, environment, and its own
state. These formal models enable the system to perform runtime reasoning. The solution is
rooted in the modeling of the functional architecture of the autonomous robot. The reflective
reasoning of the robot facilitates both self-diagnosis and reconfiguration during its operation.
Figure 7.1 illustrates the relationship between engineering models and the deployed system.

Figure 7.1: Overall metacontrol workflow.
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In this chapter, we introduce SysSelf, a formal metamodel that consolidates elements from
the preceding chapters with special emphasis on its interconnection with system modeling
and construction. The chapter begins with an overview of a pre-existing metamodel from the
research group, TOMASys. Section 7.2 describes the implementation details and evaluation
conducted to identify the limitations of this approach. Section 7.3 provides a set of require-
ments for the SysSelf metamodel, aligning with the concepts and foundations discussed in
previous chapters and the lessons learned from the TOMASys metamodel implementation.
Finally, Section 7.4 describes the SysSelf metamodel, outlining its elements and definitions,
and highlighting its unique characteristics using representational structures from CT.

7.1 Antecedents: TOMASys Metamodel

The formal metamodel developed in this research is an evolution of a pre-existing metamodel
within the research group, TOMASys, which has been discussed in Section 5.2, particularly
in the context of navigation applications using ontologies. TOMASys is a functional model
designed to leverage engineering knowledge generated during the design phase and use it
at runtime. TOMASys stands for the Teleological and Ontological Model of an Autonomous
System. This model embraces a teleological approach, capturing the intentions and purposes
of designers within the system model. Simultaneously, it adopts an ontological perspective
to outline the structure and behavior of the system [26], [201].

TOMASys leverages two domains, MBSE and KR&R through ontologies. This metamodel
is used during robot operation to overcome mission contingencies by integrating ontologi-
cal reasoning into a MAPE-K loop [153] to facilitate architecture analysis and adaptation
decisions using the aforementioned metamodel.

The metamodel is influenced by component-based software, guiding the definition of the
system structure and functionality. The model elements are categorized into two main
groups: static and instantaneous knowledge. In static knowledge, information is stored
in Functions and Function Designs. The Function element enables the definition of
abstract Objectives for the system, while Function Designs represent design alternatives
to execute a Function.

In contrast, instantaneous state information is captured through Objectives, defining a
hierarchy of system requirements pursued at runtime, and Function Groundings, instanti-
ating the runtime use of a Function Design. Components are also part of the instantaneous
state, representing the structural modules used at a specific moment.

Quality Attributes (QA) affect both static and runtime knowledge. They are used to
measure how well the system aligns with mission fulfillment. Each Objective is associated
with specific requirements related to QAs, such as safety, energy consumption, performance,
etc. Each Function Design includes estimated QA values, facilitating the selection of the
best alternative based on the situation. Finally, each Function Grounding incorporates
measured QA values to actualize the estimations from Function Design with runtime
perceptions. An overview of the TOMASys metamodel is depicted in Figure 7.2.
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Figure 7.2: Main elements of TOMASys metamodel, the * symbol represents the possible multiplicity in
the destination relationship.

The metamodel is implemented as an OWL-DL ontology, as introduced in Section 4.4.3, and
is publicly available on GitHub1. In the context of the DL ontology, TOMASys constitutes
the TBox (assertion on concepts). The term TBox refers to the terminological components
of the knowledge base, as opposed to the ABox (assertion on individuals), which contains
TBox-compliant statements using the defined terminology. Therefore, TOMASys establishes
a formal, application-independent vocabulary for developers, promoting reusability across
diverse applications, especially in hierarchical, component-based systems.

To utilize the TOMASys metamodel, a system-specific knowledge base is required. The ABox
defines specific individuals of the application in terms of the TOMASys TBox. It includes
information on the system and its mission. The conclusions drawn from the knowledge base
are not limited to faults, but also extend to real-time performance and the efficacy of the
components involved. This information enables the system to adapt, ensuring continued
operation after contingencies, while optimizing its capabilities to achieve the best possible
performance.

Therefore, a model ontology comprises two files: the TOMASys TBox and the application-
specific ABox. These files are then utilized at runtime by a DL reasoner to diagnose the
system and compute reconfigurations when necessary.

1https://github.com/meta-control/mc_mdl_tomasys

133



Chapter 7. A Formal Metamodel for Autonomous Robots

Rule no.1 tomasys:Component(?c) ^tomasys:c_status(?c, false) ^ux:requiredBy(?c, ?fd)
^tomasys:typeFD(?fg, ?fd) ^tomasys:FunctionGrounding(?fg) -> tomasys:fg_status(?fg,
INTERNAL_ERROR)

If a Component has a Component status in false (in error), and that Component is required
by a Function Design with the same type as the Function Grounding in use, then that
Function Grounding status is set as INTERNAL ERROR.

Rule no.2 tomasys:FunctionGrounding(?fg) ^tomasys:fg_status(?fg, INTERNAL_ERROR)
^tomasys:solvesO(?fg, ?o) ^tomasys:Objective(?o) -> tomasys:o_status(?o, INTER-
NAL_ERROR)

If a Function Grounding has a Function Grounding status in INTERNAL ERROR, and that
Function Grounding solves an Objective, then that Objective status is set as INTERNAL
ERROR.

Rule no.3 tomasys:Component(?c) ^tomasys:c_status(?c, false) ^ux:requiredBy(?c, ?fd)
-> tomasys:fd_realisability(?fd, false)

If a Component has a Component status in false (in error), and that Component is required
by a Function Design then that Function Design realisability is set to false.

Table 7.1: Semantic Web Rule Language rules for TOMASys implementation. The first one sets the
Function Grounding in error if it uses a faulty Component, the second one sets the Objective in error
if the Function Grounding is in error, and the third one marks as unreachable the Function Designs

that require unavailable Components.

▶ TOMASYS EXECUTION AT RUNTIME

The incorporation of the metamodel into the agent execution is based in the well-established
Monitor, Analyze, Plan, Execute sharing a Knowledge base (MAPE-K) loop [40]. The monitor
stage employs an observer to detect Component failures or instances where expected QAs are
not met.

The subsequent stages of MAPE-K involve reasoning about the model. Upon the creation of an
Objective, an initial Function Grounding is established to define the system configuration.
The nominal operation of the executor involves checking if the Objective is in an error
status, corresponding to the analysis phase. This phase uses SWRL rules to update the KB,
with some examples shown in Table 7.1.

Two causes can trigger an Objective error: Component failure or deficient QA value. When
the observer notifies either case of malfunction, the reasoner updates the knowledge base. In
the first scenario, it checks if the disabled Component is utilized by the current implementation
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(Function Grounding). If the grounded function employs the disabled Component, the
Function Grounding status is marked as an error (rule no. 1). Similar rules are applied if
the cause is a low QA value, invalidating the grounded Function Design.

In both cases, the error is propagated to the Objective through rule no. 2. Finally, the
realisability of Function Designs changes based on the available Components with rule
no. 3; a similar rule is applied to invalidate Function Designs with lower expected QAs
than required by the mission. Lastly, the Plan phase selects the best available Function
Design, prioritizing solutions with higher expected QAs. The executor grounds this function
by carrying out the reconfiguration, completing the adaptation process.

7.2 Implementation and Evaluation of TOMASys

We have implemented and evaluated TOMASys in two European projects centered around
mobile robotics applications. The first project focused on an underwater mine explorer robot
that encountered thruster failures [152]. In the second project, TOMASys was deployed in
a mobile robot tasked with patrolling a university campus, addressing challenges related
to low battery levels and sensor failures [202], [203], [204]. These applications highlight
TOMASys’ adaptability and effectiveness in handling real-world scenarios, showcasing its
potential to enhance the reliability of robotic systems in diverse operational environments.

7.2.1 An Underwater Mine Explorer Robot: UX-1

The UNEXMIN project2 has the purpose of exploring and mapping flooded underground
mines. The aim is to provide geological, visual, and spatial data of hazardous areas that
currently are expensive and risky to explore. In Europe, there are around 30,000 closed
mines with a considerable amount of mineral raw materials. Many of them were abandoned
due to low commercial revenue or expensive and dangerous exploration [205]. The UX-1
robot is designed for different applications: open new exploration mines for raw materials,
define more informed drilling plans for intricate tunnels and unknown topologies, improve
geosciences understanding through new data, exploration of dangerous areas such as nuclear
accidents or toxic spills, surveying unstable underwater environments after an earthquake,
etc. An image of the UX-1 prototype can be found in Figure 7.3.

To test the TOMASys implementation, only two degrees-of-freedom are taken into account:
surge and heave. Surge is the linear longitudinal (front/back) motion in the terms of the
Society of Naval Architects and Marine Engineers (SNAME). Similarly, heave is the linear
vertical (up/down) motion. The reason to use these directions is because they are the two
main movements for traveling during an expedition. Furthermore, each movement uses a
different set of thrusters. The reconfiguration action depends to the fault and the affected
motion direction. In Figure 7.4, thrusters in blue (T0, T2, T4 and T6) are responsible for the

2https://www.unexmin.eu/
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Figure 7.3: The UX-1 prototype during operation in Kaatiala Mine (Finland). Image credits: UNEXMIN
project.

surge, while the thrusters in green (T1, T3, T4 and T7) are responsible for the heave. So if
T0 breaks during shaft descent, no reconfiguration is needed until the start of the forward
movement, as this thruster is not involved in heave.

Figure 7.4: Thrusters allocation, the green arrows represent the thrusters implicated on heave movement
(T1, T3, T4 and T7) and the blue ones, the thrusters responsible of forward movement (T0, T2, T4 and
T6).

Table 7.2 collects the thrusters used for each movement direction according to the figure;
e.g., if the robot describes a surge motion and T0 is not available, no reconfiguration action
is needed. However, when the robot switches to heave, a reconfiguration action is required
to take into account the disabled thruster.

The experiment consists of traversing an L-shaped tunnel, this first Objective is to navigate
in the heave direction. When the Objective is created, the selected configuration is the use
of the four heaving thrusters for maximum performance. When a thruster malfunctions, for
example T0, the only available Function Design will heave without T0 and all surge designs.
If the disabled thruster is not used in the current Function Grounding, the Function
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Surge Heave

T0 T1

T2 T3

T4 T5

T6 T7

Table 7.2: UX-1 optimal thrusters used according to the movement direction, if one thruster is disabled
the system must adapt to use the remaining thrusters in the column.

Design realisability is also set to false, as this result will be used when the Objective
changes, e.g., the case while doing a heave movement, when switching to heave without T0

the adaptation will use the realisability asserted in previous analysis loops.

Further details on how alternative Function Designs were created can be found in Ap-
pendix B. The results discussed there show that the use of the modeling approach reduces
downtime when a thruster fails. Moreover, it proves the generality of the system engineer-
ing process. However, from the point of adaptation response time, it is possible that most
fault-handling results for a specific underwater robot in the literature will have better metric
values (RMSD and/or latency) than ours, as they are designed specifically for a robot and its
concrete operation.

The suitability of using this approach in terms of fault handling depends on the usually soft
real-time bounding relation between measured adaptation time and mission requirements.
Once the reconfiguration is selected, as the action is the selection of the thruster configuration
matrix, its usage is practically immediate. The bottleneck in the use of the reasoner is the
time required for asserting the reconfigured system status and choosing the best design
alternative depending on the Objective and the contingency.

Nevertheless, the value and strength of the model-based approach are best seen from the
SE viewpoint because it provides an application-independent, reusable adaptation engine
that can be used to fast-implement a system-tailored module that can be deployed over any
extant system with minimal additional instrumentation.

7.2.2 Mobile Robot Laser Contingency

In the EU-funded Metacontrol for Robot Operating System (MROS) project3, we tackle a
patrolling corridor mission using commercial robots such as TurtleBot24 and TIAGo5.

The experiment is the same in both robots, with the distinction that TurtleBot2 is a simulation,
while the TIAGo robot is deployed in a real university setup (Figure 7.5). The experiment

3https://robmosys.eu/mros/
4https://www.turtlebot.com/turtlebot2/
5https://pal-robotics.com/robots/tiago/
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covers two main scenarios involving failure to achieve the required QAs for the mission
Objective and a laser contingency that disables the location system.

Figure 7.5: TIAGo robot in a university setup. Image credits: MROS project.

▶ NOT REACHING REQUIRED QUALITY ATTRIBUTES

The model ontology is designed to assign the mission Objective of navigation along with its
associated requirements for energy and safety values. During the execution of the experiment,
the MAPE-K loop continuously evaluates the system.

In instances where a measured QA falls below the required value, it starts the analysis process.
The reasoner, responsible for selecting Function Designs based on their estimated QA
values for energy, safety, and performance, aims to fulfill the Objective requirements. The
adaptation candidate is chosen among the Function Designs with the highest performance
estimation that also meets the specified requirements.

▶ LASER NOT AVAILABLE

For the laser unavailability scenario, a simulated laser error is introduced at a random point
in time. The corrupted data simulate realistic conditions, as if something was blocking
the laser or if the laser was misaligned due to a hit or fall of the robot. Upon receiving a
signal of laser unavailability from the observer, the model updates the Component status
accordingly. This scenario is similar to the underwater robot case, where a critical component
is non-functional.

The reasoner actively seeks alternative Function Designs that do not involve the faulty
laser Component. It identifies an RGB-D camera that can provide similar functionalities,
although with lower performance. The use of the camera requires to reduce the robot speed
to not compromise the integrity of the system and other elements in the surroundings, as
the update rate of camera sensory inputs is lower than in the laser sensor. This information
is encoded in the expected QAs of that Function Design.

In response to the laser unavailability, the reconfiguration action involves executing the
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necessary mappings between camera messages and laser messages, along with adjusting
the speed constraints. Although this solution may not meet the required QAs, it ensures the
completion of the mission, even in a degraded mode.

▶ CONSISTENCY OF THE MODELS USING TOMASYS

This project also included an evaluation of the TOMASys metamodel and its OWL implemen-
tation, focusing on internal consistency and runtime performance.

To validate the consistency of the internal metamodel, an instance model was created that
contains almost all the metamodel elements. Smaller instances were generated to instantiate
elements not included in the large instance due to exclusion constraints in the metamodel.

The consistency of the generated model files was then checked using OWL tools to assess
KB coherence and consistency, addressing the issue of local consistency checking (model
finding). The Debugger Tool in Protégé [94] was used to debug assumptions and laws, and
queries were formulated to test expected system behavior based on runtime events.

Specifically, tests were conducted to ensure that property assertions were consistent, focusing
on execution of SWRL rules correctly modeled the propagation of laser sensor failure in the
ontology. The Debugger Tool was especially valuable in identifying ontology inconsistencies
and providing possible repairs.

▶ RUNTIME USE OF TOMASYS MODELS

In terms of the runtime use of TOMASys models, reconfiguration is driven by ontological
reasoning on the KB. The reasoning time performance was tested in relation to KB size, which
directly correlates with the possible Function Designs defined in the application model.
Using the ontological reasoner and an automated individual generator, the performance of
SWRL rules was evaluated for models of different sizes.

Performance has been tested by generating Function Design individuals in the ontology,
with each having three QA estimations (performance, safety, and energy). Initially, the
ontology had five individuals, representing three QA types, the Objective of navigate, and
the required laser and battery Components. When a new Function Design alternative was
added, four more individuals were included. Table 7.3 shows the different model sizes
tested, illustrating the increase in the number of individuals and assertions for classes, object
properties, and data properties. Additionally, the growth of file size with an increasing
number of individuals was captured. The most notable observation was the exponential
increase in reasoning time, as depicted in Figure 7.6, where the test data align well with the
inferred exponential equation (y = 681e0.0002x) adjusted with an R2 of 0.99.

For the nominal evaluation ontology, with 26 individuals, the estimated reasoning time is
695 ms, corresponding to a frequency of 1.4 Hz. This frequency is considered suitable for
runtime adaptation. The measured maintenance time for laser failure using our approach
is 1.995 s, with a standard deviation of 0.478 in 50 iterations of the experiment. This is
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Number of
Function
Designs

Individual
Count

Class
Assertions

Object
Property
Assertion

Data
Property
Assertion

File size
(KB)

Reasoning
Time (ms)

1 9 9 5 3 26 660

10 45 45 50 30 36 704

100 405 405 500 300 134 741

300 1205 1205 1500 900 353 914

600 2405 2405 3000 1800 682 1067

900 3605 3605 4500 2700 1024 1378

1000 4005 4005 5000 3000 1126.4 1617

Table 7.3: TOMASys ontology models of different sizes used to evaluate runtime reasoning.

Figure 7.6: Reasoning time in (ms) according to the number of individuals in the ontology. Also shown
its corresponding exponential trendline (y = 681e0.0002x with R2 of 0.99).

compared with the estimated maintenance time without automatic recoveries, which implies
restarting the laser module and is expected to take around 300 s [203].

In summary, the TOMASys metamodel provides a baseline with a clear separation of the
terminological part and general rules, creating a set of reusable application-specific elements
for modeling the functional and physical component architecture of systems. Furthermore,
it offers an implementation that supports functional reasoning at the abstract level of needs
and capabilities, akin to how an engineer would approach it, rather than focusing on the
lower level of concrete realizations. The practical results showcase the effectiveness of the
approach in achieving fast adaptation and reducing downtime in the face of faults.

7.2.3 Lessons Learned from TOMASys Implementation

TOMASys uses OWL ontologies to deploy its models in applications, employing OWL reasoners
and SWRL rules. However, we have identified some limitations in its application:
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• Restricted reasoning capabilities: Most reasoners are concerned with classification
based on classes and relations, offering only consistency checking. The logic used
in OWL enforces monotonic reasoning, which poses challenges when applied to a
robot operating in a dynamic environment. The inherent dynamism is not easily
handled by this type of logic and OWL reasoners. To address this limitation, we propose
incorporating additional formalisms based on CT to track dynamic changes. Alternative
options include employing other logics, such as modal logic, which implements dynamic
logic according to possible world semantics, or temporal description logic to handle
time-dependent processes and subsystems with different life cycles [202].

• Computationally expensive: The TOMASys reasoner operates at a frequency of 1.4
Hz [203]. This periodicity is the result of adopting a cyclic execution approach inspired
by the MAPE-K adaptation control loop. Although TOMASys benefits from SWRL rules
for enhanced expressiveness, they also contribute to increased reasoning time [206].

• Design constraints: While the TOMASys metamodel captures information about com-
ponents, functions, and goals, this information represents only a portion of a system’s
architecture. The model could be expanded with other MBSE concepts to provide a
more complete representation.

7.3 Requirements of the SysSelf Metamodel

The aim of the metamodel is to define the minimal set of concepts to reason about mission
execution and how to overcome challenges or, at the very least, complete tasks in a degraded
mode. For this purpose, the following set of properties and requirements have been elaborated
for the SysSelf Metamodel, taking into account the lessons learned from the TOMASys
implementation discussed above.

1. System Organization: The metamodel shall explicitly capture information about the
system’s main aspects, especially when redundancies exist in components or capabilities,
or when there are multiple approaches to achieve the same outcomes (alternative
plans or goals).

2. Declarative Formal Language: The metamodel shall produce a language based on
well-established engineering concepts using a declarative formal language, making it
machine-readable and capable of using reasoning mechanisms to update its content.

3. Reuse of Existing Definitions: Whenever possible, the metamodel shall reuse existing
expressive definitions rather than recreating them.

4. Value-Oriented: The metamodel shall be value-oriented, enabling reasoning to decide
the appropriate course of action according to robot goals and user expectations.

5. Expressive Formal Language: The metamodel shall be written in a formal language ex-
pressive enough to capture domain constraints and draw inferences based on constructs
such as numbers, arithmetic, goals, and capabilities.
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6. Runtime Executability: The metamodel shall be executable at runtime to correctly
update the system behavior according to mission requirements.

7. Applicability to Different Systems: The metamodel shall be applicable to different
systems with various components, tasks, or deployments in a variety of environments.

Requirements number 1 to 4 are met by using concept definitions based on terms and
sources from SE as outlined in Chapter 3. Requirement 5 is achieved by utilizing the abstract
mathematical framework from Chapter 6, specifically Category Theory (CT). The details of
Requirement 6 are further elaborated in Chapter 8, focusing on the runtime usage of the
metamodel. Finally, Requirement 7 is assessed in Chapter 9, where the model is applied to
two robotic systems—a miner robot and a mobile robot—experiencing different contingencies
during its operation.

Regarding the limitations identified in TOMASys, as discussed in Section 7.2.3, the SysSelf
metamodel aims to broaden its scope to include daptation directed towards capabilities
and values. Furthermore, SysSelf can be employed to provide valuable information to the
responsible user or concerned stakeholders when system changes occur, thereby enhancing
transparency and facilitating decision-making. Lastly, the SysSelf metamodel strives to
mitigate the computational cost of its deployment. However, this aspect will be discussed in
Section 8.1 as it represents an operational facet of the metamodel.

7.4 SysSelf: A Metamodel for Systems that Know
What They are Do(ing)

A metamodel is a model of models [207]; it defines the language for expressing models.
This section introduces the SysSelf metamodel as the core language for capturing system
engineering knowledge that may be relevant for its adaptation. For each application, this
metamodel shall be particularized with instances in each category. The SysSelf metamodel is
designed to enable the robot to adapt to robustly deliver the expected value, even in the face
of unexpected contingencies. As it is intended to leverage engineering knowledge for robot
adaptation, it aims to enable systems to provide some knowledge on why they are adapting
and how they should do it to comply with user expectations.

This metamodel should be seen as a specification language providing a formal vocabu-
lary. For this purpose, we use definitions from the SE domain extracted from INCOSE [4],
ISO/IEC/IEEE 15288:2023 Standard on Systems and Software Engineering [59], and SEBoK
Wiki6 [19].

Table 7.4 shows the main concepts in the SysSelf model. It includes terms such as value,
component, and capability, as well as diagnostic concepts such as component status and goal
status or measure of performance and effectiveness. Perhaps the most characteristic aspect

6https://sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK)
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Concept Definition Related to

Capability Expected operational outcome (function) of the
system that satisfies a need under specified
conditions with some (performance)
standards [19].

Constraint, Value,
Component, MOP

Component Generic term for the level of decomposition at
which system elements are no longer
considered complex, and for which specialist
design disciplines can be used [19]. One of the
parts that make up a system [208].

Constraint, Goal,
Capability, Interface,

TPM

Constraint A restriction, limit, or regulation imposed on a
product, project, or process [19].

Capability,
Component

Goal A goal is a specific task achievable in a set time
[19].

Component, Value

Interface Bundary used to connect two or more
components for the purpose of passing
information from one to the other [69]

Component

Measure of
Effectiveness

(MOE)

The metrics by which an acquirer will measure
satisfaction with products produced by the
technical effort [209].

Value

Measure of
Performance

(MOP)

An engineering performance measure that
provides design requirements that are
necessary to satisfy a MOE (measure of
effectiveness) [209].

Capability

Technical
Performance
Metric (TPM)

Measures of attributes of a system element
within the system to determine how well the
system or system element is satisfying specified
requirements [210].

Component

Stakeholder Individual or organization having a right, share,
claim, or interest in a system or in its
possession of characteristics that meet their
needs and expectations [209].

Value

Value Amount of benefit something, feature or
capability provides to various stakeholders. It
is an attribute of the problem space and
considers the optimum set of requirements to
deliver customer satisfaction [19].

Stakeholder,
Capability, Goal,

MOE

Table 7.4: Main concepts of SysSelf metamodel and relationships between them.
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is that it is expressed in terms of CT to establish inferences at higher levels of abstraction,
which can reveal new insights and facilitate decision-making.

7.4.1 Categories and Functors in SysSelf

One of the design decisions of this model is to be formalized using CT. The primary elements
of the model are value, component, capability, and goal. These concepts are represented
as categories in the SysSelf metamodel. The relationship between the terms can be seen in
the case of an artificial system composed of components that have capabilities, allowing the
system to achieve some goals that address certain values for the robot owner.

As stated in Chapter 6, to define a category, we shall specify objects and morphisms along
with the composition operation and the identity morphism. The four categories are defined
as follows:

• Component: in which the objects are the various parts and subsystems that make
up a robotic system (e.g., motors, sensors, controllers, etc.) and the morphisms are
the mappings or transformations between different components, i.e., the interfaces
between them.

• Capability: in which the objects are the capacities to perform a certain function
(e.g., sense, move, decide, plan, etc.) and the morphisms the ways in which these
capabilities can be composed to perform more complex tasks.

• Goal: in which the objects are the desired outcomes commanded to the robot (e.g.,
extract X quantity of mineral Y or move to [X , Y ] position) and the morphisms are
mappings from one goal to another.

• Value: in which the objects are the advantages that a robotic system provides (e.g.,
efficiency, safety, precision, etc.) and the morphisms the mappings between values,
how they are related.

The remaining elements for composing the category include composition and identity.
Composition is illustrated as the chain of relationships between objects. For example,
the interfaces between the robot chassis, motors, and wheel to enable the robot’s movement.
Similarly, the identity morphism represents the reflexive relation with respect to each
object, representing how a chassis or the capability to move relates to itself.

A functor F is defined as a mapping between categories, comprising two dimensions: a
mapping between objects and a mapping between morphisms. The SysSelf metamodel
defines the four main functors from Expression 7.1.
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Freal izes : Component → Capabil i t y
Fenables : Component → Goal

Fcont ributes to : Capabil i t y → Value
Fali gned with : Goal → Value

(7.1)

This structure can be represented as the commutative diagram shown in Diagram 7.2.
However, commutative diagrams in CT typically depict objects as nodes and morphisms as
arrows. In this case, we represent categories as nodes and functors as morphisms, capturing
the essence of a higher-order category: the SysSelf category. The commutative condition
implies that the Value, destination of the square, can be reached from any of the two paths,
that is, using the Components and Goals or Components and Capabilities.

Component Goal

Capabil i t y Value

real izes

enables

al i gned with

cont ributes to

(7.2)

7.4.2 The SysSelf Category

This section details the characteristics of the SysSelf category built from the categories and
functors introduced above. Note that the name SysSelf is used to denote two related, yet
distinct aspects: a category and a metamodel.

• SysSelf category: Corresponds to the abstract mathematical structure composed of
objects and morphisms further described in this section. It defines the fundamental
aspects of the metamodel and is used for higher-level reasoning, as described in
Section 8.2.

• SysSelf metamodel: Specification of the abstract syntax, semantics, and constraints of
the model. It could be seen as the modeling language. While the fundamental structure
is provided by the main category, the metamodel additionally defines other important
concepts and relationships relevant for autonomous robot operation. It includes the
definitions from Table 7.4 and is used for ontological reasoning.

The SysSelf category is a 2-category. A 2-category is a mathematical structure that extends the
concept of a category. While a category is built upon objects, morphisms, and composition of
morphisms, a 2-category introduces another structure known as 2-morphisms, representing
relationships between morphisms. This additional layer of abstraction provides a framework
for capturing higher-order relationships and interactions. Further details on 2-categories can
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be found in [211]. The archetypical 2-category is Cat, the 2-category whose (i) objects are
categories, (ii) morphisms are functors, and (iii) 2-morphisms are natural transformations.

The SysSelf category constitutes a particular case of the Cat category. However, to avoid
unnecessary complexity, we do not include natural transformations, i.e., 2-morphisms. In
concrete, the SysSelf category is composed of:

• Objects: The four categories defined above: Component, Capability, Goal, and Value.

• 1-Morphisms (also morphisms or 1-arrows): The four functors between the categories
above represented in Expression 7.1. This functor must preserve the identity morphisms
and composition of morphisms within categories.

• Composition of 1-morphisms: Similar to the fundamental categories, composition
is accomplished by chaining the functorial relationships. For example, the path to
reach the category of Value using Components and Goals, one combines Fenables :
Component → Goal and Fali gned with : Goal → Value functors.

• Identity 1-Morphisms: As in the fundamental categories, the identity functor for each
category serves as a neutral element with respect to composition—a reflective relation
within its own concept.

As this category does not employ the additional 2-morphism structure, it behaves similarly
to a standard category. This characteristic facilitates the application of other CT concepts
such as pushout and the application of the Yoneda lemma, as described below.

7.4.3 Value and the Concept of Pushout

For the SysSelf metamodel, value takes a central role, similar to SE, which focuses on
systems delivering some desired benefits. In this context, value is derived from the provided
capabilities or improvements, not inherent in the system itself. The system serves as a means
to attain it.

The concept of pushout in the SysSelf category can be employed to reason about value as
the holistic properties of the system, including components, capabilities, and goals; and
the outcomes of their combinations. In CT, the concept of pushout is frequently utilized to
summarize information about its elements, as described in Section 6.2.4.

Given the commutative diagram around the concepts of Capability, Goal, Component, and
Value, as represented in Diagram 7.2, and the fact that this diagram commutes, Value
can be reached from either of the two alternative paths. There exists a unique morphism
u : Value → Ex pected Value such that Diagram 7.3 also commutes. The dashed arrow
represents the unique morphism, and the element Expected Value denotes the unique
pushout object. In robotics terminology, this object can be understood as the anticipated
behavior and performance the robot should exhibit. Lastly, the minimum cost and maximum
performance morphisms constitute the constraints on the Expected Value.
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The primary purpose of the SysSelf metamodel is the support of the engineering processes to
assure the delivery of value for a system. This model can be used to facilitate the adaptation
of the system in the presence of contingencies, ensuring the continued delivery of the expected
value. The pushout concept can be used to identify possible alternative designs to meet user
expectations. This approach involves following the pushout (Diagram 7.3) to determine
the optimal combination of Components, Capabilities and Goals which maximizes the
Expected Value of the system. In event of a critical incident, reaching the expected value
may be unattainable, but this structure uncovers the best possible solution and how this
value is affected, such as in terms of performance and cost.

Component Goal

Capabil i t y Value

Ex pected Value

max per f

min cost

u

(7.3)
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Example:
This case is inspired by the mobile robot laser contingency discussed in Section 7.2.2
and derived from the Marathon 2 experiment by Macenski et al. [212], using Nav2, the
widely adopted ROS2 stack for perception, mapping, localization, path planning, and
control. This engineering knowledge is represented in Figure 7.7.

In a direct instantiation of the SysSelf category, we may have four objects in the
component category: the Adaptive Monte Carlo Localization (AMCL) [213], the A∗
planner [214], and two sensors for functional redundancy—a LiDAR and an RGB-D
camera. The goal is to reach a set of 16 waypoints, and the available capabilities
include planning, map updating, control, and navigation.

In this simple scenario, the primary value provided by the system is to traverse the 16
waypoints. In a real-world deployment, other possible provided values could be delivering
a specific object or generating a map of a particular area. Other parameters defining the
expected value include time efficiency, point accuracy, energy consumption, and safety.

Figure 7.7: Navigation 2 engineering knowledge represented in the SysSelf category.

Different realizations of the system may lead to varying provided values. However, this
approach allows us to reason in terms of always staying within an acceptable range of
the expected value. Note the relation of this approach with the system architecture
evaluation process in SE (and furthermore with verification and validation stages in the
system life cycle).

7.4.4 Adaptation and the Yoneda lemma

When contingencies arise, systems equipped with functional redundancy can adapt their
structure to keep fulfilling their mission. The concept of functional redundancy ensures that
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the system has several design alternatives when executing a task. These alternatives may
include variations in goals, capabilities, or components.

Representing a system as a particular realization corresponds to an instantiation of the
SysSelf category within the Realization category. After the system adapts, the model evolves
into an adapted realization with a corresponding Realization’ category.

Both categories are connected by two functors (δ, δ′) that represent how the system has
changed—specifically, how components, goals, and capabilities are affected. Additionally,
there is a natural transformation (α) between them, representing the relationship between
these changes.

In this context, the term adapt refers to the application of a natural transformation between
two realizations where objects are considered the same from a particular perspective (Di-
agram 7.4). This concept of sameness aligns with the Yoneda lemma. According to the
lemma, two objects are considered identical if all their relationships are the same. For
example, if two components are compatible in terms of capabilities and interfaces, they
can be interchanged, allowing the system to continue its operation. Therefore, the Yoneda
lemma is the mathematical concept that enables the identification of adaptation candidates.

Realizat ion Realizat ion′

δ

δ′

α (7.4)
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Example:
In the given scenario, if the primary sensor (LiDAR) is damaged, a system adaptation
could involve switching to a depth camera to fulfill the sensory input requirements for
the localization subsystem.

Although both components serve the same functionality, they are not directly inter-
changeable in terms of interfaces (Figure 7.8). To address this, an additional component
for data transformation is necessary. We use the point cloud to laser scan ROS nodea to
converse readings from the depth camera (point cloud messages) to simulate LiDAR
readings (scan messages).

Figure 7.8: Equilvalence in terms of component functionality.

In this context, the category Realization represents the system utilizing a LiDAR for
localization, while the category Realization’ corresponds to the adapted configuration
employing a depth camera with interface transformations.

In the new realization, by replacing the LiDAR with the depth camera, the value is
affected by the characteristics of the latter, which has lower resolution and a lower
publication rate. These aspects result in reaching the waypoints with less accuracy
and lower time efficiency, as the robot speed slows down. However, this change
provides less energy consumption and enhances safety. The most significant result is
that the task is completed even with the LiDAR out of operation.

ahttp://wiki.ros.org/pointcloud_to_laserscan

7.4.5 The SysSelf Metamodel

Besides components, capabilities, goals and values, the SysSelf metamodel incorporates
other relevant elements from SE. Specifically, various metrics related to these concepts, such
as Measure of Effectiveness (MOE), Measure of Performance (MOP) and Technical Performance
Measure (TPM). These concepts are essential for understanding how the expected value is
affected after adaptation.

The metamodel also introduces the concept of stakeholders, representing individuals or
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organizations with an interest in the system [59]. Identifying stakeholders helps clarify who
may be concerned with the result of adaptation, providing explainability based on specific
interests. In the case of critical contingencies, it may contribute to identifying where human
intervention or maintenance may be required.

Additionally, the metamodel includes concepts related to the usability of the model, such
as elements to store values on component and goal statuses. Moreover, the metamodel is
enriched with other concepts relevant to specific applications, such as environmental and
component constraints, interfaces, or functions that provide more information to select the
best adaptation candidates.

The complete form of the SysSelf metamodel is illustrated in Figure 7.9. Note that the central
structure is the commutative diagram characteristic of the SysSelf category and how it relates
to the rest of the concepts in the metamodel.

TechnicalPer...

Interface

Metric

MeasureOfEffe...

Function

string

string

double

Stakeholder

Value

MeasureOfPer...

Constraint

string

SystemStatus

string

ComponentCo...

ComponentSW

Goal

GoalStatus

System

Component

ComponentHW

Status

Capability

Environmenta...

ComponentStatus

contributesToValue
hasGoalStatus

enables

measuresCapability

hasComponentStatus

isAlignedWith

hasGoalStatusValue

hasInterface

performsFunction

mesuresValue

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

hasSystemStatus

interestedIn

hasMeasurement...

Subclass of

Subclass of

hasSystemStatus...

Subclass of

constrainsCompo...

isType

hasComponentSta...

measuresGoal

realizedThrough

constrainsCapability

Figure 7.9: SysSelf metamodel, main elements and relationships.
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The metamodel provides the infrastructure to incorporate the most relevant aspects from
engineering design with an impact on the potential adaptation of systems. Reasoning around
these concepts allows the system to respond “as an engineer would” when an unexpected
event occurs. The following chapter provides details on how the SysSelf metamodel is
utilized at runtime.
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An Operational Metamodel: Metacontrol

Once there is an explicit metamodel serving as a pattern to enhance autonomous systems’ self-
awareness, this chapter introduces the architecture designed to leverage it, the metacontroller.
The concept of a reference architecture to close a loop on top of the system controller was
first introduced by Sanz et al. [215; 42] and developed by Hernández et al. [26; 201] to
handle the TOMASys metamodel already described in Section 7.1.

The metacontroller serves as the instrument to pursue mission goals in the presence of
disturbances. It functions as a modular tool to control the structure and behavior of the
robot, to continue providing the expected values. Similar to a traditional controller, which
is tasked with maintaining a variable value close to a specified reference set-point, the
metacontroller takes the specified functionality of the system as a reference. In the event
of deviation from this functional reference, a system reconfiguration becomes necessary.
The new and suitable configuration is derived from the KB, which stores specific aspects
of the robot and its mission. Figure 8.1 illustrates the relationship between the system, its
controller, and the metacontroller. Note that this approach is aligned with the architecture
of a fault-tolerant control system (as seen in Figure 2.3) and adapted from [27].

Figure 8.1: Architecture of a system using a metacontroller to face contingencies, inspired from [27].

Therefore, the metacontroller shall be tailored to reason about terms of the SysSelf metamodel
in an abstract and multi-applicable way, enabling specific adaptation actions for the system.
It is designed under two main requirements: (i) use a declarative approach to decouple
application and implementation, and (ii) be reusable and modular.

153



Chapter 8. An Operational Metamodel: Metacontrol

This chapter is organized as follows. Section 8.1 describes the encoding process of the
SysSelf metamodel in an ontology. In Section 8.2, we justify the choice of reasoners used
to leverage the model at runtime and explain the execution process of the metacontroller
for this purpose. Finally, Section 8.3 outlines the software assets provided to seamlessly
integrate this solution with popular robotic frameworks and Section 8.4, the step-by-step
process that needs to be carried out to use the framework.

8.1 Metamodel Operationalization: The SysSelf On-
tology

The SysSelf metamodel requires transformation into a machine-readable model for effective
utilization by the metacontroller. However, applying Category Theory (CT) in engineering
domains often faces challenges due to the limited tool support. Although there is a developing
framework called Catlab1 designed for applied and computational CT, we opt for using
Ontology Web Language (OWL) due to its better tooling support and ease of integration with
other subsystems. This decision is reinforced by the survey conducted in Chapter 5, which
revealed that OWL is the most widely used declarative language, especially in the field of
robotics.

The decision to use CT fundamentals for the metamodel, rather than relying solely on
ontologies, may raise questions. However, ontologies exhibit certain limitations, particularly
in the scope of reasoning they support and their associated computational costs. These
limitations were previously discussed in Section 7.2.3 as lessons learned from the SysSelf
predecessor, TOMASys.

An OWL ontology is made up of classes, corresponding to concepts in the domain of discourse
and properties. There are two types of relationships: object properties and data properties.
Object properties establish connections between instances of two classes, while data properties
are relations between instances of classes and data types, assigning values to variables. The
SysSelf ontology contains concepts and relationships derived from the SysSelf metamodel,
as defined in Section 7.4 and represented in Figure 7.9.

▶ FOUR PRIMARY CLASSES AND RELATIONSHIPS

The four primary categories, namely capability, component, goal and value, establish
the main classes within the ontology. These classes are interrelated by object properties cor-
responding to the four functors. Specifically, the relationships are as follows: contributes
to goal links components and goals, contributes to value links capabilities and val-
ues, realizes (with its inverse is realized by) links components and capabilities, and
is aligned with relates goals and values. Furthermore, there is the reflexive relation
composable with capability, representing the composition of capabilities.

1https://github.com/AlgebraicJulia/Catlab.jl
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This structure, depicted in Figure 8.2, represents the key elements involved in the metacon-
troller’s reasoning process to determine the most suitable adaptation mechanism.

Figure 8.2: Main classes and relationships of the SysSelf ontology.

▶ PERFORMANCE AND USER-INVOLVED CLASSES AND RELATIONSHIPS

Additionally, there are performance-related elements corresponding to the metrics class,
further categorized into in MOE, MOP and TPM, each addressing specific aspects of the
system. The MOE class quantifies how the provided value is affected by the efficiency of a
system. In contrast, the MOP class uses property measures to determine the system perfor-
mance on achieved capabilities. The TPM class focuses on component-level performance
measures to assess the functioning of individual elements. Additionally, a reflexive prop-
erty named affects metric describes how distinct metrics influence one another. Finally,
the stakeholder class is associated with value through the interested in relationship,
allowing the metacontroller to provide relevant information to the parties involved on how
the system is expected to change after adaptation. Figure 8.3 represents these classes and
relationships.

▶ SOLUTION-SPECIFIC CLASSES AND RELATIONSHIPS

Moreover, there are supplementary classes designed to capture additional aspects of the
system that contribute to the reasoning process but are not considered essential (Figure 8.4).
This set includes the component constraint (associated with the constraints component
object property) and environmental constraint (linked to the constraints capability
object property). Additionally, there are the component status and goal status classes,
each with their respective relationships. Furthermore, the interface class is connected to
the components through the has interface relationship. These elements, together with
other potential classes and relationships that application engineers may require, comprise the
solution-specific entities that can be added without affecting the metacontroller reasoning.
These relationships serve as morphisms within the component, goal, capability, or value
categories.
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Figure 8.3: Classes and relationships of the SysSelf ontology related with metrics and stakeholders.

Figure 8.4: Additional classes and relationships of the SysSelf ontology related with constraints, status
and interfaces.
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▶ DATA PROPERTIES

Data properties serve to assign values to instances in the model. The most important property
of this type is the has metric value that serves to assign decimal numbers to MOEs, MOPs
and TMPs for quantifying behavioral aspects of values, capabilities, and components, respec-
tively. Furthermore, the affects in negative boolean property influences the propagation
of metric relationships. Other relevant data properties include has component status
value and has goal status value, which assign statuses to components and goals, re-
spectively; and the is type relationship, used to define the type of interface associated with
a component.

Lastly, it is important to note that this operationalization of the metamodel does not incor-
porate any individuals, since it corresponds to the terminological and relational part of the
ontology, TBox and RBox. Each application engineer or person responsible for designing
applications using the metacontroller is required to create an ABox containing a set of
individuals relevant to their specific system.
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Example:
Figure 8.5 illustrates the key elements of the ABox ontology, representing the instan-
tiation of the model for our running example: the laser contingency in a navigation
task. This model features two components—a camera and a LiDAR—that contribute
to the goal of navigating a list of waypoints using the nav2 capability. The task aims
to provide value by exploring a specific area efficiently while ensuring robot
integrity.

The model also assigns expected metrics related to both component and capability
accuracy and mission safety, along with relationships that illustrate how these
metrics affect each other. Additionally, it includes two stakeholders—robot operator
and mine operator—along with the values in which they are interested in. Dashed
arrows depict data value assignments, while bold arrows represent main functors.

Figure 8.5: ABox example: Application model using the SysSelf metamodel.
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8.2 Using Ontological Reasoners

After encoding the metamodel, its deployment in a software application becomes necessary for
practical usage. The metacontroller is implemented as a Python class using the Owlready22

API. This API facilitates transparent access to OWL ontologies and offers methods to modify
them and execute their reasoners. This section explains the rationale behind the selection
of the OWL reasoner and outlines additional methods developed to effectively leverage CT
concepts within the metacontroller.

8.2.1 Ontological Reasoning

One of the main changes from TOMASys to the SysSelf metamodel is the elimination of
SWRL rules. TOMASys used SWRL for error propagation and reasoning to determine the best
available design alternative, as shown in Table 7.1. However, as discussed in Section 7.2.3,
the use of SWRL rules contributes to increased reasoning time [206]. To address this issue, the
SysSelf solution uses mathematical concepts from CT to enhance expressiveness, eliminating
the need for SWRL rules for triggering adaptation.

The metacontroller initially employs an ontological reasoner to update the KB by classifying
individuals and their properties while ensuring consistency. Afterwards, a Python script is
employed to perform error propagation and navigate between relationships, uncovering
non-explicit connections using CT principles.

▶ REASONER SELECTION

The ontological reasoning in this project relies on the consistent update of the KB using Pellet.
This reasoner was selected for its compatibility with OWL API libraries. However, this choice
is not arbitrary. Three open-source reasoners were considered: FaCT++, HermiT, and Pellet.
All three have a Protégé Plugin, run on all platforms, and support the OWL API. FaCT++ is
implemented in C++, while HermiT and Pellet are Java-based.

Performance comparisons conducted by Dentler et al. [216] on a biomedical ontology
test suite, commonly used as a benchmark, revealed varying results. For classifying large
ontologies, Pellet outperformed FaCT++ for Gene Ontology (3.41s) and FaCT++ for the
National Cancer Institute thesaurus (11.10s). However, FaCT++ outperformed Pellet for
the SNOMED CT classification (700.87s). In terms of query times for SNOMED CT, FaCT++
was faster for both named concepts (701.49s) and anonymous concepts (0.06s), while
Pellet required more time (2,793.31s and 0.49s, respectively). HermiT exhibited lower
performance in both experiments.

Despite FaCT++ being the faster reasoner in certain contexts, Pellet is chosen for its support,
availability, and performance trade-off, particularly excelling in large ontologies such as

2https://owlready2.readthedocs.io/en/v0.42/
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Gene Ontology. Additionally, Pellet is an updated reasoner, tested with OWL API 2, while
FaCT++ has seen less maintenance.

8.2.2 Metacontroller Execution and Application of Category
Theory

The metacontroller serves as the primary runtime component for adaptation, with all reason-
ing directed towards extracting the necessary reconfiguration actions and informing stake-
holders about changes in expected values. This process is application- and implementation-
agnostic, as it relies on the concepts defined in the SysSelf metamodel. The activity diagram
presented in Figure 8.6 outlines the execution flow of the metacontroller. Note that this pro-
cess is based on interruptions to mitigate the computational cost associated with ontological
reasoning.

Figure 8.6: Activity diagram for the metacontroller execution.

After loading the ontology, the metacontroller awaits diagnostic data, which could indicate
that a component is malfunctioning or a metric value is below the expected threshold. OWL
queries are then used to determine the specific entity affected—which can be a capability,
value, goal, or component. As a result, the KB is updated accordingly, and the reasoner is
executed to ensure consistency.

The subsequent reasoning relies mainly on CT principles to identify an element that can
be exchanged. Initially, the metacontroller identifies the main category (corresponding to
an ontological base class) along with its associated functors. Additionally, it evaluates the
morphisms to uncover a potential equivalent object. The application of the Yoneda lemma
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in this context involves establishing the requirements for equivalence. In practical terms,
applying the Yoneda lemma (Section 7.4.4) means searching for individuals in the same
category with identical relationships.
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Example:
Figure 8.7 illustrates the individuals related to alternative components in our running
example, the laser contingency in a navigation task. The camera and LiDAR compo-
nents are linked to the waypoint list goal and the navigation capability through
the functors contributes to goal and realizes, respectively, as indicated by the
bold arrows.

Each component is also associated with an interface individual through the has
interface relationship, which represents a component morphism. This interface
defines a specific type with a data property. For example, the camera interface is
of type /r g bd_camera/points, while the LiDAR interface is of type /scan. This
corresponds to the type of message these components provide.

The application of the Yoneda lemma aims to find an element or relationship that
makes both components the same. In this case, the only difference is the type of in-
terface, which must be transformed to make both components interchangeable. The
interface adaptor component, depicted in purple, along with its in and out inter-
faces, constitutes the required transformer that connects the camera and the LiDAR.
These relationships are represented by dashed bold arrows.

Figure 8.7: Component individuals and morphisms to find equivalences.

Therefore, this structure indicates that the adaptation mechanism, in this case, requires
not only stopping the LiDAR execution and launching the camera component but also
executing an interface adaptor. The interface adapter ensures that elements using /scan
messages can continue without further changes.

When a direct equivalence cannot be identified, meaning that there is no equivalent element
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in the affected category, the metacontroller retraces the pushout from Diagram 7.3 to explore
alternative possibilities in other categories. Throughout this process, implicit morphisms
may emerge, as they represent elements that require resources from other categories. These
relationships are then integrated into the ontology, which speeds up the process in subsequent
uses.

Example:

Consider a simple scenario: a robot composed of a chassis connected to wheels,
equipped with the capability to perform navigation tasks. When a gripper arm is
added to the robot chassis, a new capability becomes available—manipulation. In
this instance, a new morphism emerges in the capability category, representing the
composition between manipulation and navigation. As a result, the robot evolves into
a mobile manipulator. Figure 8.8 illustrates how tracking morphisms and functors leads
to the emergence of this relationship.

Figure 8.8: Implicit morphism emergence by tracing morphisms and functors between categories.

The final step of this reasoning process involves applying the concept of pushout (Sec-
tion 6.2.4). Once an adaptation is selected, it propagates the effects of the changes through-
out the system, considering relevant metrics such as TPM, MOE, and MOP. By evaluating
these metrics, it can determine the expected value resulting from the adapted system. The
metacontroller also communicates with stakeholders associated with the values measured
by the affected MOEs, informing them of the impending changes.
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Example:

Figure 8.9 illustrates some metrics in our ongoing example, the laser contingency in
a navigation task. Note that the assigned metric values are experimental coefficients
provided by application engineers based on their domain expertise. Each redundant
component has two TPMs—accuracy and energy consumption—both of which
influence the corresponding MOP in the navigation capability. Furthermore, there are
three MOEs related to different aspects of the provided value: mission safety and
duration, influenced by the accuracy MOP, and mission energy consumption,
affected by the corresponding MOP.

When the LiDAR fails, the metacontroller proposes an alternative solution involving
the use of the camera, which implies a reduction in energy consumption and accuracy,
as depicted by the purple values. The propagation of metrics results in a reduction in
both MOPs, as well as a decrease in mission safety and energy consumption MOEs. It
is important to highlight that this process is qualitative and that numerical values for
MOPs or MOEs are not necessary to determine how the system values are expected
to change. The mission duration is expected to be longer due to reduced navigation
accuracy, negatively affecting this MOE.

In the final step of this process, the metacontroller informs the robot operator about
the increase in safety and energy consumption. Furthermore, both the robot operator
and the mission user are notified of the expected increase in mission duration.

Figure 8.9: Metric propagation to determine how changes in components are expected to affect
value MOEs.

8.3 An Implementation Using ROS 2 Nodes

The final step of the metacontroller involves integration with robotic tools. We have focused
on the Robot Operating System (ROS) due to its widespread popularity, but this structure
is easily portable to other frameworks. To facilitate ROS integration, we have developed
a metacontroller node wrapper, inheriting from the Python class of the metacontroller
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described above. This node is responsible for publishing or executing necessary adaptations
based on diagnostic messages. Additionally, there is an observer node that continuously
monitors the components, goals, capabilities, values, and performance of the application. It
publishes a diagnostic message whenever any of these elements fails or exhibits performance
below the expected standards. Figure 8.10 illustrates how the execution of the metacontroller
(represented in Figure 8.6) integrates with the two ROS nodes.

Figure 8.10: Activity diagram of the metacontroller and the observer nodes. Note that ROS 2 nodes
are cyclic and they finish with an interruption. The activity “find adaptation mechanism” depicted in
gray, corresponds to the main metacontroller execution as explained in Section 8.2.2 and depicted in
Figure 8.6.

The execution begins by launching two ROS 2 nodes: the metacontroller and the observer.
The metacontroller node first loads the ontology and transitions into a waiting state, until a
diagnostic message is received. In our implementation, the observer publishes a diagnos-
tic message following a fault injection process. After this step, the execution detailed in
Section 8.2.2 takes place until the metacontroller selects an adaptation mechanism.

For the final step, the metacontroller node requests the requested adaptation. Depending
on the nature of the adaptation and any additional requirements, the solution may involve
invoking other ROS 2 nodes or publishing to other ROS 2 topics. Figure 8.11 illustrates how
the metacontroller infrastructure can be deployed on top of a ROS 2 application.

However, systems using this solution must possess specific features:
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Figure 8.11: ROS 2 wrapper for metacontroller, composed of a Python class and two ROS 2 nodes, an
observer and the metacontroller itself.

1. Redundancy: Some functional redundancy is necessary to make possible the reconfigu-
ration in the system. This redundancy can manifest itself in diverse aspects such as
control laws, algorithms for behavior, structural components, etc.

2. Monitorization: The system should allow monitoring, ensuring that processes and
elements report realtime information about their operation.

3. Reconfigurability: The entire system must be designed to enable reconfiguration. This
includes the potential for change, including adjusting parameter values, replacing,
eliminating, or launching components.

In conclusion, we have developed reusable assets to provide systems developers with tools
that enhance the dependability and autonomy of their applications. Any developer using
this approach to make their application self-adaptable should employ the metacontroller and
create a specific realization of the metamodel as an application ontology.

Examples of application ontologies used in Chapter 9 can be found in the metacontroller
GitHub repository3 in the ontologies folder. This ontology must contain information about
the system and its components, especially those with functional redundancy, as well as the
mission, tasks, and values of the application. All the metacontroller software is also available
in that repository.

8.4 Using SysSelf: Step-by-Step Process

This section provides the step-by-step process that needs to be carried out by a project
team that wants to use the SysSelf framework to engineer an autonomous system with the
self-adaptation capabilities enabled by the framework. Figure 8.12 represents the software
assets required to use the SysSelf framework.

3https://github.com/aslab/sys_self_mc
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Figure 8.12: Processes required to use the SysSelf framework. The systems engineers shall provide
the information necessary to (i) produce a system model, (ii) monitor the system and (iii) execute
the pertinent adaptation actions. Dotted lines corresponds to the software provided by the framework.
The main constituents—the metamodel and the metacontroller—are highlighted in gray, while those
specific to the ROS 2 implementation—the observer and adaptation executor—are highlighted in blue. In
scenarios where the ROS 2 infrastructure is not utilized, developers must provide the metacontroller with
information regarding the entity affected by a contingency and subsequently execute the reconfiguration
action determined by the metacontroller.

First, system designers must generate a system model encoded in an OWL ontology based
on the SysSelf metamodel introduced in Section 8.1. This file shall have all the design
knowledge of the system. It shall include information about:

• System components and how they are related with optional aspects such as interfaces
and constraints.

• The capabilities the system shall exhibit and whether they can be composable.

• The concrete goals of the system and how they are related with optional aspects, such
as constraints.

• The expected values provided by the system.

• The relationships between components, capabilities, goals, and values must be explicitly
stated defining:

– Which components contribute to which goal.

– Which capabilities are realized by which components.

– Which capabilities contribute to which values.

– Which goals are aligned with which expected values.

• Metrics in terms of technical performance of the components, capability performance
and effectiveness of the expected values. The effectiveness metric can be associated
with stakeholders interested in those aspects of the system.
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Second, system designers shall decide which elements they want to monitor. They must
produce observer software to inform the metacontroller about which system entity has
suffered a contingency. This typically corresponds to a component fault, a not available
capability, a goal that has not been achieved, or an unacceptable performance drop. When
using the ROS2 wrapper introduced in Section 8.3, this means defining or extending the
ROS 2 node that sends a diagnostic message with information about (i) the affected entity,
(ii) relevant information for the metacontroller if available, especially when there is a
performance drop and (iii) the level of severity, i.e., error or warning.

Lastly, the metacontroller requires some methods to execute the reconfiguration action it
proposes. In the current ROS 2 implementation, we produce a set of YAML configuration
files. These files contain the name of the design solutions that may be employed—usually
reused from the ROS workspace—, along with the configuration parameters. These files are
used to launch nodes and publish topics, for example, changing the goal of the system or
adapting some interfaces when a component is changed.
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Chapter 9
Evaluation and Results

In this chapter, we evaluate the metacontroller approach within two distinct testbeds—a
miner robot and a commercial mobile robot. The primary objective of this evaluation is
to demonstrate the practical application of the theoretical and engineering frameworks
introduced in this work, enhancing the autonomy capabilities of the systems through resilient
techniques grounded in self-awareness.

Each testbed is subjected to several scenarios, to prove the effectiveness of the proposed
solution in diverse contingencies. This evaluation highlights the reusability of the models
and the metacontroller across different domains and applications.

This chapter is divided into three main sections. The first two sections introduce the robotic
testbeds, providing details of its software and hardware components. In addition, it includes
a description of how each scenario is executed and the results of the adaptation. The third
section, provides a discussion of the results obtained.

9.1 Miner Robot

The miner robot testbed is part of the ROBOMINERS1 project, funded by the European
Union’s Horizon 2020 Research and Innovation program (grant agreement nº820971). The
objective of the project is to enhance EU access to mineral raw materials. Specifically designed
to operate in deep, small, and difficult-to-access mineral deposits, the robotic mining system
aims to minimize human intervention, especially in scenarios where supervision is severely
restricted.

Given the operational environment, the miner robot is required to autonomously navigate
through disturbances and overcome challenges, including component failures and evolving
mission needs. Resilience, with a focus on reconfiguration at both the hardware and software
levels, is a key aspect of our research.

Figure 9.1 illustrates the miner robot during field trials carried out in the open pit, active,
1https://robominers.eu/
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Figure 9.1: Full-scale prototype of the miner robot during field tests in the open pit, active, oil shale
mine in Kunda, Estonia. Image credits: ROBOMINERS project.

oil shale mine in Kunda, Estonia. These trials validated sensing and structural functions,
including mapping lead and zinc ore in various galleries, distances, and conditions, utilizing
a full-scale prototype. However, the miner robot we refer to is depicted in Figure 9.2 which
corresponds to a scaled-down prototype composed of modular platforms, offering high
configurability to form more complex systems for diverse tasks.

Figure 9.2: Scaled-down prototype of the miner robot composed of highly reconfigurable modular
platforms, adapted from [217].

9.1.1 Miner Robot System Architecture

The miner robot scaled-down prototype has been designed to be modular with self-assembly
capabilities. This design criterion provides a highly reconfigurable solution [218].

▶ HARDWARE

The hardware is composed of modules, which refers to mobile platforms that can operate
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independently. Submodules are considered add-ons that can be attached to the module
depending on the requirements of a specific task, such as end-effectors, additional sensors, or
locomotion devices. Electronic components such as batteries and other actuation systems are
located in the internal compartments of the structure.

Figure 9.3 represents the miner robot structure. Interchangeable end-effectors or additional
sensors are assembled in docking ports. Note that the module is equipped with a soft,
telescopic, continuum arm integrated in the frontal part of the robot. This arm serves as a
mechanical interface to attach other robotic modules or submodules following the principle
of a car crane [219].

Figure 9.3: Robotic module description with the docking ports to manually attach the locomotion
submodules and self-assembly ports to connect additional sensors or modules, adapted from [217].

This approach provides highly adaptable solutions for a variety of tasks, as illustrated in
Figure 9.4. For example, the cutting header submodule can be attached for material extraction
or detached when the task involves only exploration. In addition, the system can incorporate
specialized sensing devices tailored to specific survey requirements. There are two main
locomotive modules, which use archimedean screws or continuous track wheels to provide
versatility for diverse terrains and challenges. In particular, the important feature of this
approach is the autonomous attachment of modules. The soft continuum arm may connect
two locomotion modules to create a longer and stronger system or may join a module with
a mining head to create a miner robot. For more details on the Robominer design, refer
to [217].

Figure 9.5 shows the elements involved in the following scenarios. The connections between
components are dynamic: solid lines represent the initial state for each scenario, and
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Figure 9.4: Miner robot module configuration examples including different locomotive systems, using
archimedean screws or continuous track wheels, and possible configurations combining sensing or cutting
headers or other locomotive modules.

dashed lines represent possible new connections. As mentioned above, this prototype allows
connections between locomotive modules, headers, or both. The main component in the
three cases is an archimedean screw-based locomotive module. The components in blue are
those involved in Scenario 1 (Section 9.1.2), while the components in purple are associated
with Scenario 2 (Section 9.1.3). Other essential modules of the miner robot concept are
depicted in gray for completeness. Since Scenario 3 (Section 9.1.4) handles changes in the
mission, there are no specific physical components involved.

Figure 9.5: Component decomposition of the miner robot concept. Components in blue are involved in
Scenario 1, while components in purple are associated with Scenario 2. Additional components of the
miner robot concept are shown in gray. Solid lines represent structural connections on the robot from
the beginning of the robot’s task, while dashed lines represent dynamic links that may be created during
robot operation.

▶ SOFTWARE

The miner robot software uses existing ROS 2 components to perform its tasks. The main
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software used is Nav2, the most extended solution for guidance, navigation, and control
of mobile and surface robotics. This tool supports different navigation tasks, ranging from
traversing designated points to object following and complete coverage navigation, with the
added benefit of professional support [212].

The main subsystems that constitute Nav2 include:

• Localization: Global positioning is achieved with the Adaptive Monte Carlo Localization
(AMCL) [213] based on a particle filter for localization on a static map. Local positioning
is based on odometry, which fused with the global pose to update state estimation.

Nav2 also provides the Simultaneous Localization and Mapping (SLAM) toolbox to
determine position and generate a static map based on Gmapping [220] that allows
the robot to create a grid map using laser range data and a particle filter.

• Planner: This component computes a path to complete some objective, such as de-
termining the shortest path to a goal pose or complete coverage of all free space.
The default algorithm used is A∗ path planning algorithm that takes into account
non-holonomic constraints of the robot [214] but other solutions are available.

• Controller: The controller provides motion commands to complete a task depending
on the local situation. These controllers can include following a path, docking in a
charging station, boarding an elevator, interfacing with a tool, etc. In these tests, the
default DWB controller is used based on the Dynamic Window Approach2.

• Environmental representation: The robot perceptive information is encoded in costmaps.
These correspond to a 2D grid of cells assigning a cost value to each cell depending if
it is unknown, free, occupied, or inflated.

Maps often use a layer structure to detect and track obstacles in the scene for collision
avoidance. These layers can algorithmically change the underlying costmap based on
some rule or heuristic.

• Point cloud to laser scan: This ROS 2 component3 is a complementary service from Nav2
that transforms the 3D point cloud into a 2D laser scan reading. This tool is useful
for making devices such as depth cameras behave like a laser scanner for 2D-based
algorithms such as SLAM.

The main elements of the software architecture of Nav2 are represented in Figure 9.6. The
framework takes as input a map, a goal pose, and the current pose. The output of this
component is velocity commands to drive the robot. The navigation execution relies on a
behavior tree (BT) [221] to provide flexibility and adaptability to perform the task.

The following sections describe the three scenarios in which we have applied the metacon-
troller. The first scenario handles a critical component that is experiencing a failure. The
second scenario manages a capability that is not meeting its expected performance level. The
last scenario focuses on situations where an unsolvable error occurs or the mission becomes

2https://github.com/locusrobotics/robot_navigation/tree/master/dwb_local_planner
3http://wiki.ros.org/pointcloud_to_laserscan
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Figure 9.6: Navigation 2 software architecture. ROS topics start with a “\” symbol. The input elements
are depicted in purple: goal input and map server. The output is the robot system depicted in dark blue.
The main element is the Nav2 subsystem, depicted in gray, which is further decomposed into the light
blue boxes: localization, path planner, and controller.

unreachable. In all cases, the metacontroller is responsible for taking the necessary measures
to mitigate the impact of these contingencies.

Note that the evaluation was conducted using simulations developed in Gazebo Citadel4 and
ROS 2 Foxy5. The entire source code is available on GitHub6,7.

9.1.2 Scenario 1: Failure in Critical Sensor

In this scenario, there is a robotic module that explores a mine. Figure 9.7a provides a visual
representation of the setup and Figure 9.7b represents the navigation software used. During
mission execution, the observer detects that the main localization sensor, a LiDAR, is not
publishing any topic. This problem can be associated with a malfunctioning sensor or simply
a disconnect.

▶ SCENARIO EXECUTION

The ontological model of this scenario with the elements used is represented in Figure
9.8. The main component is the LiDAR sensor, characterized by its performance metrics
and interfaces. Furthermore, the model illustrates the relationship that shows how this
component contributes to the goal of traversing a list of waypoints, and realizes the capability
of navigation; ensuring the values of exploration, efficiency, and robot integrity.

When the fault is injected by substituting the LiDAR messages for zero readings, the observer

4https://gazebosim.org/docs/citadel
5https://docs.ros.org/en/foxy/
6https://github.com/robominers-eu/rm2_simulation
7https://github.com/robominers-eu/rm2_attachable
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(a) Simulation of the miner robot main module
performing an exploration task in a mine.

(b) Representation of the localization, map and
planner output in the navigation software used
for exploration. Contours of the mine are de-
lineated with distinct colors within the inflated
map layer. These color differentiation affects the
controller output, dynamically adjusting the ve-
hicle’s speed in response to proximity to walls
and obstacles.

Figure 9.7: Setup for the failure in critical sensor scenario for the miner robot.

detects several null readings in the sensor and publishes a diagnostic message8. This
message issues an error in the LiDAR component with the following structure:

• Level: Possible levels of operations in this case: ERROR.

• Name: A description of the test/component reporting, in this case: lidar.

• Message: A description of the status, in this case: ComponentStatus.

The error level, name, and message is used by the metacontroller to find the affected model
entity. When the metacontroller receives that a component is no longer available, it starts
looking for another component with similar characteristics. In this case, it was found that the
depth information from the camera can provide the same data if it is transformed from point
cloud to laser scan. In particular, the metacontroller finds that it can be adapted with an
RGB-D camera that requires a point cloud to laser scan interface. This is the case
of the Example from Figure 8.7 which is repeated in Figure 9.9 for completeness.

However, the camera is less accurate and the data sent is less frequent. Figure 9.10 compares
a map created with a camera and a LiDAR. On the other hand, it consumes less energy.
This is translated to a less expected safety and more mission duration MOEs, but also an
increased efficiency.

8https://docs.ros2.org/foxy/api/diagnostic_msgs/msg/DiagnosticArray.html
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Figure 9.8: Nominal ontological model providing a specification of the LiDAR component, incorporating
performance metrics, interfaces, as well as involved capabilities, values, and goals. Other components
such as camera and interface adaptator are not used at this moment. Note that not all relationships
are visualized for improved readability. Active elements are denoted in blue, whereas inactive ones are
presented in gray; in bold, main relationships.

Figure 9.9: Equivalence between LiDAR and camera sensor through point cloud to laser scan interface
adaptor.
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(a) Mapping results using the depth infor-
mation from an RGB-D camera which has
less accuracy and resolution.

(b) Mapping results using the depth informa-
tion from a LiDAR, generally more reliable for
environmental mapping.

Figure 9.10: Comparison of a map generated with different sensors.
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The reconfiguration action calls the point cloud to a laser scan ROS node to start using the
camera. Figure 9.11 displays the information on the terminal, which includes details about
the metacontroller node and the reconfiguration action.

Initialization OK
Component 1idar_status updated to value UNAVAILABLE
Component app_loc.camera AVAILABLE
REQUIRES app_loc.pointcloud_to_laserscan to be equivalent
Value value_robot_integrity DECREASED after adaption because
change in MOE mission_safety
Main stakeholder affected: robotic_worker

Value value_efficiency DECREASED after adaption because
change in MOE mission_duration
Main stakeholder affected: mine_worker

Value value_efficiency INCREASED after adaption because
change in MOE mission_energy_conssumption
Main stakeholder affected: mine_worker

New Configuration requested: [app_loc.camera,
app_loc.pointcloud_to_laserscan] of type ROS 2 NODE
---------------------Reconfiguration successful---------------------

Figure 9.11: Information displayed in the terminal of the metacontroller node for the failure in critical
sensor scenario, colored text represent the specific application elements on the model from the SysSelf
metamodel.

After this process, the robot returns to its exploration case, using the alternative sensor for
localization. The resulting model is depicted in Figure 9.12. It shows how the camera and
the interface adaptator are used instead of the LiDAR to maintain the system operation.
Furthermore, the figure highlights the impact of this alteration on its performance metrics.
Lastly, stakeholders interested on each value are represented.

In addition, we provide information on the software execution. Figure 9.13 corresponds to a
graph of the initial state of ROS topics and nodes involved in the adaptation, the scan topic
coming from the LiDAR is monitored by the observer that publishes a diagnostic topic to the
metacontroller when it detects continued null failures.

Figure 9.14 represents the nodes and topics in the system affected after the adaption, in this
case the scan messages that come from the camera after being processed in the point cloud
to the laser scan node. Despite the modification, the scan topic continues to be monitored by
the observer component.
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Figure 9.12: Ontological model post-adaptation, showcasing the substitution of the LiDAR with the
camera and interface adaptator. Note that not all relationships are illustrated for enhanced readability.
Active elements are depicted in blue, while inactive ones are shown in gray; affected metrics are represented
by purple arrows; in bold, main relationships.
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9.1.3 Scenario 2: Underachieved Capability

In this scenario, there is a robotic module equipped with a cutting head that is used for
selective mining. Additionally, a spare robotic module is present. Figure 9.15 provides a
visual representation of the setup. During the mining operation, the mission monitor, i.e.,
the observer, detects that the actual mineral extraction rate is lower than the expected value.
This discrepancy is attributed to the robot lacking sufficient forward force to extract the
material effectively.

Figure 9.15: Setup for the underachieved capability scenario. On the left, a robotic module equipped
with a cutting head that is used for selective mining and, on the right, a spare robotic module.

▶ SCENARIO EXECUTION

The ontological model of this scenario with the elements used is represented in Figure 9.16.
The central component is the robominer mining module, which provides the extract
mineral capability, contributing to the respective goal and value. The metrics associated
with this scenario include the force produced by the module and the extraction rate and
processing time offered by the capability.

The mineral extraction metric rate measures how well the extraction capacity per-
forms. When a fault is injected sending an estimated mineral extraction rate of 0.2, which
is significantly lower than the expected value, 0.6. As a result, the observer publishes a
diagnostic message, issuing a warning in this metric. This message has the same structure
as introduced above with the following values:

• Level: WARN status.

• Name: mineral extraction metric rate.
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Figure 9.16: Nominal ontological model providing a specification for the robominer mining module
and the extract capability it realizes, along with the corresponding goal and value. Note that not all
relationships are visualized for improved readability. Active elements are denoted in blue, whereas inactive
elements are presented in gray; in bold, main relationships.

• Message: Value in the measured rate, in this case 0.2.

The metacontroller uses the error level and the measured value to find the affected met-
ric. This information is used to determine the base category impacted; in this case the
capability.

The metacontroller looks for alternative capabilities but does not find any. However, in the
application model, there is a spare robotic module called RM main module that has support
capability and can be connected to the mining robotic module. This implicit relationship
can be found by tracking morphisms and functors in the SysSelf category, as introduced in
the example in Figure 8.8. Figure 9.17 represents how the adaptation action is found by
some physical interfaces to connect the spare robot module with the mining one. When both
modules are connected, a new morphism relationship composable capability emerges
between the support and extraction capabilities.

This adaptation leads to an increase in the amount of mineral extracted, improving the
mineral productivity metric, but it may reduce the mission efficiency; the application
model is updated with this information after the reasoning process. Figure 9.18 represents
the model after adaptation by connecting an additional robotic module to increase system
support and how metrics are affected. Note that these metric changes are represented
qualitatively.
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Figure 9.17: Support capability required to solve the lack of force contingency, requires to connect a
robominer module through an interface adaptor.

Figure 9.18: Ontological model post-adaptation, showcasing the use of an additional robotic module
to increase the system support. Note that not all relationships are illustrated for enhanced readability.
Active elements are depicted in blue; affected metrics are represented by purple arrows; in bold, main
relationships.
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Lastly, the metacontroller commands the adaptation, which in this case involves attaching
the spare module to the mining module, connecting their bodies. After the adaptation, the
mission resumes. Figure 9.19 represents the information displayed in the terminal, including
details about the metacontroller node and the reconfiguration action. Figure 9.20 depicts the
resulting outcome of the adaptation, both modules connected to continue the mining task.

Initialization OK
New WARN status received, checking metrics
Capability app_attach.capability_extract underachieved,
searching for alternatives
No alternative object found in Capability category
Searching for alternatives in other categories
Component app_attach.rm_main_module AVAILABLE
REQUIRES app_attach.interface_adaptor to be equivalent
Creating new morphism from relation in other category
---------------------Reasoner executed---------------------
Value value_extraction INCREASED after adaption because
change in MOE mission_mineral_productivity
Main stakeholder affected: mine_exploiter

Value value_extraction INCREASED after adaption because
change in MOE mission_mineral_productivity
Main stakeholder affected: surface_operator

Value value_efficiency DECREASED after adaption because
change in MOE mission_duration
Main stakeholder affected: mine_operator

New Configuration requested: [app_attach.rm_main_module,
app_attach.interface_adaptor] of type ROS 2 NODE
---------------------Reconfiguration successful------------------
Executing attach action
Action succeeded!
---------------------RESUMING TO MINING TASK-------------------

Figure 9.19: Information displayed in the terminal of the metacontroller node for the lack of force
scenario, colored text represent the specific application elements on the model from the SysSelf metamodel.

9.1.4 Scenario 3: Unachievable Mission

In this scenario, a robotic module equipped with a cutting head designed for selective mining
encounters a critical contingency. The robot realizes that accomplishing the mission of
extracting a specified amount of mineral from the current deposit is unattainable. The only
viable solution involves moving the robot to a new deposit location. Figure 9.21 illustrates
the configuration of this setup.
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Figure 9.20: Setup after adaptation. The robotic module equipped with a cutting head has connected a
spare robotic module to have more force. Now it can continue the mining task.

Figure 9.21: Setup for the mission unachievable scenario. There is a robotic module performing selective
mining when the robot realizes that it cannot extract the desired amount of mineral from that deposit.
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▶ SCENARIO EXECUTION

The ontological model in this case uses a mining module to extract mineral. However,
there is another capability not used at the moment, the navigation capability, as the
main value provided by this setup is the efficient extraction of mineral. Figure 9.22
represents the main elements of the model ontology.

In this case, the ontological model revolves around using a mining module specifically de-
signed for mineral extraction. Although there is an additional capability for navigation,
it is not in use at the moment. This decision is intentional, given that the primary focus of
this setup is on efficiently extracting mineral. See Figure 9.22 for a visual breakdown of the
main elements of the model ontology.

Figure 9.22: Nominal ontological model in the case of the extracting mineral goal scenario. Note
that not all relationships are illustrated for enhanced readability. Active elements are depicted in blue;
inactive, in gray; in bold, main relationships.

If we introduce an error in the mission extraction status through a ROS topic, the diagnostics
node will publish a message with the following structure:

• Level: Error status.

• Name: Mineral extraction goal.

• Message: Not available.

The metacontroller will receive the error status from the diagnostic system. In this case, there
is no failure within the system itself, but rather a limitation in the mine deposit, making it
impossible to extract the intended material. This state is directly related to the main goal, so
the unique possibility is to use an alternative goal of navigating to another deposit location.
Figure 9.23 represents the system after adaptation in which the extraction goal and the
corresponding capability that enables are no longer active. The new goal is to move to a
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new deposit, i.e., a new pose to which the robot shall navigate. These changes are reflected
in an increase in the expected MOEs, both in productivity and mission duration. Note that
these metric changes are represented qualitatively.

Figure 9.23: Ontological model post-adaptation, it shows the change of goal to continue the operation.
Note that not all relationships are illustrated for enhanced readability. Active elements are depicted in
blue, inactive in gray; affected metrics are represented by purple arrows; in bold, main relationships.

As a consequence of this adaptation, the robot informs interested stakeholders about changes
in their correspondent MOEs. The value productivity is expected to increase as the
robot continues to extract the desired material from the new deposit. However, the value
efficiency is expected to decrease as the duration of the mission also increases. Figure 9.24
illustrates a terminal output from the observer and metacontroller nodes. Note that in this
scenario, the adaptation action does not involve changes to the nodes and topics within the
system. Instead, it revolves around updating the destination location for the robot.
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Initialization OK
New WARN status received
Goal app_mine.extract_quantity_mineral unreachable,
searching for alternatives
Goal app_mine.move_to_deposit AVAILABLE

Value value_extraction INCREASED after adaption because
change in MOE mission_mineral_productivity
Main stakeholder affected: mine_operator

Value value_extraction INCREASED after adaption because
change in MOE mission_mineral_productivity
Main stakeholder affected: mine_exploiter

Value value_efficiency DECREASED after adaption because
change in MOE mission_duration
Main stakeholder affected robotic_operator

New Configuration requested: [app_mine.move_to_deposit] of type ROS 2 TOPIC
---------------------Reconfiguration successful---------------------

Figure 9.24: Information displayed in the terminal from the observer and metacontroller nodes for the
unachievable quantity of mineral extraction, colored text represent the specific application elements on
the model from the SysSelf metamodel.

9.2 Mobile Robot

The real experimental trials used a Pioneer 2-AT8 mobile robot, a standardized platform
designed by ActivMedia Robotics for research purposes. Figure 9.25 shows the mobile robot
used in these experiments.

9.2.1 Mobile Robot System Architecture

This robotic platform has been used in our research group for more than a decade for
autonomous navigation tasks in office-like environments. However, to align with contempo-
rary requirements, some modifications have been made. Figure 9.26 depicts the structural
decomposition of the robot, showing exclusively the elements relevant for the tests.

The main elements of the system architecture include the following:

• Differential wheel drive subsystem: It consists of a four-wheel configuration with an
encoder and motor controller per side. Each controller is equipped with an embed-
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Figure 9.25: Mobile robot testbed Pioneer 2-AT8 with its main sensors, LiDAR and RGB-D camera,
mounted.

ded PID control loop, accepting set-points for both linear and angular velocities as
commands.

• LiDAR Hokuyo UST 10LX: A compact 2D laser sensor offering readings within a 270◦

angle range and a detection span ranging from 0.06 to 10 m. This device, known for
its small size, precision, and high speed, is used for obstacle detection and localization.

• RealSense D435 camera: Serving as the redundant localization sensor, this RGB-D
camera captures images with resolutions up to 1920x1080 pixels at 30 FPS and a
vertical and horizontal range of 85◦, as well as stereo depth information. In this case,
only the depth information is used when the LiDAR is not available as the information
provided is much more imprecise and noisy.

• NVIDIA Jetson AGX Orin: The embedded computer in the robot, it uses a 2048-core
NVIDIA Ampere architecture GPU with 64 Tensor Cores, operating at a maximum
GPU frequency of 1.3 GHz. The computer can be configured at 15, 30, or 50 W; for
these tests, the minimal potency was sufficient. While its capabilities are tailored for
AI applications, which are not utilized in this case, future works aim to explore its
potential in conjunction with the approach presented in this dissertation.

For the software architecture, it maintains the core elements outlined in Section 9.1.1,
using Nav2 ROS 2 components and the necessary drivers for the robot platform and sensors
available in the research group’s GitHub repository9.

9https://github.com/aslab/HiggsModel
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Figure 9.26: Breakdown of the main components involved in the mobile robot tests. The main computer
is represented in dark blue, while the remaining components are illustrated in light blue.

9.2.2 Scenario 4: Failure in Critical Sensor

The contingency addressed in this failure is equivalent to the one described in Section 9.1.2
the only change is the robot used and the setup in which the scenario develops. The
motivation in this case is to compare reusability and performance in similar settings for
simulation and real deployment. Figure 9.27 represents the robot during the navigation task.

(a) Mobile robot in an office-like envi-
ronment performing an exploration
task.

(b) Representation of the localization, map and
planner output in the navigation software used
for exploration. Contours of the office are de-
lineated with distinct colors within the inflated
map layer. These color differentiation affects the
controller output, dynamically adjusting the ve-
hicle’s speed in response to proximity to walls
and obstacles.

Figure 9.27: Setup for the failure in critical sensor scenario for the mobile robot.

Before adaptation, the scan information can be determined from the LiDAR node, denoted
as /urg_node in Figure 9.28 but after adaptation this information is received from the
/pointcloud_to_laserscan node transformed from the camera.
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9.2.3 Scenario 5: Unsolvable Capability Error

This scenario has the same setup as above, an office-like environment in which the robot is
moving around. However, an unsolvable failure in the communication module makes this
capability unreachable.

▶ SCENARIO EXECUTION

The ontological model of this scenario with the elements used is represented in Figure 9.29.
The mobile robot has the capability to navigate. The current goal is to traverse a list of
waypoints; however, there is the safe waypoint goal that may be used in the event of
unsolvable emergencies. Values and stakeholders are also depicted for completeness.

Figure 9.29: Nominal ontological model for the navigation task in the unsolvable capability error
scenario. Note that not all relationships are visualized for improved readability. Active elements are
denoted in blue, whereas inactive ones are presented in gray; in bold, main relationships.

When the metacontroller receives an error status from the diagnostic system. The primary
entity affected by this failure is the robot’s capability to communicate with the operator. The
message received has the following structure:

• Level: ERROR status.

• Name: Operator communication.

• Message: Not available.

In this case, the failure affects a capability, but there are no viable alternatives within the
system to resolve this issue, leaving the only viable solution as a change in the mission goal
to go to a safe location and wait for maintenance.
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Therefore, to adapt to this situation, the reconfiguration action involves publishing a ROS 2
topic to command the robot to relocate to a safe location. This strategic move aims to
facilitate the task of the robot operator, given the inability to communicate directly with
the robot. Figure 9.30 shows the terminal output of the observer and metacontroller nodes.

Initialization OK
New ERROR status received
Capability app_goal.operator_communication unreachable, searching for alternatives No alternative object found in Capability category
Searching for alternatives in other categories
Goal app_goal.safe_wp AVAILABLE
New Configuration requested: [app_goal.safe_wp] of type ROS 2 TOPIC
---------------------Reconfiguration successful---------------------

Figure 9.30: Information displayed in the terminal from the observer and metacontroller nodes for the
communication failure, colored text represent the specific application elements on the model from the
SysSelf metamodel.

In cases where the mission changes due to unforeseen circumstances, such as this communi-
cation failure, information about how the metrics change may not be readily available or
relevant. As a result, such metrics are not included in the metacontroller logger, as the robot
is expected to get some maintenance before resuming to its task.

9.3 Analysis

The scenarios outlined above were intentionally designed to address a diverse range of cases,
with the aim of evaluating the framework from multiple perspectives. To achieve this objec-
tive, two systems were employed—one in simulation and one with a real robot—performing
similar and comparable tasks, although with some inherent differences. The following
sections examine the scope, performance, and reusability of the SysSelf framework derived
from the tests conducted.

9.3.1 Scope

The framework developed in this thesis aims at broad applicability, being independent of
specific domains or applications. The solutions offered are not pre-defined or hard-coded;
instead, they are dynamically selected at runtime based on the specific requirements of the
situation.

The experiments carried out highlight the effectiveness of the model-based metacontrol
approach for adaptation. In contrast, other approaches often incorporate ad-hoc solutions
tailored to specific robots and their tasks. For example, in the Navigation 2 framework,
predefined recovery actions are triggered using BTs based on the failing component:
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• Planner: When the system cannot generate a plan, it clears the global map used by the
path planner.

• Controller: When this component fails to determine a suitable velocity, it clears the
corresponding area in the environmental model (i.e., local map).

• Navigation: When the whole task fails, it first clears the entire environmental model,
then spins the robot in place to reorient local obstacles, and ultimately waits for a
timeout.

According to Macenski et al. [212], there were two primary scenarios that triggered recovery
behaviors in the robot. The first scenario involved crowded spaces where the robot was
unable to compute a clear path to its destination. If the clear map recovery approach failed and
the path was obstructed by people, the robot used wait recovery, which stopped navigation
until the path was clear. The second scenario occurred when localization confidence was
low, particularly in long corridors with repetitive features and many people. In these cases,
the spin recovery approach—in which the robot spins in place—was used to improve the
confidence in position before resuming its task.

Although these ad-hoc recovery approaches did utilize the knowledge and experience of
engineers in dealing with contingencies, they lacked the ability to provide a clear rationale
for the robot’s actions. As a result, the reasoning behind these approaches remained solely in
the minds of the engineers. This lack of transparency can raise concerns about the reliability
of the system. A particular recovery approach might not be suitable for a given situation or
could adversely impact a properly functioning subsystem. For example, the planner recovery
approach, which clears the global map, can affect the local map used by a faultless controller.

On the contrary, our solution leverages system models for adaptation. The explicit formalisms
used facilitate the traceability of the contingencies and the resulting decisions, providing
engineers and the robot itself with updated, consistent, and transparent models throughout
the entire operation.

9.3.2 Runtime Performance

To evaluate the performance of the framework, we have measured the downtime when the
metacontrol recovers the system for each scenario. Each scenario has been tested under
50 iterations to measure the maintenance time which includes the latency (time to detect
the failure), reasoning time, and reconfiguration time. The simulated experiments were
performed on a 64-bit Ubuntu 20.04 PC with an Intel i7 13700HX processor and 16 GB of
RAM memory and using ROS 2 Foxy as middleware. For the real experiments, a 2048-core
NVIDIA Ampere was used using a 64-bit Ubuntu 20.04 NVIDIA Jetson AGX Orin and ROS
2 Foxy. Table 9.1 shows the average maintenance time after 50 iterations and its standard
deviation; when possible the time was measured executing only metacontrol and both
metacontrol and navigation in the same processor to evaluate the impact of other tasks.
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AMT (s) Std dev

Simulation

Sc1: Failure in critical sensor
MC 0.977 0.039

MC and Nav 1.607 0.193
Sc2: Underachieved Capability MC 1.041 0.128

Sc3: Unachievable Mission
MC 0.994 0.077

MC and Nav 1.852 0.048

Real
Sc4: Failure in critical sensor

MC 2.026 0.247
MC and Nav 5.243 0.774

Sc5: Unsolvable Capability Error
MC 0.927 0.295

MC and Nav 3.135 0.848

Table 9.1: Average Maintenance Time (AMT) in the evaluation scenarios after 50 iterations and standard
deviation. Scenarios have been evaluated that execute (i) metacontrol (MC) and (ii) metacontrol and
navigation (MC and Nav) in the same processor to measure the impact of other tasks.

In the simulation, the average maintenance time is approximately 1 s when solely executing
the metacontroller and less than 2 s when running it alongside the navigation framework.
All three scenarios exhibited similar AMTs, regardless of the contingency that occurred.
However, in the real robot, adapting to the laser contingency (Scenario 4) takes around 2 s
when only using metacontrol and approximately 5 s when deploying it in conjunction with
navigation. Conversely, the communication failure (Scenario 5) requires less than a second
for recovery using metacontrol alone, and about 3 s when executing both subsystems.

The discrepancy between these cases is attributed to the latency of the point cloud laser scan,
which takes some time to configure and start sending messages to restart the navigation.
Additionally, in both cases, the onboard computer operates in a low-performance mode (15
W) to reduce energy consumption, justifying the differences between using only metacontrol
or both metacontrol and navigation. These results underscore the benefits of the SysSelf
framework, as they should be compared with the expected maintenance time, estimated at
300 s for a human operator to reach the robot and restart the system.

9.3.3 Reusability

The SysSelf ontology provides general concepts applicable to any system. It constitutes the
terminological layer that can be expanded with domain-specific knowledge to reuse and
tailor certain concepts in a specific field. For example, sensors or actuators components can
be further specified with elements such as range sensors or wheels and gripper actuators,
common components in robotics. These ontologies are loaded as libraries, with the final layer
being the application-dependent ontology, storing all engineering information about the robot
and its mission. This layered approach enables the creation of domain- or application-specific
rules and relations to refine the applicability of the framework.

In this research, we have prioritized generality, using the structure outlined in Chapter 7
for the application model for each scenario. Therefore, the reasoning executed by the
metacontroller was focused on the SysSelf concepts. For example, the models in the sensor
failure contingency in Scenarios 1 and 4 are identical, with only minor changes in names for
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clarity purposes, yet they share 29 individuals. The underachieved capability of Scenario
2 is reused in 73% for Scenarios 3 and 5, where the models are less complex, comprising
16 individuals. These findings demonstrate that, while some adjustments are necessary to
incorporate application particulars, they are relatively straightforward to implement.

However, implementing this approach in the application code requires certain changes.
First, adding a new element—be it a component, goal, capability or metric—requires a new
observer responsible for sending diagnostic messages to the metacontroller. This observer
monitors the behavior of the system to detect anomalies or malfunctions, notifying the control
system accordingly. Additionally, the current version of the metacontroller requires a YAML
file containing the name of the application—ROS workspace—that the SysSelf framework is
adapting, along with configuration parameters for available design solutions that may be
employed, such as parameters for the point cloud to laser scan node or the specific location
the robot should move to ensure safety during a fatal contingency.

Through this approach, we have implemented a fault-adaptive subsystem in general terms
to address faults at different levels. This method offers a reusable asset for systems with
design alternatives to complete their mission in the presence of contingencies without human
intervention. Moreover, with these experimental settings we have provided evidence of
the benefits of automatic reconfiguration via ontological architectures in reducing recovery
time.
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Chapter 10
Conclusions and Future Work

This chapter provides a summary of the contributions to knowledge and the main conclusions
derived from this research. The second part discusses the limitations of the current approach
and explores potential means of overcoming them as proposals for future work.

10.1 Conclusions and Main Contributions

There is a demand for increased dependability in autonomous systems. As proposed by
Brachman [1], achieving this goal may require looking beyond existing methods and re-
considering systems from a new perspective, addressing their inherent complexities. Our
approach suggests stepping back from implementation and ad-hoc solutions, seeking general
techniques to address problems that may arise during robot operation. This research aims to
equip systems with the tools to respond appropriately to uncertain situations, reflecting the
decision-making capabilities of a human operator who supervises the robot.

SE provides an integrative approach to handle systems during their whole life cycle, from
design to operation, and even its decommissioning. We use this domain to precisely define
terms of the SysSelf metamodel. This field not only provides well-established fundamental
concepts but also offers a perspective for understanding systems. SE forces us to consider the
system’s evolution, its architecture, specific designs, alternative approaches, and the diverse
interests of all stakeholders involved. Our solution aims to use the information available
during the system design phase to the robot operation to ensure it is aware of its capabilities
and it can adapt to the situation.

We conceptualize models in alignment with General Systems Theory (GST), considering
them as theoretical constructions bridging highly generalized mathematical concepts with
specific theories of specialized disciplines. With this principle, we have built the SysSelf
metamodel. As a formal foundation, we employ CT, a language for mathematical abstractions
that introduces a novel perspective in the robotics domain.

The SysSelf metamodel is integrated into the robot execution with the metacontroller, a
tool that manages real-time knowledge about its current state and attainable capabilities to
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adapt the system if a contingency arises. This solution provides flexibility; as there are no
pre-established ways to adapt the system, they are determined during the robot operation
based on its necessities and availability. This strategy overcomes limitations often associated
with typical fault-tolerant and self-adapting approaches, which tend to be ad-hoc and tailored
to specific anticipated problems.

The outcome of this research is a collection of reusable software assets—the metamodel and
its executor, the metacontroller—that can be integrated with autonomous systems as long as
they have some design alternatives or redundancies.

The main contributions of this thesis are summarized below:

1. Novel Perspective: This research introduces a novel perspective that effectively bridges
the gap between abstract mathematical representations and the domain of technological
systems as described in Chapter 6.

This perspective is applied with an in-depth analysis of autonomous system concepts
and methods to increase their dependability, including fault tolerance, self-adaptation,
and formal methods; as well as a study on other apparently unrelated fields such as
SE, KR&R and CT.

2. Formalization of System-Level Concepts: The thesis put system-level concepts at the
service of robot operation, using reasoners at different levels of abstraction. This con-
ceptualization results in a reusable metamodel that defines the language for expressing
engineering knowledge of specific applications.

Our metamodel uses ontological reasoners and CT-methods to overcome the limitations
identified in the literature. This solution is built upon the lessons learned from a
broad survey conducted on robotic frameworks using ontologies and our evaluation of
Hernández et al. [26] metamodel, TOMASys.

3. Metamodel Reification: The research uses a metacontroller to exploit system models
with an application-independent tool designed to determine optimal solutions in a
variety of cases. The metacontroller is technology-agnostic, making it adaptable to
systems developed using different frameworks. Nevertheless, a ROS 2 wrapper is
provided for easy integration within the robotic domain.

This work provides a complete solution for endowing systems with self-aware capabilities,
particularly those featuring functional redundancy or the potential for change. The applica-
bility of the solution is demonstrated across various systems and tasks, as proved in Chapter 9,
where the metacontroller managed contingencies at the component, goal or capability levels
in two testbeds across five scenarios.

The conducted tests demonstrated the real-time usability, with adaptation downtime ranging
from 0.9 to 5.2 s, depending on the ongoing processes and the platform used. Note that the
adaptation time values correspond specifically to the autonomous robots and applications
evaluated in Chapter 9, and these times may vary in other applications. In contrast, the
estimated time required for a human operator to reach the robot and restart the system is
approximately 300 s. However, this duration could notably escalate in complex environments
such as difficult-to-reach deposits, as those simulated in the initial three scenarios.
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10.2 Limitations and Future Work

The question of enhancing autonomy from a systemical perspective involves a wide spectrum of
topics. Therefore, addressing all aspects in depth was beyond the scope of this research. We
focus on three pillars: systems, mathematical abstractions, and declarative knowledge.The
main limitations of the proposed framework are as follows:

1. Limited representation: While the framework provides representation for general con-
cepts following the CT principles, it is based on conceptual relationships between
components, capabilities, goals, and values. However, there are other relevant rela-
tionships between systemical aspects across the whole system life cycle that are not
explicitly represented in this framework, such as those concerning risks and future
states depending on system configurations.

The use of more detailed structures has the potential to enhance reasoning capabilities,
extending its scope from the current state of the system to potential challenges and
resolutions. Moreover, the representation of the system environment and how it may
evolve could yield more substantive insights. However, relying solely on declarative
techniques to represent these aspects often proves impracticable. Therefore, integrating
the framework with other capabilities, such as learning, holds promise to significantly
improve its versatility and efficacy.

2. Extend evaluation: Although SysSelf is a versatile framework with potential applicability
across a wide range of engineered systems, its evaluation so far has been limited to just
two mobile robotic platforms. The solution shall be applied to other complex systems,
such as social robots, or multi-agent structures, and diverse technological domains
such as manufacturing or chemical plants. Furthermore, additional metrics need to be
considered, such as the configurability level, system observability, and a comparative
analysis of engineering efforts required to address contingencies with and without
SysSelf.

3. Steep learning curve: The inherent complexity of the framework may pose challenges
in terms of usability for developers. This work provides an introduction on aligning
system knowledge with CT principles; the absence of engineering-grade tool support
for reasoning in these terms has been mitigated by employing ontologies. However,
this reliance on ontologies could potentially discourage developers due to its entry
barrier. To overcome this obstacle, providing a tool that facilitates translation between
popular developer tools and this framework could be highly beneficial.

To address these limitations, several research paths are open to complement and extend this
work. Perhaps the natural continuation of the framework would be to align with Brun et
al. [33], addressing its requirements for self-adaptive systems (Section 2.5). In this research,
the first two requirements, in which we define the ideal structure and concepts to handle
the current state of the system, are covered. However, the solution would be considerably
improved by addressing the decision-and-act phase. CT provides reasoning at different levels
of abstraction, but what-if reasoning or reasoning based on past events may considerably
improve the capabilities of the framework.
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Additionally, we envision significant potential in alternative forms of abstract reasoning and
their integration with other types of models, such as neural networks or differential equations.
This research line is a focal point within the CORESENSE1 project, where we intend to make
progress in this direction. The integration of subsymbolic approaches with the SysSelf
framework may contribute to enhance component generalization so that different types of
components may be identified automatically or provide a more complex diagnostics tool to
detect a wider variety of contingencies.

In terms of usability of the provided assets, future work may be directed toward the devel-
opment of additional tools to simplify the integration process. For example, by creating
mechanisms to automatically detect configuration files and generate the required system
models. A preliminary approach to the SysSelf antecedent, TOMASys, was explored in [203].

Furthermore, a promising approach to facilitate the creation of these models would be the
transformation of concepts from MBSE languages such as UML or SysML, allowing translation
between engineering models of different aspects. Such models may even have various levels
of abstraction, from equations to component hierarchies. The use of CT formalizations to
bridge the gap between various granularities of models, levels of abstraction, and viewpoints
may help provide a consistent model-to-model transformation.

In conclusion, the steps outlined in this research toward formalizing designs and recoveries
present a promising approach to enhancing robot autonomy. The metacontroller and its
metamodel serve as a neutral and universal framework for formally representing and rea-
soning about the structure and behavior of complex systems with numerous interconnected
components. This formalization has the potential to enhance robot dependability and provide
a better understanding of complex robotic systems.

1https://coresense.eu/
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Appendix B
Implementation for an Underwater Mine
Explorer Robot

Here we provide more details on the implementation discussed in Section 7.2.1. In this
application, the reconfiguration available in the UX-1 is the selection of a force allocation
matrix. Each Function Design in the UX-1 ontological model corresponds to a different force
allocation matrix, and it depends on which thrusters are used according to the following
dynamical model. The non-linear equation in (B.4) models the motion for an Underwater
Unmanned Vehicle (UUV) using the motion representation vectors in (B.1)–(B.3).

ν= [u, v, w, p, q, r]T (B.1)

η= [x , y, z,φ,θ ,ψ]T (B.2)

τ = [X , Y, Z , K , M , N]T (B.3)

M ν̇+C(ν)ν+ D(ν)ν+ g (η)= Bτ (B.4)

where ν is the linear and angular velocity vector, η is the position and orientation vector,
and τ is used to describe the forces and moments acting on the vehicle. The motion model
matrix are M , which is the system inertia matrix, C(ν), the Coriolis and Centripetal term
matrix, D(ν), the total hydrodynamic damping matrix. g(ν) is the vector of hydrostatic
forces and moments for the gravitational and buoyant forces acting on the vehicle and B
is used as a mapping matrix for thruster configuration. Further detail of this model can be
found in [222].

The action taken by the reasoner is directed at the thruster configuration matrix B. This
matrix is used to define how the thruster configuration affects the dynamics of the UX-1
robot. The UUV is actuated with eight symmetrically allocated thrusters on each side of the
vehicle. B is a 6 x 8 matrix, the rows are the six DOF, {X , Y, Z , K , M , N}, and the columns
correspond to each thruster, {T0, ... , T7}.
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Based on the dynamics of the system and the effect of the thrusters, the matrix B is defined
in (B.5).

B =















1 0 −1 0 1 0 −1 0
1 1 1 1 −1 −1 −1 −1
0 1 0 −1 0 1 0 −1
0 −l 0 l 0 l 0 −l
0 0 0 0 0 0 0 0
l 0 −l 0 −l 0 l 0















(B.5)

with
l = sin(δ)
q

σ2
1 +σ

2
2 (B.6)

where σ1 is the distance from the axis of the thrusters to the geometrical center of the UX-1,

σ2 is the distance from each thruster to the middle lateral point, and δ = arctan
σ2

σ1
is the

rotation angle of the moments generated on the UUV.

After experimental tests, this matrix is adapted to force limitations and particularities in
the final thruster disposition. The real B used when all thrusters are well-functioning is
presented in Equation (B.7); this is the configuration used with function designs fd_surge_all
and fd_heave_all. Note that this matrix is independent of the direction of movement. When
surging, the system will use the information in the first row (X ); whereas when heaving, it
will use the third row (Z).

Breal =















0.5 0 −0.5 0 0.5 0 −0.5 0
0.25 0.25 0.25 0.25 −0.25 −0.25 −0.25 −0.25

0 0.5 0 −0.5 0 0.5 0 −0.5
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0.25 0 −0.25 0 −0.25 0 0.25 0















(B.7)

When a thruster is disabled, for example T0, its corresponding column is set to zero. The
force allocation depends on the movement direction, when one thruster is not functioning,
the sum of forces made by one side needs to be equal to the other side to preserve symmetry.
If T0 is disabled, T2 could double its force to compensate. However, for security reasons, it is
preferable to preserve the nominal workload in T2 and divide it by half in the other side, T4

and T6, see Figure B.1.

The adaptation of the B optimal matrix in (B.7) to the case of the thruster T0 disabled while
surging, results in the matrix (B.8).

BnoT0 =















0 0 −0.5 0 0.25 0 −0.25 0
0 0.25 0.25 0.25 −0.125 −0.25 −0.125 −0.25
0 0.5 0 −0.5 0 0.5 0 −0.5
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −0.25 0 −0.125 0 0.125 0















(B.8)
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The same force-conservative approach is taken when any thruster is disabled, adapting the
force reallocation to their motion contribution, surge in (T0, T2, T4, T6) and heave in (T1, T3,
T5, T7).

Figure B.1: Force allocation in thrusters T0, T2, T4, T6 when surging.

When the reasoner creates a Function Grounding entity from the selection of the most
suitable Function Design, the reconfiguration is triggered. The reconfiguration consists of the
adaptation of the B matrix according to the availability of thrusters. This matrix is stored in a
comma-separated values (CSV) file. The name of the file corresponds to the Function Design
reified by the Function Grounding. Since this implementation uses ROS, the reconfiguration
is triggered by publishing the resulting matrix to a ROS topic for the low-level controllers,
which will use this matrix to adapt the motion to the runtime situation, according to the
motion model in (B.4).

B.1 Experimental Results

Experiments follow a software-in-the-loop approach, through the combination of the Gazebo [223]
simulator and a realistic model of the UX-1 robot. The position of the robot was acquired
from Gazebo’s ground truth measurements, further disturbed with random Gaussian noise
accumulated over time, to better mimic the positioning system of the real submersible based
on noisy instant relative measurements and dead-reckoning. The controller used for the
experiments is the Feedback Linearization (FL) controller developed for the UX-1 platform
and presented and validated in detail in [222]. The experiments were carried out on a 64-bit
Ubuntu 16.04 PC with an Intel i7-6700 2.6 GHZ processor and 16 Gb of memory and using
ROS Kinetic as middleware.

Three different experiments were performed, all of them reproducing the setting and steps
explained above, but with different thrusters enabled/disabled. The first experiment, denoted
as I, was performed with all the thrusters working. The second experiment, denoted as
II, was performed with a simulated failure of one of the thrusters in charge of the heave
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movement (T0, T2, T4, T6). Finally, the third experiment, denoted as III, was performed with
a simulated failure of one of the thrusters in charge of the surge movement (T1, T3, T5, or
T7).

Experiments were carried out in an analogous setting, and the commanded path consisted
of waypoints containing the desired location in space and the orientation of the robot, and
were entered in the following format [x , y, z,φ,ψ], where the location variables x , y , and z
follow the usual North (x)-East (y)-Down (z) convention for marine navigation, and φ and
ψ represent, respectively, the pitch and yaw of the robot. The complete reference path was
composed of the following 6 waypoints (x , y, z in meters, φ,ψ in degrees).

A : ( 0, 0, 2, 0, 0), B : ( 2, 0, 2, 0, 0), C : (3.5, 0, 2, 0, 0),
D : (1.5, 0, 2, 0, 0), E : ( 0, 0, 2, 0, 0), F : ( 0, 0, 0.5, 0, 0)

. (B.9)

In the experiment II, corresponding to the fault situation, the said failure of the thruster T0

was triggered during the surge movement while going away from the deployment location
when the submersible reached the position x = 1.7 m. In the experiment III, thruster failure
T1 was triggered during the heave movement while leaving the deployment location when
the submersible reached the position z = 0.8 m. The time elapsed between the failure trigger
and the system reconfiguration, referred to as latency, in the experiment II was 1.81 s, and
in the experiment III was 1.09 s. The measurement of these elapsed times was performed
by comparing the timestamps of ROS messages, and therefore its precision depends on the
timestamps’ quality. Since all the nodes were run on a single PC, we assume that there is no
considerable delay caused by ROS middleware. The latency is depicted in Table B.1c.

The odometry measurement of each experiment is shown in Figure B.2, as well as the
reference waypoints depicted in alphabetical order corresponding to (B.9). The root-mean-
square deviation (RMSD) of submersible’s position with respect to the ideal path, described by
linking the commanded waypoints, is depicted in Table B.1a. It can be noted that the RMSD
for all experiments has similar values. This result is in line with expectations and confirms
the assumption of redundancy of the UX-1 motion system, showing that the submersible
can successfully perform the desired maneuvers (surge and heave, in this particular proof-of-
concept) despite the failure of one of the thrusters.

Figure B.3 depicts the command for the force reference over time in all three experiments:
that is, the force in each direction demanded to the thrusters by the controller, and Table B.2a
depicts mean values of each reference force. Figure B.4 depicts the forces produced by each
thruster in charge for surge movement, and Figure B.5 shows the forces produced by each
thruster in charge for heave movement. Table B.2b summarized the mean values of the force
produced per thruster.

It can be seen that the mean commanded force has almost identical values in all three tests:
however, the forces actually produced by the thrusters are lower in the experiments II and
III, compared to the experiment I in which all thrusters were working properly and with
full power. The lower accomplished forces by the thrusters cause, as expected, the longer
duration of the experiment (see Table B.1b). The considerable difference in duration of the
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experiment II seems to be the result of the relative lengths of the vertical and horizontal
sections of the experimental setting: the length of the reference path is longer in North (x)
direction than in Down (z) (7 m versus 3 m); the longer distance traveled with reduced
power in the thrusters in charge in that direction leads to the observed longer duration for
completing the desired maneuver.

The green graphs in Figure B.4, corresponding to the experiment II, visually depict the
effect of the successfully performed runtime system adaptation of the submersible due
to the thruster failure. The time instance when the thruster failure is triggered is shown
with a vertical black line. After the waypoint A is reached and before the moment of the
thruster failure, Function Design fd_surge_all is used, implying that all the thrusters are
working properly and with full power. When failure is simulated in the thruster T0, the
reconfiguration is triggered and the new Function Design is selected, that is, the one that does
not require the malfunctioning thruster T0, fd_surge_no_t0. This Function Design implies
the use of the opposite thruster on the same side of the hull, T2, operating at the same
power (Figure B.4b), and the two thrusters on the other side of the hull, T4 and T6, operating
at half power (Figure B.4c,d). The reduction in power by half can be perceived by comparing
it with the experiment I (graph in purple) when all thrusters were working properly.

Analogously, the blue graphs in Figure B.5, corresponding to the experiment III, illustrate
the successfully performed runtime system adaptation due to the failure of thruster T1.

Finally, the performed experiments, II and III, are compared to the initial naive approach
consisting of disabling the symmetric thruster, i.e. the thruster in the same position but on
the opposite side of the robot. Table B.3 summarizes the numerical comparison between the
experiments performed using the proposed metacontroller and the experiments performed
using the naive approach. Table B.3a shows mean forces, Table B.3b duration, and Table B.3c
latency of each experiment. It can be noted that the produced mean forces have similar
values; however, higher values are obtained in the experiments with the metacontroller.
This result is expected since the metacontroller avoids deactivation of a proper-functioning
thruster; contrary to the naive approach. This result directly affects the tests’ duration,
causing the longer duration of the experiments done with the naive approach. Finally, the
latency of the system response to thruster failure is compared and depicted in Table B.3c.
Both experiments have similar values; however, slightly shorter latency is obtained with the
naive approach due to the usage of fewer ROS nodes.

These experiments demonstrate the viability of the model-based approach for reconfiguring
the deployed system. This approach provides benefits that manifest both in a) the mission
fulfillment (in this case, shorter duration of the experiment in comparison with the most basic
contingency handling, i.e., disabling the symmetrical thruster of the one malfunctioning)
and b) the generality of the systems engineering process. Reduction of engineering time is a
clear advantage of model-based reasoners; however, from the point of adaptation response
time, it is possible that most fault-handling results for a specific UUV in the literature will
have better metric values (RMSD and/or latency) than ours, as they are designed specifically
for a robot and its concrete operation.
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Figure B.2: Odometry measurements during the thruster failure experiments. Yellow squares depict the
reference waypoints.

(a) The root-mean-square deviation (RMSD) of the
vehicle position with respect to the reference trajectory

Test RMSD Units

I 0.12 [m]

II 0.19 [m]

III 0.23 [m]

(b) Duration of each test

Test Duration Units

I 70.2 [s]

II 168.7 [s]

III 88.3 [s]

(c) Latency between the thruster failure trigger and the system response

Test Latency Units

II 1.81 [s]

III 1.09 [s]

Table B.1: Comparison between tests. I represent the test with all thrusters working. II represent the
test with the failure of T0. III represent the test with the failure of T1.
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(a) The root-mean-square deviation (RMSD) of the
vehicle position with respect to the reference trajectory

Test RMSD Units

I 0.12 [m]

II 0.19 [m]

III 0.23 [m]

(b) Duration of each test

Test Duration Units

I 70.2 [s]

II 168.7 [s]

III 88.3 [s]

(c) Latency between the thruster failure trigger and the system response

Test Latency Units

II 1.81 [s]

III 1.09 [s]

Table B.2: Mean force summary.

(a) Mean force

II III

Test Mean F Unit

With MC 0.21 0.4 [N]

Without MC 0.16 0.29 [N]

(b) Duration of the test

II III

Test Duration Unit

With MC 168.7 88.3 [s]

Without MC 203.2 113.1 [s]

(c) Latency between the thruster failure trigger and the system response

II III

Test Latency Unit

With MC 1.81 1.09 [s]

Without MC 0.91 0.72 [s]

Table B.3: Numerical comparison of the experiments performed with and without the metacon-
troller (MC). II represent the test with the failure of T0. III represent the test with the failure of
T1.
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Figure B.3: Force reference commands obtained by the FL controller. Uppermost figure represent the I
test, middle the II and bottom the III. The time instance when each waypoint is sent is depicted with a
red circle, and the moment of the thruster failure is depicted with a vertical black line.
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(b) T2
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(c) T4
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(d) T6

Figure B.4: Forces produced by thrusters in charge for surge movement in all three experiments. Purple
graphs represent the I test, green the II and blue the III. The time instance when each waypoint is sent is
depicted with a red circle, and the moment of the thruster failure is depicted with a vertical black line.
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(b) T3
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(c) T5
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(d) T7

Figure B.5: Forces produced by thrusters in charge for heave movement in all three experiments. Purple
graphs represent the I test, green the II and blue the III. The time instance when each waypoint is sent is
depicted with a red circle, and the moment of the thruster failure is depicted with a vertical black line.
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autonomy Quality of a system which provides the ability to pursue objectives independently,
free from human intervention. These objectives can either be commanded or fixated
by the system itself to provide further value. 3, 11

availability Probability that a system or system element is operational at a given point in
time, under a given set of environmental conditions. 15

B

boundary Line of demarcation between the system under consideration and its environment,
including users, operators, enabling systems, and other surrounding elements. 45

C

Category Theory General mathematical theory for describing structures and maintaining
control over which aspects are preserved when performing abstractions. 115

cognitive system System based on knowledge. 17

D

dependability Ability to deliver the system intended services with a certain level of assur-
ance, encompassing factors like availability, reliability, safety, and security. 16

E

emergence Manifestation of properties attributed to the whole system that individual ele-
ments, in isolation, do not possess. 45

engineered system A system designed or adapted to interact with an anticipated operational
environment to achieve one or more intended purposes while complying with applicable
constraints. 10

error Property of the system state which may lead to failure. 24

F

failure Deviation of the system behavior from its specification. 24

fault Defect with the potential to produce an error. Faults cause changes in component and
system characteristics, which produce undesired modes of operation or performance
outcomes. 24
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fault tolerance Engineering domain dedicated to develop methodologies for prevent, miti-
gate and recover from faults. 24

formal methods Engineering methodology for specifying, developing, and verifying soft-
ware systems through the use of a mathematically grounded notation and language.
It constitutes a tool to systematically and, in many cases, automatically assess the
software model for three critical qualities: consistency (by eliminating ambiguity),
completeness, and correctness. 34

H

hierarchy Definition of the composing elements of a system only in relation to higher order
elements while suppressing all interaction and interrelations with other parts. 44

K

knowledge graph Representation method for data as a graph, utilizing a set of nodes to
represent entities and edges to capture relations between these entities. 66

Knowledge Representation and Reasoning Sub-area of artificial intelligence that concerns
analyzing, designing and implementing ways of representing information in computa-
tional formats so agents can use it to derive implicit facts. 53

L

life cycle Evolution of a system, product, service, project or other human-made entity from
conception through retirement. 47

life cycle model Framework of processes and activities concerned with the life cycle. 47

M

maintainability Probability that a system or system element can be repaired in a defined
environment with defined resources within a specified period of time. Increased
maintainability implies shorter repair times. 16

O

ontology Abstract, simplified conceptual perspective of a specific area of interest. It describes
a shared vocabulary at both textual and conceptual levels, including concepts’ properties
and the relations between them. 64

R

reasoning Process of manipulating symbols and sentences to deduce new sentences in a
given world. 55

reliability Ability of a system or an element to perform its required functions under stated
conditions without failure for a given period of time. 15

resilience Ability to maintain capability in the face of adversity either by avoiding the cause
of stress, withstand this degradation or recovering from it. 3, 16
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robot Physical agents endowed with sensors and physical effectors that perform tasks by
manipulating objects in the world. 17

robustness Ability to resist degradation of capabilities under adverse conditions by avoiding
or withstanding the cause of stress. 16

S

safety Property of a system of not causing damage as it behaves when being used and
sustained in a specific way in a specific environment. 16

security Ability to protect against non-authorised access. A composite of four attributes—confidentiality,
integrity, availability, and accountability—plus aspects of a fifth, usability, all of which
have the related issue of their assurance. 16

self-adaptation Capability of a system to dynamically adjust its structure and behavior
during runtime in response to its perception of both the environment and its internal
state.. 27

self-awareness Capability that supports understanding and decision-making towards a
value. It usually implies having information about its own internal states, being able
to differentiate itself from external world information and having sufficient knowledge
to perceive how its components influences other parts of the system. 33

self-X Capability of a system to manage itself to complete its tasks according to an adminis-
trator’s goals. 32

stage Period within the life cycle of an entity that relates to the state of its description or
realization. 47

system A "whole" consisting of interacting "parts" in which the arrangement of these parts
gives rise to properties or behaviors that are not attainable individually. 9, 10

Systems Engineering A transdisciplinary and integrative approach to enable the successful
realization, use, and retirement of engineered systems, using systems principles and
concepts, and scientific, technological, and management methods. 39

T

traceability Capability to establish associations between system elements and concepts such
as needs, requirements, architectural elements, and verification artifacts. 45

V

value Amount of benefit, feature or capability provided to various stakeholders. It considers
the optimum set of requirements to deliver customer satisfaction. 17, 26

Y

Yoneda lemma Category theory result which prove that two objects in a category can be
considered equivalent if and only if all the relationships that one of them holds with
others in the category are the same as those of the other object. 126, 149, 161
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